
A Unified Hardware/Software Runtime Environment for
FPGA-Based Reconfigurable Computers using BORPH

Hayden Kwok-Hay So, Artem Tkachenko and Robert Brodersen
Department of Electrical Engineering and Computer Science

University of California, Berkeley

{skhay, artemtk, rb}@eecs.berkeley.edu

ABSTRACT
This paper presents a hw/sw codesign methodology based
on BORPH, an operating system designed for FPGA-based
reconfigurable computers (RC’s). By providing native kernel
support for FPGA hardware, BORPH offers a homogeneous
UNIX interface for both software and hardware processes.
Hardware processes inherit the same level of service from
the kernel, such as file system support, as typical UNIX
software processes. Hardware and software components of
a design therefore run as hardware and software processes
within BORPH’s run-time environment. The familiar and
language independent UNIX kernel interface facilitates easy
design reuse and rapid application development. Perfor-
mance of our current implementation and our experience
with developing a real-time wireless digital signal process-
ing system based on BORPH will be presented.

Categories and Subject Descriptors: D.4.7 [Operating
Systems]: Organization and Design—UNIX C.0 [Computer
Systems Organization]: General—Hardware/software in-
terfaces D.4.0 [Operating Systems]: General—UNIX

General Terms: Standardization, Design

Keywords: Reconfigurable computers, Hardware process

1. INTRODUCTION
FPGA-based reconfigurable computers (RC’s) are becom-

ing viable computing architectures that promise to deliver
super-computer class performance by computing both di-
rectly on FPGA hardware and on processors[6, 10, 1]. Their
high performance to cost ratios have drawn vast interests in
areas such as bioinformatic[8], speech recognition[12], and
network security[15]. Developing applications on these RC’s
usually involve multiple design teams which, as observed by
[13, 16], can benefit from an interface-based design method-
ology. Furthermore, since previous research in these areas
mostly relied on super-computers or computer clusters as
their primary computing platforms, the application design-
ers have high degrees of variance in previous hw/sw codesign

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
CODES+ISSS’06, October 22–25, 2006, Seoul, Korea.
Copyright 2006 ACM 1-59593-370-0/06/0010 ...$5.00.

experiences. As a result, a hw/sw interface that is familiar
and easy to understand will greatly facilitate the transition
into hw/sw platforms like FPGA-based RC’s.

While traditional hw/sw codesign researches have pro-
duced encouraging results in the area of hw/sw partitioning,
cosimulate, cosynthesis, and co-verification, most of them
rely on self-contained design environments that are based
on their specific input languages or library API’s[4, 9]. As
a result, migrating existing software designs to RC platform
using these traditional hw/sw codesign methodologies would
have incurred major re-engineering efforts, including learn-
ing a new language and API, getting familiar with a new
design environment and reimplementing existing designs in
the new language environment.

Instead, an easy to use hw/sw interface that allows rapid
application development and migration should be (1) famil-
iar and intuitive to both software and hardware engineers;
and (2) language independent. We achieve this goal by set-
ting hardware/software boundary at the operating system
kernel level.

1.1 HW/SW Co-Design in BORPH
In this paper, we present BORPH1, an operating system

designed specifically for reconfigurable computers. Under
BORPH, hardware and software share the same familiar
UNIX interface and the same level of support from the OS
kernel. We introduce the concept of hardware process, which
is the same as a normal UNIX process except its “program”
is an FPGA hardware design instead of software program.
Communications between hardware and software are accom-
plished through conventional UNIX inter-process communi-
cation (IPC) mechanisms, such as shared file, pipe, shared
memory, signal, and message passing. Hardware processes
have access to system resources as their software counter-
parts, such as the general file system, standard input, stan-
dard output.

By maintaining the hw/sw interface at the kernel level,
BORPH provides a system that is language independent for
both hardware and software. Software designs can be devel-
oped in any language development environment a designer
is familiar with. For hardware designs to communicate with
the kernel, BORPH defines a standard message passing net-
work that resembles the software system call interface. This
standardized network allows hardware designs be developed
in any hardware language environment of choice.

