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Abstract. Recent generations of Field Programmable Gate Arrays (FPGA) allow the dynamic recon-
figuration of cells on the chip during run-time. For a given problem consisting of a set of tasks with
computation requirements modeled by rectangles of cells, several optimization problems such as find-
ing the array of minimal size to accomplish the tasks within a given time limit are considered. Existing
approaches based on ILP formulations to solve these problems as multi-dimensional packing problems
turn out not to be applicable for problem sizes of interest. Here, a breakthrough is achieved in solving
these problems to optimality by using the new notion of packing classes. It allows a significant reduc-
tion of the search space such that problems of the above type may be solved exactly using a special
branch-and-bound technique. We validate the usefulness of our method by providing computational
results.
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1. Introduction

Field-Programmable Gate Arrays (FPGA’s) are a new and important class of hard-
ware devices. Typically, they consist of a regular rectangular grid of equal con-
figurable cells (logic blocks) that allow the prototyping of simple logic functions
together with simple registers and with special routing resources (see Figure 1).
A particular design is realized by customizing a configuration. In traditional SRAM-
based chips, this can be done at power-up by loading a configuration bit-stream
serially into the chip. These chips may only be reconfigured as a whole with typical
reconfiguration times ranging in the order of milliseconds.

Today, new generations of FPGAs have become partitionable and dynamically
reconfigurable, even partially. These chips (e.g., see (Atm; Xil96)) may support
several independent or interdependent tasks and designs at a time, and parts of the
chip can be reconfigured quickly during run-time.
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Figure 1. Example of an FPGA consisting of a rectangular grid of hx × hy = 9 × 9 logic cells. Each
module (v1; v2; v3; v4) occupies a rectangle of cells. Modules must be placed inside the chip and must
not overlap if executed simultaneously on the chip.

In the following, we consider architectures similar to the Xilinx 6200 FPGA (Xil96)
architecture, where column readins and readouts of flipflop contents may be per-
formed during run-time without interfering with other configured parts of the chip.
Under these assumptions, a task may be represented by a 3D polytope with two
spatial dimensions, the third one representing the time of computation, see Fig. 2.1

However, even if the configuration time is short, the compilation time for con-
structing the configuration stream for a task is still rather long. This diminishes
the results that have been reported recently on on-line strategies for compiling and
reconfiguring such devices. Important examples include speeding up computational
problems in hardware by task compaction on hypercubes (HJ90), or approaches to
dynamic allocation of a sequence of tasks on an FPGA of given size by using heuris-
tics to compact tasks in execution on the chip during run-time (DG97b; DG97a).

Here, we consider statically defined problems where a task set is given which may or
may or not impose a partial order of execution. Such a set of tasks may be described
by a dependency graph, see Figure 2. From the static structure of the problem, we
may optimize the layout of each task separately. For such a problem instance, we
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Figure 2. Dependency graph of tasks and shape of modules (3D boxes) with the spatial dimensions
x and y and the temporal dimension t (execution time).
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are interested in finding exact solutions to the following problems:

— Find the chip of smallest size to accommodate all tasks such that a given max-
imum execution-time of the set of tasks is guaranteed (MinA&FindS) together
with a feasible schedule. A subproblem of this problem occurs when assum-
ing a feasible schedule of all tasks is already given. We call this problem type
MinA&FixedS.

— Check whether for a chip of given size and given maximum execution time, there
is a feasible placement and a feasible schedule that accommodates a set of tasks
(FeasAT&FindS).

— Find the smallest execution time of the set of tasks for a chip of fixed size
(MinT&FindS).

— Check whether for a chip of given size and a given feasible schedule, there is a
feasible placement (FeasA&FixedS).

A schedule is called feasible, if the execution intervals of tasks satisfy the prece-
dence relation. In case of a given maximum execution time, the schedule must also
satisfy the requirement that all tasks have finished their execution by this time.
A placement is called feasible if the locations occupied by each pair of tasks that
have overlapping execution intervals are disjoint.