1BORPH is an acronym for Berkeley Operating system for
ReProgrammable Hardware

1.2 Related Work
The work of UltraSONIC[17] shares a similar design phi-

losophy as BORPH in providing a unifying coarse-grain hard-
ware and software component interface. In their system,
software and hardware tasks share the same interface into
a runtime task scheduler. POLIS[4] provides a common
CFSM based framework that can be synthesized to either
software or hardware. However, both require the input de-
sign be specified in a specific language. Cray’s XD1, utilizes
FPGA’s as application accelerators[1]. It provides a set of
Linux software API’s that resembles file I/O functions in
C for FPGA communications. It does not provide kernel
support for FPGA as in the case of BORPH.

BORPH by itself is not a complete system to perform typ-
ical hw/sw codesign tasks such as partitioning, cosynthesis,
cosimulate, or verification. Instead, by providing basic OS
services, it acts as a platform on which these tasks can be
carried out.

We will describe the general concept and interfaces of
BORPH in Sect. 2. Our current implementation and its
performance is discussed in Sect. 3. We describe our hard-
ware and software codesign experience of a real-time radio
design using BORPH in Sect. 4. We will conclude the paper
in Sect. 5.

2. BORPH: THE OPERATING SYSTEM
BORPH is an operating system designed for reconfigurable

computers. It extends a standard Linux kernel to include
support for FPGA’s in a RC. Instead of treating FPGA’s
as coprocessors, BORPH treats FPGA’s in the system as
normal computational resources. User processes can there-
fore be either software programs running on processors, or
they can be hardware designs running on FPGA’s. We term
a running design on FPGA a hardware process. BORPH
maintains a consistent UNIX interface for both software and
hardware processes. Therefore, to the rest of the system,
communicating with a hardware process is no different from
communicating with a normal UNIX process. This homoge-
neous handling of hardware and software in the kernel forms
the foundation of coarse grain hardware/software codesign
boundary. Fig. 1 depicts a BORPH conceptual block dia-
gram.

In this paper, we focus on BORPH’s essential concepts
and their implementations related to hw/sw codesign. We
will present the general concept of hardware process, and two
hw/sw communication methods: the ioreg interface and the
file I/O interface in this section. Our particular implemen-
tation of these interfaces are described in Sect. 3. More
information on BORPH’s conceptual design can be found in
[14].

2.1 Running FPGA as a Hardware Process
In conventional OS terminologies, a process is a running

copy of a program in a processor. BORPH extends this idea
to FPGA, defining a hardware process as a running copy
of a FPGA design. BORPH supports a new binary format,
called a BORPH Object File (BOF), as shown in Fig. 3. A
BOF file encapsulates, among other information, configura-
tion for FPGA’s. Executing a BOF file causes the kernel to
configure FPGA’s accordingly. Fig. 2 shows a simple tran-
script of executing a BOF file. Once a BOF file is running
in the system, it is treated as a normal Linux process. For
example, its status can be checked by standard command

SW
Process1

SW
Process2

SW
Process3

Hardware

(Network, UART, etc)
Platform

Process2
HW

Process1
HW

H
ar

dw
ar

e
So

ftw
ar

e

Standard Linux System

BORPH Kernel

Figure 1: BORPH extends a traditional Linux sys-
tem with hardware process support. HW/SW pro-
cesses share the same I/O interface. Dotted line
denotes a standard Linux system where the kernel
and all user processes are software.

1:bash$./counter.bof &
[1] 2458
2:bash$ ps

PID TTY TIME CMD
2456 pts/4 00:00:00 bash
2458 pts/4 00:00:00 counter.bof
2507 pts/4 00:00:00 ps
3:bash$ cat /proc/2458/hw/ioreg/cntval
A3B498E0
4:bash$ cat /proc/2458/hw/ioreg/cntval
B289E906
5:bash$ kill -9 2458
[1]+ Killed counter.bof

Figure 2: Executing a BOF file containing a free
running counter. FPGA hardware is configured at
prompt 1 and is unconfigured at prompt 5.

like ps. Similar to a software process, a hardware process
can be terminated either by external UNIX signals, or it can
terminate itself by sending a message to the BORPH kernel
that is equivalent to the exit system call.

2.2 ioreg Interface
BORPH’s ioreg interface encapsulates conventional mem-

ory mapped I/O concept with a virtual file system inter-
face similar to that presented in [7]. Communication be-
tween hardware and software usually involves defining a set
of special hardware registers that are memory mapped by
software. BORPH encapsulates this common design prac-
tice by supporting it systematically via its ioreg interface.

BORPH extends the standard Linux /proc directory to

BOF Header

Embedded ELF file data

ELF Header

Hardware Region 0

Hardware Region 1

Hardware Region Header

ioreg Definition

Open File Descriptor

FPGA Configuration Data

Figure 3: Simplified BOF file format

Type R/W Seekable Size

Register rw no 4 bytes
On Chip Memory rw yes any
Off Chip Memory rw yes any
FIFO (from user) r/o no width×depth
FIFO (to user) w/o no width×depth

Table 1: Types of ioreg

include hardware specific information about a hardware pro-
cess. When a hardware process is started, the kernel pop-
ulates a special hw directory under that process ID. In this
directories are virtual files that provide information, such
as the physical FPGA location, of this hardware process.
There is also a subdirectory named ioreg. Each virtual file
in this directory corresponds to one ioreg embedded in the
BOF file. Reading from, or writing to these files causes the
kernel to read/write to the corresponding ioreg physically lo-
cated inside a hardware process, using BORPH’s standard
message passing network.

As an example, the design in Fig. 2 contains a free running
counter that stores its output in an ioreg register named
cntval. As shown in the figure, once the design is running in
the system as a hardware process, the value of cntval can be
read by any standard Linux program, such as cat, from the
corresponding /proc entry. Being able to access information
from a running hardware easily allows the ioreg interface be
used for both debugging and actual data transferring.

Besides simple single word register, the ioreg interface is
also used to provide access to on-chip FIFO, on-chip mem-
ory, as well as off-chip memory that a hardware process have
access to. Table 1 shows the supported hardware construct
by this interface and their differences when exported as vir-
tual files in BORPH. Accessing these hardware constructs is
similar to accessing a single word register described above.
For example, to read an on-chip memory, a user may per-
form a simple shell command

bash$ cp /proc/123/hw/ioreg/Shared_Memory ~/

or similarly in a C program:

fread(buf, mem_size, 1, MEM_FILE);

In our current design, memory space between software and
hardware is separated. The only way to access memories
attached to, or embedded in, a FPGA is through this ioreg
virtual files. The concept of shared memory between soft-
ware and hardware is being developed.

2.3 File I/O
Hardware processes in BORPH have access to the general

Linux file system just like their software counterparts. Since
hardware processes are not running in a processor, reading
from and writing to files are done BORPH’s standard mes-
sage passing system.

Similar to conventional software process, when a hardware
process is started, three standard I/O files, stdin, stdout,
and stderr, are automatically opened. With stdout, for ex-
ample, a hardware process can print messages to the screen
for debugging purpose. Such “debug by printing” capability
is previously only available during simulation. For example,
we currently take advantage of this to run a small shell pro-
gram directly from a FPGA which allows user interaction
with a hardware design.

SelectMap FIFO

User
FPGA

User
FPGA

User
FPGA

P
LB

−O
P

B
B

rid
ge

SelectMap

Control PPC

mem cntlr

PLBOPB

InternetControl FPGA ethernet

D
D

R
2

M
E

M

On−Chip
BRAM

PPC

P
LB

−O
P

B
B

rid
ge

ioreg

ioregOPB IPIF

OPB IPIF

BRAM
Shared

FIFO
User

Design
Simulink

User

PLB

User FPGA
OPB

OS Kernel Space User Space

Figure 4: Block diagram of BORPH system on a
BEE2 compute module.

Another use of standard file I/O is to chain multiple pro-
cesses through pipes. Because of the standardized file inter-
face, a user can freely combine software and hardware pro-
cesses on either end of a pipe. For example, given a transmit-
ter (tx.bof) and receiver (rx.bof) implemented on FPGA,
the following command can test an entire radio transceiver
chain:

cat data.in | tx.bof | rx.bof > data.out

Besides standard I/O, hardware processes can access any
other file in the system as well.