First, we show how these problems relate to a special class of higher-dimensional
packing problems. Since their one-dimensional counterparts are NP-complete in the
strict sense (GJ79), these generalizations are also difficult to solve. Methods have
been proposed to use ILP formulations to solve special problem cases such as
the 2-dimensional knapsack problem (Bea85; HC95). Not surprisingly, the authors
report of being able to solve only problems of very small sizes (e.g., for a grid of
30× 30 cells).

Here, we exploit a new and more efficient way of representing the packing
problem using packing classes (FS97; Sch97). We show that exact solutions for
the problem types MinA&FixedS and FeasA&FixedS may be found for problems
of technical interest using a new branch-and-bound technique. Other variants and
extensions (like FeasA&FindS and MinA&FindS) require additional mathematical
machinery and will be dealt with in future work.

The proposed methodology may be particularly useful for prototyping piecewise
regular algorithms (MC94; TTZ97; Pla97) in hardware. In this sense, the task graph
can be seen as a system level view of the dependencies of communicating regular
subalgorithms, each being presynthesized and stored in an FPGA module library,
and represented by a relocatable rectangle of cells and its execution time.

2. Reconfiguration and Packing

2.1. Definitions

Definition 1 (Problem instance). A problem instance is given by a directed, acyclic
task graph G = �V;A� where the nodes v ∈ V denote tasks or designs, and the
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arcs a ∈ A denote partial order constraints on the execution of the tasks. To each
task v ∈ V , there are assigned the weights

— wx�v� ∈ N, denoting the length of the layout (number of cells occupied) in the
x-dimension.

— wy�v� ∈ N, denoting the length of the layout in the y-dimension, and
— wt�v� ∈ N, denoting the execution time of task v.

Definition 2 (Feasible schedule). For a given problem instance G = �V;A�,
a schedule is given by a function pt x V → N. A schedule pt is called feasible if
∀a ∈ A x pt�head�a�� ≥ pt�tail�a�� + wt�tail�a�� where head�a� denotes the head
of a and tail�a� denotes the tail of a. Under a given maximum execution time
constraint ht ∈ N, a feasible schedule pt must satisfy the additional constraint:
∀v ∈ V x pt�v� +wt�v� ≤ ht .

Definition 3 (Reconfigurable chip). A reconfigurable chip H is given by an array
of hx × hy cells where hx; hy ∈ N. Its area A ∈ N is given by A = hx × hy .

A placement of tasks may be described as follows:

Definition 4 (Feasible placement). Given a problem instance G = �V;A� and a
reconfigurable chip H of size hx × hy . A feasible placement is a three-dimensional
vector function p = �px;py; pt� x V → N3, where the values px�v�; py�v�; pt�v�
denote the leftmost cell, down-most cell, and the smallest time index occupied by v.
Task v occupies the cells in the interval �px�v�; : : : ; px�v� + wx�v�� in the x, of
�py�v�; : : : ; py�v�+wy�v�� in the y, and of �pt�v�; : : : ; pt�v�+wt�v�� in the t (time)
dimension.

Example 5. See Figure 1. There are four tasks. Shown are the spatial dimensions
of the tasks, i.e., wx�v1� = 2, wx�v2� = 5, wx�v3� = 2, wx�v4� = 2, and wy�v1� = 3,
wy�v2� = 4, wy�v3� = 2, wy�v4� = 3. The execution times of the tasks are not shown.

A placement is feasible if and only if the rightmost cell and the topmost cell occu-
pied by each task is smaller than or equal to the number of cells in that direction.
Also, one must guarantee that for any two modules overlapping in time, the cells
occupied by them in either the x- or the y-dimension must be disjoint in order for
the corresponding boxes not to overlap.

Example 6. The placement shown in Figure 1 is infeasible. For one thing, task v3
does not satisfy the constraint that it has to be placed completely within the chip.
Also, in case v2 and v4 overlap in execution, these tasks occupy the same space at
the same time.