3. CURRENT IMPLEMENTATION
This section describes our proof of concept implementa-

tion of BORPH on a BEE2 compute module[6]. Each BEE2
compute module contains 5 Xilinx Virtex-II pro xc2vp70
FPGA’s. The center control FPGA, handles all system re-
lated functions. It is connected to the remaining 4 user
FPGA’s through a shared 8-bits configuration bus, called
SelectMap bus, running at 50 MHz, and to each user FPGA
independently with a 50-bits direct connection. The Se-
lectMap bus doubles as a low bandwidth communication bus
after a user FPGA is configured. BORPH currently commu-
nicates with all user FPGA’s using this bus. Fig. 4 shows a
simplified block diagram of the internal of the control FPGA
and a typical configuration of a user FPGA created by our
Simulink design flow.

BORPH kernel is a modified version of a Linux 2.4.30
kernel running on the left PowerPC 405 core in the con-
trol FPGA. The hardware core responsible for driving the
SelectMap bus is attached to the processor’s on-chip pe-
ripheral bus (OPB) via the processor local bus (PLB). Each
user FPGA has a 128 bytes FIFO on the receiver side of the
SelectMap bus.

As mentioned before, all communications between BORPH
kernel and user FPGA’s are accomplished by a standard
message passing system. These message packets have a sim-

byte offset
0 1 2 3

CMD LOC
OFFSET

SIZE
PAYLOAD

CMD:

LOC:
or ioreg location number
file descriptor number
GREET, EXIT
WRITE, WRITE_ACK
READ, READ_ACK

file offset
read/write size

OFFSET:
SIZE:

Figure 5: A simple packet format for message ex-
change with BORPH kernel.

ple but consistent format as shown in Fig. 5. Our current
implementation of this packet network is built on top of the
SelectMap bus connection. On the control FPGA, a kernel
thread, mkd, is responsible for answering all user FPGA in-
terrupts, and delivering messages to the corresponding wait-
ing process.

3.1 Hardware Process Creation
A hardware process is created when an exec system call is

received by the BORPH kernel on a BOF file. The request
is then passed on to a kernel thread, bkexecd, for the actual
configuration. Based on the BOF file header, one or more
suitable FPGA’s are chosen and configured accordingly us-
ing the SelectMap bus.

In our current implementation, creating a hardware pro-
cess takes about 900 ms, while creating a normal software
process takes about 40 ms. Since the theoretical minimum
time required to start a hardware process is the sum of the
time to start a software process and the time to configure a
FPGA, which is 65 ms in our case, we are currently 9 times
slower than the theoretical minimum. Preliminary investi-
gation indicates that the PLB-to-OPB bridge on the control
FPGA is limiting the bandwidth of streaming configuration
data from the file system to a user FPGA.

Improving the reconfiguration speed, as well as incorpo-
rating hardware context switching using partial reconfigura-
tion are planned for future implementations.

3.2 Reading/Writing ioreg Files
When a user reads or writes to a virtual ioreg file, the re-

quest is translated by the kernel into a message that is sent
to the corresponding FPGA. The unique identification num-
ber of the ioreg is sent in the loc field of the message. Each
ioreg read (write) request is answered by the user FPGA by
a read (write) acknowledge message, indicating the number
of bytes read (written), or a negative value that indicates
error condition. Adhering to the standard UNIX semantics
for file read (write), the return value is passed directly back
to the user process that initiated the request.

Fig. 6 shows the performance of reading/writing an on-
chip memory that is exported as an ioreg file, using different
read/write sizes, s. The transfer time remains low until s
increases beyond about 64 bytes. Since there is no buffering
in the file system level, the time needed for the operation is
determined solely by data movement time, which includes
memory copy time and hardware data transfer time. The
effect of a small data cache (16k bytes), combined with a
small 128 bytes SelectMap FIFO are contributing factors
for the slowing down. Nonetheless, for large enough s, the
speed levels at about 1.38 MBs2 for both read and write.

2mega-bytes per second

1 2 8 32 128 512 2048 8192
102

103

104

transfer size s (bytes)

tim
e

(µ
s)

ioreg read
ioreg write

Figure 6: Performance of reading/writing on-chip
memory on a user FPGA using ioreg interface.

3.3 General File I/O from Hardware Processes
Hardware processes initiate file I/O by sending messages

to the BORPH kernel using the format described in Fig. 5,
with the loc field denoting Linux opened file descriptor
number. A kernel thread, called a fringe, is created for each
opened file to handle the actual file operation on behalf of
the FPGA hardware. When a packet is received from the
user FPGA, mkd is woken up, which in turn wakes up the
corresponding fringe based on the packet. The fringe then
reads the file on behalf of the hardware process, blocking
as needed. The read data is sent as the payload of a read
acknowledge packet back to the user FPGA. Since most file
writes complete successfully without blocking, as an opti-
mization, no fringe is created if a file is opened as write
only. Instead, mkd writes to the file on behalf of the hard-
ware process directly, thus eliminating one context switch
for each file write. Furthermore, no write ack is sent to
the user FPGA.

For purpose of benchmarking hardware file I/O perfor-
mance, an FPGA design, stdloop.bof, and an equivalent
software C program, pipetok, are created. Both designs re-
peatedly read s bytes of data from its stdin, and write the
data back to stdout, until the end of file is reached.

First, to determine the overhead of file I/O from a user
FPGA hardware process, the two programs are run as follow:

bash$ stdloop.bof < datafile > outfile

bash$ pipetok < datafile > outfile

The time to complete file I/O operations of various sizes,
s, are shown in Fig. 7. Hardware processes are about 5
times slower than software for small file reads. The gap
increases as s increases. The time for interrupt handling,
context switching to mkd, and then to the correct fringe on
the control FPGA all contributes to this overhead. On the
other hand, small hardware file writes are faster than their
software counterparts due to the elimination of write ack
message from control FPGA. For large writes, the small Se-
lectMap FIFO size of 128 bytes causes data transfer speed
the limiting factor.

To determine the overhead of communication in typical
mixed hardware software computation scenarios, a second
benchmark is perform where both programs are run in a
piped process chain as follow:

1 2 8 32 128 512 2048 8192
100

101

102

103

104

read/write size s (bytes)

tim
e

(µ
s)

hardware read
hardware write
software read
software write

Figure 7: Hardware process file I/O performance.

1 2 8 32 128 512 2048 8192

102

103

104

tim
e

(µ
s)

sw | hw | sw
sw | sw | sw

1 2 8 32 128 512 2048 8192
100
200
300

token size s (bytes)

ov
er

he
ad

 (%
)

Figure 8: Comparing software piped process chain
with a mixed hardware/software chain.

bash$ sendtok | stdloop.bof | recvtok

bash$ sendtok | pipetok | recvtok

sendtok and recvtok are programs that repeatedly send
and receive token of s bytes from their stdout and stdin
respectively. The time for recvtok to receive an entire s
bytes token from sendtok in both cases are shown in the
top half of Fig. 8. Communication overhead, which is the
extra time needed for the mixed hw/sw pipe over the soft-
ware pipe, is plotted at the bottom half of the diagram.
Overhead remains at about 60% level for s < 128 and in-
creases significantly for s ≥ 128 mainly as a result of the
limited SelectMap FIFO size.

4. CASE STUDY: A REAL-TIME WIRELESS
SIGNAL PROCESSING SYSTEM

In this section, we present our experience designing a real-
time wireless signal processing system for our cognitive radio

Spectrum
Analysis

2.4 GHz
Analog

Frontend

Network
Protocol

Spectrum
Analysis

2.4 GHz
Analog

Frontend

Network
Protocol

In
fo

rm
at

io
n

E
xc

ha
ng

e
N

et
w

or
k

#1

#N

Figure 9: Cognitive radio testbed system

project[11] to illustrate how various features of BORPH fa-
cilitate our development and testing process.

Cognitive radios are smart radios that take advantage of
under-utilized licensed spectrum for opportunistic tranceiv-
ing. In order to prevent interference to licensed primary
users of the spectrum, a variety of techniques have been
proposed for reliable sensing and non-interfering use of the
spectrum. Our system is designed to validate those tech-
niques. Fig. 9 depicts our overall system design that involves
multiple cooperative cognitive radios.

BORPH allows us to test our design in real-time remotely
by two physically separated hardware and software groups.