A problem instance with a given feasible schedule pt corresponds to a preplacement
of the boxes in the t-dimension.
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2.2. Packing

In order to show the relationship between the optimization and decision problems
defined above and packing, we pick one special problem, namely that of
FeasA&FindS, and consider the subclass of problems for which G = �V;A�
has no arcs ((A = Z), independent task set). Thus, we have to find a feasible
placement on a chip of given size to accommodate all task boxes. This problem is
known as the Orthogonal Packing Problem (OPP):

Definition 7 (OPP). Given a set of boxes V , a weight function w, and the con-
tainer size function h. The OPP denotes the decision problem: Is there a feasible
placement (packing) for �V;w; h�?

The OPP is the basis to several more-dimensional packing problems. One of them is
the so-called square-packing-problem (SPP), where we want to determine a quadratic
chip of smallest size that suffices to accommodate a given set of tasks:

Definition 8 (SPP). Given is set of boxes V and a vector weight function w =
�wx;wy;wt�. Also given ht .

min h = hx = hy ∈ N

s: t: ∃ feas. placement for �V;w; �h; h; ht��

In the following, we write �V;w; h� to denote an instance of a packing (placement)
problem, where V is a set of boxes, w is a vector weight (size) function, and h is a
vector function denoting the extensions of the container. Also, we say that the obvi-
ous generalization of a feasible placement in Definition 4 to arbitrary dimensions
defines a packing p.

All problems defined in the introduction belong to the class of orthogonal packing
problems with fixed orientations: Each edge of a box must be placed parallel to an
edge of the container, and boxes may not be rotated. Clearly, time and spatial
orientations may not be interchanged, and the constraint of not interchanging x-
and y-dimension typically arises by column- or row-oriented chips.

2.3. Previous Algorithms

In order to solve general optimization problems in the context of packing, it has to
be checked whether a set of constraints such as given in Definition 4 is satisfied.
A central role in this matter plays the OPP introduced in Definition 7. Using a
grid decomposition, it can be formulated as a 0-1 program (Bea85). Unfortunately,
experiments show that this approach can only be used to solve very small problems
to optimality, even for our case where we already have a schedule. The reason lies
in the exponential size of the resulting integer linear program: It has O��V ��X��Y ��
0-1 variables and O��X��Y ��T �� constraints where �X�, �Y �, �T � are the dimensions
of the underlying grid in the x-, y-, and t-direction.
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The largest two-dimensional packing problems that have been solved with this
technique place about 20 rectangles on a 30 × 30 grid (Bea85; HC95). To solve
a three-dimensional problem with about 100 nodes is hopeless if these standard
solution techniques are used.

3. Architecture Assumptions

3.1. Intermodule Communication

Intermodule communication is assumed to occur at the end of operation of the
sending module (task model). The issuing module may store its result register values
into an external memory connected to the FPGA interface (readout) via a bus inter-
face. Memory is allocated to store temporarily intermediate results.2 Afterwards, the
receiving module will read in the communicated data into its registers over the bus
interface. With this communication style, it is justifiable to ignore routing overhead
between modules that otherwise might introduce additional placement constraints.

3.2. I/O-overhead

The communication time needed for writing out and reading in communicated data
may be accounted for by considering this as an offset that is part of the execution
time of a task.

3.3. Reconfiguration Overhead

The time needed for carrying out reconfigurations may be modeled by a constant
(possibly an individual number for each task), depending on the target architecture.
This may be considered a simplification because the reconfiguration time might
depend on the result of the placement. However, many different models of tak-
ing into account reconfiguration times can be thought of, and have to be adapted
individually to the target architecture.

4. A Solution Technique for the SPP

In the following, we propose an approach for solving the square-packing problem
(SPP) in Definition 8 under the assumption that the OPP can be solved in a rea-
sonable amount of time for problem sizes of interest. Techniques for an efficient
solution of OPP’s is presented in Section 5.

Obviously, a binary search technique may be applied to solve the SPP using
the OPP:

— Use a heuristic to construct a packing for �V;w; h� returning an upper bound
hu = max�hx; hy� on the chip size.
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Figure 3. Extraction of independent subproblems for finding better upper bounds.

— Determine a lower bound hl using a method as described in Section 5.
— In the interval �hl; : : : ; hu�, apply binary search to determine the smallest pos-

sible chip size.

4.1. A Trivial Upper Bound

A trivial upper bound hu may be obtained for a given schedule as follows:

hu = max
{∑
v∈V

wx�v�;
∑
v∈V

wy�v�
}

4.2. Problem Pre-conditioning

Sometimes a better upper bound may be easily computed in case a given schedule
reveals a certain structure, like in the example in Figure 3.

Shown is a timing diagram of the lifetimes of boxes. In case there exists a time
step t where no two intervals overlap, this time step defines a cut that partitions
the boxes V into those that live at time steps smaller than t (V1) and those that
do not start executing before this time step (V2). Both subproblems may be solved
independently because no two boxes v1 ∈ V1 and v2 ∈ V2 can overlap in any spatial
placement within the container.

Let the above scheme recognize k independent subproblems V1; : : : ; Vk. Then a
better upper bound may be achieved by defining

hu = max
k
�hu�k��;

where hu�k� is the upper bound determined for the kth partition block of boxes.

5. Solving OPP’s

In this section, we describe our new approach for solving OPP’s that was first used
for pure geometric packing in (Sch97; FS97; FS98a; FS98b). It makes use of two
new ideas: a) a new way of characterizing feasible packings, and b) an approach to
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get good lower bounds. Finally, we give a brief overview over how these techniques
can be combined in a branch-and-bound framework to yield an efficient algorithm
for solving MinA&FixedS-problems.

5.1. Packing Classes

For a given packing, the projections onto the different coordinate axes turn out
to be interval graphs Gi�V;Ei�, see Figure 4. These graphs possess the following
properties:

P1: Gi is an interval graph, ∀i ∈ �1; : : : ; d�,
P2: Any independent set S of Gi is i-admissible, ∀i ∈ �1; : : : ; d�. In other words,

wi�S� =
∑
v∈S wi�v� ≤ hi, since all boxes in S must fit into the container in the

ith dimension.
P3: ∩di=1Ei = Z. In other words, there must be at least one dimension in which the

corresponding nodes do not overlap.

The Gi are called component graphs of E = �E1; E2; : : : ; Ed�.
Our search procedure works on d-tuples of component graphs with these proper-

ties; they are called packing classes in the following. It turns out that they represent
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not only a single packing but a set of packings, which allows it to consider more
than one possible candidate for an optimal packing at a time.

The way to obtain a packing class from a given packing is shown in Figure 4.
Figure 5 demonstrates how to obtain packings from a given packing class.

Definition 9 (Orienting a packing class). Let E be a packing class and Fi, i =
1; : : : ; d, be a transitive orientation of the complements of the ith component graph
Gi. Then F x= �F1; : : : ; Fd� is called an orientation of the packing class E.

From an orientation F of a packing class E, one obtains a mapping pF x V → Qd

with

pFi �v� x= max
{
1; pFi �u� +wi�u�� Euv ∈ Fi

}
; v ∈ V;∀i = 1; : : : ; d

Example 10. Figure 5 shows an example of a transitive orientation and the corre-
sponding packing.
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Figure 5. Obtaining a packing from a packing class. Each transitive orientation of the complement
graphs of the component graphs defines a packing.
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During the transition from packing to packing class, the information on the rel-
ative placement of any two nodes v1 and v2 not overlapping in the ith projection
is lost. For such pairs of nodes, there is an edge in the corresponding complement
graph GC

i . An orientation of the edges in this graph reconstructs the relative posi-
tion of nodes. Note that not just any orientation of edges in GC

i is sufficient to
define a packing, but only transitive orientations are feasible: if �v1; v2� ∈ �V; Fi�,
and �v2; v3� ∈ �V; Fi�, then �v1; v3� must also be an element of �V; Fi�.