4.1 HW/SW Partitioning
As mentioned before, we do not have an automatic parti-

tioning system in place. Therefore, hw/sw partitioning for
this system is done loosely based on the standard network
stack, where the physical layer is implemented in hardware
and the higher layer implemented in software.

The “cognitive” nature of the radio adds complexity to
this hw/sw partitioning because the link and MAC layers
must adapt according to changes in the physical spectrum.
In our case, the task of real-time spectrum analysis is per-
formed by FPGA hardware, leaving the decision making pro-
tocol to software. Software of each radio also communicate
with each other using standard internet to form a coopera-
tive information network.

4.2 Development Environment
Software is developed with conventional C development

tools, as well as in Simulink[2], which is also the program
of choice for our hardware design flow[5]. To work with
BORPH, we have augmented standard Xilinx System Gen-
erator[3] with our in-house Matlab program. It is respon-
sible for inserting all interfacing logic for a user FPGA, as
shown on the left hand side of the dotted line in Fig. 4. It
also generates FPGA configuration file using Xilinx back-
end tools, which is then used to produce a BOF file for
run-time execution.

4.3 Communication and Synchronization
All communications between the spectrum sensing hard-

ware and the software protocol stacks are done via BORPH’s
ioreg interface. Two 8192 bytes shared memory are exported
as ioreg virtual files for data communication with software.
In addition, more than 20 single word registers are defined.
Most of them are standard registers that control design pa-
rameters such as RF channel select, amplifier gain control,
etc. Some ioreg registers, however, are used solely for syn-
chronization purpose. For example, each shared memory is
guarded by a pair of enable and ready register. The enable

register is used by software to notify hardware its intention
to read memory. When the data in the shared memory is
ready, the hardware asserts the corresponding ready regis-
ter. This two-way handshaking mechanism forms the basis
of simple synchronization between software and hardware
processes.

The file I/O capability of a hardware process is used to
implement a low level debugging shell. It provides an addi-
tional way to debug the running FPGA.

4.4 System Testing
Hardware/software cosimulation is done within the Simulink

environment. Each supported ioreg construct shown in Ta-
ble 1 is modeled by a custom Simulink block. Besides allow-
ing cycle-accurate simulation within Simulink, these blocks
are synthesizable to FPGA. Unfortunately, cosimulation pro-
vides very limited information because of its limited speed.
As a result, our system is often tested in situ.

Our hardware design is tested in real-time together with
its associated radio frontend. Instead of artificial data, real-
time data is fed using signal generators as testbench. The
analyzed result is stored in on the on-chip memory for soft-
ware to display and debug. All test setups and data transfer
are done via BORPH’s ioreg.

Our software design is developed off-site. BORPH pro-
vides a remote testing environment for our protocol group
who doesn’t have physical access to the hardware. With
BORPH, our software team independently develops the pro-
tocol stack without the presence of the hardware by emu-
lating it with software processes. As development progress,
they then remote log in to the physical hardware for mixed
hw/sw testing with a simple swap of hardware process in
place of the emulating software process. Because BORPH is
running on with a fully functional Debian root file system,
all the necessary software development tools, such as gdb

are available for debugging.

5. CONCLUSION
In this paper, we have described our hw/sw codesign expe-

rience using BORPH, an operating system designed for re-
configurable computers. BORPH encapsulates FPGA hard-
ware designs as running hardware processes and provides
conventional OS services such as file system support to them.
By setting the hw/sw boundary at OS kernel level, BORPH
provides an unified hw/sw runtime environment with a fa-
miliar UNIX interface. It extends the familiar notion of
process-level parallelism to include both hardware and soft-
ware. Designing with BORPH is not tied to any particular
language, and all existing software for Linux can be reused
as needed.

We have described our current implementation of BORPH
on a BEE2 platform and our experience designing with it.
Despite the sub-optimal performance of our current imple-
mentation, it has served as a proof of concept demonstrating
the usefulness of the BORPH design concept. Since imple-
mentation detail of BORPH is independent of the OS inter-
face, performance is expected to be improved through future
re-implementations without affecting existing user designs.