For each orientation F of a packing class E is pF a packing. F x= �F1; F2; : : : ; Fd�
are transitive orientations of the complement of the ith graph Gi. Each orientation
describes a different packing.

Example 11. The complement graphs shown in Figure 5 have two transitive ori-
entations each. Figure 6 shows the total of 4 packings that are obtained as the
combinations of these orders.

The main gain of talking about packing classes instead of packings is that exis-
tential statements about packings turn out to be equivalent to existential statements
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packings shown.
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about packing classes:

Theorem 12. A d-tuple of graphs Gi = �V;Ei� corresponds to a feasible packing,
iff it is a packing class, i.e., if it satisfies conditions P1, P2, P3.

A proof can be found in (FS98b). This allows us to concentrate on packing classes
instead of packings. Another important advantage of packing classes is the follow-
ing: There are very powerful graph-theoretic characterizations for interval graphs
and graphs with transitive orientations, see (Gol80) for more details.

The following terminology is used: An induced cycle in a graph G is given by a set
of vertices U = �u1; : : : ; uk� ⊆ V , such the cycle C = �u1; u2; : : : ; uk; u1� of edges
is contained in G. The length of the cycle is k. An induced cycle C is 2-chordless,
if none of the edges �ui; ui+2� is contained in G; C is chordless, if only the edges
�ui; ui+1� are contained in G.

Proposition 13. (GH64) Let G be a graph whose complement graph has a transitive
orientation. Then G is an interval graph, iff it does not contain an induced chordless
cycle of length 4.

Proposition 14. (GH62; GH64) A graph has a transitive orientation, iff it does not
contain a 2-chordless cycle of odd length.

These characterizations can be used for fast subroutines for constructing packing
classes via branch-and-bound (Section 6). Mathematical details and implementation
aspects can be found in (FS98d).

5.2. Proving Infeasibility

A packing cannot exist if the sum of volumes of the boxes exceeds the container
volumes.

Better criteria for infeasibility may be obtained by transformed volumes (Sch97).
These techniques have been used in (FS97; FS98a; FS98c; TFS98) to obtain better
bounds in two ways:

— use more than one (efficiently computable) volume criterion to obtain better
bounds,

— use transformations of box sizes that allow to make exact decisions with better
bounds.

In general, a combination of both of these approaches seems to provide convincing
results.

Example 15. (Sch97; FS98a) Do 9 cubes of side length 2/5 fit into the unit cube?
The sum of the individual cube volumes is given as 9�8/125� = 0:576 ≤ 1, so the
volume criterion does not provide a proof of infeasibility. Using the transformation
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function u�2� from (Sch97; FS98a), we obtain a transformed cube side length of
�3�2/5�−1�

2 = 0:5. Hence, the total sum of transformed volumes is 9�1/8� = 1:125 > 1,
proving infeasibility.

In (TFS98), it is shown how the transformed volume approach may be used in
order to find better lower bounds for the SPP problem in Definition 8.

5.3. Incorporation of Schedule Constraints

So far, each dimension has been treated as being interchangeable with any spatial
dimension. In case of our placement problem, however, time plays a special role.
In particular, two special problem classes of packing problems must be considered:

5.3.1. FixedS-Problems. This class of problems assumes a given fixed schedule
(temporal placement). In this case, the search space may be reduced to d − 1 =
2 dimensions by omitting the time component and by changing the definition of
edges in the component graphs G1 and G2 as follows: In case two tasks v1 ∈ V
and v2 ∈ V are not executed simultaneously, they may occupy the same chip area.
Hence, condition P3 is already satisfied for edges between nodes E1 and E2 that
are not executed simultaneously.

Example 16. Consider the d graphs G1; : : : ;Gd (corresponding to spatial dimen-
sions) and two nodes vk; vl ∈ V that are known to be scheduled at disjoint time slots.
Hence, the d component graphs may all simultaneously contain an edge �vk; vl� see
e.g. in Fig. 7 for d = 2, k = 1, l = 2. Then, none of the complement graphs can have
an edge between vk and vl. Therefore, there cannot be an ordering of placement
imposed between these two nodes in any spatial dimension.
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Now, the above extensions due to schedule constraints make the problems intro-
duced in Section 1 solvable as follows:

— FeasA&FixedS: Solve the 2D-instance of the OPP with the relaxation that pack-
ing classes may have an edge �vi; vj� in both component graphs G1 = �V;E1�
and G2�V;E2�, in case the execution intervals of vi and vj do not overlap (con-
dition P3).

— MinA&FixedS: Apply the binary search proposed in Section 4 and bounds
obtained by methods as described above and in (TFS98) for h with the same
relaxation of P3 as for the FeasA&FixedS-problem.

6. A Branch-and-Bound Procedure

When solving the problem FeasA&FixedS, i.e., when checking whether a chip of
given size is large enough to accommodate a set of tasks, we have to decide whether
a set of boxes with fixed t-placements has a feasible packing. We approach this OPP
in three steps, in ascending order of computational difficulty:

1. Try to disprove the existence of a packing with so-called conservative scales (FS97;
TFS98). Stop in case of success.

2. Try to find a packing using an efficient (greedy) packing heuristic. Stop in case
of success.

3. Try to construct a packing class by a tree search algorithm. In case of failure we
can state that no packing for the given OPP–instance exists, otherwise, we get a
feasible placement.

The search tree is traversed by Depth First Search, see (FS98d; Sch97) for details.
Branching is done by fixing an edge �b; c� ∈ Ei or �b; c� /∈ Ei. After each branching
step, it is checked if one of the three conditions P1, P2, P3 is violated, or whether a
violation can only be avoided by fixing further edges. These tests as well as the test
if the fixed edges already form a packing class are based on comparability graph
recognition and on the calculation of maximal weighted cliques in comparability
graphs, so they can be performed efficiently (Gol80).

In particular, Propositions 13 and 14, and condition P2 imply that the following
forbidden configurations have to be dealt with:

1. induced chordless cycles of length 4 in Ei,
2. induced 2-chordless odd cycles in the set of edges excluded from Ei,
3. infeasible stable sets in Ei.

The use of P3 is obvious; Properties P1 and P2 are hereditary, so adding edges to Ei
later will keep them satisfied. Each time we detect such a fixed subgraph, we can
abandon the search on this node; if we detect a fixed subgraph, except for a set of
“equivalent edges”, we can fix one of them.
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Our experience shows that these conditions are already useful when only small
subsets of edges have been fixed: By excluding small sub-configurations like
induced chordless cycles of length 4, each branching step triggers a cascade of more
fixed edges.

7. Benchmarks

The first example is a numerical method for solving a differential equation (DE)
with 11 nodes. The node operations are either multiplications or ALU-type opera-
tions (comparison, addition, subtraction). As a second example from the domain of
high-level synthesis, we choose an elliptical wave filter (EWF, task graph see Fig. 8)
with 34 nodes (8 multiplications and 26 additions).

Finally, a complete video-codec using the H.261 norm is optimized.
These examples are meant to demonstrate the general applicability of our method

for practical problems; given other problem instances, or additional constraints, we
can adapt our algorithm.

Figure 8. Problem graph and schedule of an elliptic wave filter, ht = 21, one multiplier, two adders
required (EWF, acyclic case).
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7.1. DE and EWF Benchmarks

For the DE benchmark, the module library contains two hardware modules (box
types): an array-multiplier and a module of type ALU that realizes all other
node operations. For a word-length of n=16 bits, we assume a module geometry
of 16× 1 cells for the ALU module, and of 16 × 16 cells for the multiplier. Fur-
thermore, let the execution time of an ALU node take one clock cycle and of a
multiplication 2 clock cycles on our target chip.