Currently, we are further exploring the semantics for hard-
ware processes, such as blocking, parallel file system access,
and software/hardware notification mechanisms. Partial re-
configuration of user FPGA is also being developed to fur-
ther enhance kernel/user space separation. Moreover, we

are developing a direct in-system hardware process debug-
ging methodology based on BORPH.

6. ACKNOWLEDGEMENT
We would like to thank Pierre Droz and Andrew Schultz

for their effort in developing many fundamental building
blocks and infrastructures on BEE2 that this work is built
upon. This work was funded in part by C2S2, the MARCO
Focus Center for Circuit & System Solutions, under MARCO
contract 2003-CT-888

7. REFERENCES
[1] http://www.cray.com/products/xd1/.

[2] http://www.mathworks.com/.

[3] http://www.xilinx.com.

[4] F. Balarin et al. Hardware-software co-design of embedded
systems: the POLIS approach. Kluwer Academic Publishers,
Norwell, MA, USA, 1997.

[5] C. Chang et al. Rapid design and analysis of communication
systems using the BEE hardware emulation environment. In
IEEE Rapid System Prototyping Workshop, June 2003.

[6] C. Chang, J. Wawrzynek, and R. Brodersen. BEE2: A
high-end reconfigurable computing system. IEEE Des. Test.
Comput., 22(2):114–125, Mar. 2005.

[7] A. Donlin, P. Lysaght, B. Blodget, and G. Troeger. A virtual
file system for dynamically reconfigurable FPGAs. In Field
Programmable Logic and Application, 14th International
Conference, FPL 2004, Leuven, Belgium, August
30-September 1, 2004, Proceedings, pages 1127–1129, 2004.

[8] S. Dydel and P. Bala. Large scale protein sequence alignment
using FPGA reprogrammable logic devices. In Field
Programmable Logic and Application, 14th International
Conference, FPL 2004, Leuven, Belgium, August
30-September 1, 2004, Proceedings, pages 23–32, 2004.

[9] A. Habibi and S. Tahar. Design and verification of SystemC
transaction-level models. IEEE Trans. VLSI Syst.,
14(1):57–68, Jan. 2006.

[10] T. Hamada et al. Progrape-1: A programmable special-purpose
computer for many-body simulations. In 6th IEEE Symposium
on Field-Programmable Custom Computing Machines
(FCCM ’98), 15-17 April 1998, Napa Valley, CA, USA,
pages 256–257, 1998.

[11] S. M. Mishra et al. A real time cognitive radio testbed for
physical and link layer experiments. In 1st IEEE Symposium
on New Frontiers in Dynamic Spectrum Access Networks,
pages 560–567, Nov 2005.

[12] E. M. Ortigosa et al. FPGA implemenation of multi-layer
perceptrons for speech recognition. In Field Programmable
Logic and Application, 13th International Conference, FPL
2003, Lisbon, Portugal, pages 1048–1052, 2003.

[13] J. A. Rowson and A. Sangiovanni-Vincentelli. Interface-based
design. In DAC ’97: Proceedings of the 34th annual
conference on Design automation, pages 178–183, New York,
NY, USA, 1997. ACM Press.

[14] H. So and R. W. Brodersen. Improving usability of
FPGA-based reconfigurable computers through operating
system support. In 16th International Conference on Field
Programmable Logic and Applications (FPL’06), 2006.

[15] Y. Sugawara, M. Inaba, and K. Hiraki. Over 10gbps string
matching mechanism for multi-stream packet scanning
systems. In Field Programmable Logic and Application, 14th
International Conference, FPL 2004, Leuven, Belgium,
August 30-September 1, 2004, Proceedings, pages 484–493,
2004.

[16] P. van der Wolf et al. Design and programming of embedded
multiprocessors: an interface-centric approach. In
CODES+ISSS ’04: Proceedings of the 2nd IEEE/ACM/IFIP
international conference on Hardware/software codesign and
system synthesis, pages 206–217, New York, NY, USA, 2004.
ACM Press.

[17] T. Wiangtong, P. Y. K. Cheung, and W. Luk. A unified
codesign run-time environment for the ultrasonic
reconfigurable computer. In Field Programmable Logic and
Application, 13th International Conference, FPL 2003,
Lisbon, Portugal, September 1-3, 2003, Proceedings, pages
396–405, 2003.