For different resource constraints (maximal number of simultaneously active
modules) shown in Table 1, we obtained schedules using a resource constrained
scheduler, e.g., list scheduling, or using an ILP solver. Each schedule (FixedS)
yields a test case for which the container size is minimized (MinA). Also shown are
the number of iterations of the branch-and-bound procedure and the CPU-time
needed for finding a solution.

The reported optimization times were measured as the CPU-times on a SUN-
Ultra 30 architecture.

For the DE benchmark, it turns out that a chip of 32 × 32 freely programmable
cells is necessary to obtain a latency of 6 clock cycles. As this turns out to be the
longest path in the task graph, there does not exist any faster schedule. A reduction
in size is possible if only one multiplication needs to be carried simultaneously,
leading to a chip size of 17 × 17, and requiring 13 clock cycles. The minimal chip
size was found using a binary search procedure for solving the SPP, with typically
less than 3 applications of the OPP procedure.

For the EWF example, it can be seen that a 32× 32 chip of freely programmable
cells is necessary to obtain a latency of 16 clock cycles. A reduction in size is possible
if only one multiplication needs to be carried out simultaneously, leading to a chip
size of 18× 18, and requiring 20 clock cycles. With a latency constraint of 27 clock
cycles, the minimal chip size obtained is 17 × 17 cells, with a maximum degree of
parallelism of one multiplication and one addition. Results for this benchmark are
reported in Table 2.

7.2. Video-Codec

Figure 9 shows a block diagram of the operation of a hybrid image sequence
coder/decoder. The purpose of the coder is to compress video images using the

Table 1. Computational results for optimizing reconfigurations for the DE benchmark

Container sizes (#iterations/ Max. resources
Test ht hx hy CPU-time) (s) multiplier/ALUs

1 6 32 32 305/0.58 3/2
2 7 32 32 206/0.42 2/2
3 13 17 17 65/0.19 1/2
4 13 17 17 4/0.03 1/1
5 17 16 16 1/0.02 1/1
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Table 2. Computational results for optimizing reconfigurations for the Elliptical Wave Filter

Container sizes (#iterations/ Max. resources
Test ht hx hy CPU-time) (s) multiplier/ALUs

1 16 32 32 306/2.89 2/3
2 20 18 18 206/1.42 1/2
3 27 17 17 22/0.99 1/1

H.261 standard. In this device, transformative and predictive coding techniques are
unified. The compression factor can be increased further by a predictive method
for motion estimates: blocks inside a frame are predicted from blocks of previous
images.

The blocks of the operational description in Figure 9 possess the granularity of
more complex functions. However, this description contains no information corre-
sponding to timing, architecture, and mapping of blocks onto an architecture.

Figure 10 shows a problem graph G of the video-codec in Figure 9. The problem
graph contains a subgraph for the coder and one subgraph for the decoder.

For realizing the device, we have a library of three different modules. One
is a simple processor core with a (normalized) area requirement of 625 units
(25× 25 cells, normalized to other modules in order to obtain a coarser grid)
called PUM, denoted by “P” in Table 3. Secondly, there are two dedicated special-
purpose modules: a block matching module (BMM, “B” in Table 3) that is used for
motion estimation and requires 64 × 64 = 4096 cells; and a module DCTM (“D”
in Table 3) for computing DCT/IDCT-computations, requiring 16× 16 = 256 cells.

Again, the optimization was carried out for different latency constraints. Two
instances of particular interest are shown in Table 3.

It can be concluded that solution 1 is preferable, since it provides better per-
formance at equal cost. This conclusion could not be drawn from a resource con-
strained scheduling procedure that obtained the schedule of the first problem using
an ILP solver for a resource constraint of 2 PUMs, 1 BMM, and 1 DCTM, and of
1 PUM, 1 BMM, and 1 DCTM in the second case. It should be noted that even
better results may be obtained if also the schedule is determined by our packing
algorithm. These FindS problems will be dealt with in a forthcoming paper.
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Figure 9. Block diagram of a video-codec (H.261).
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Figure 10. Problem graph G of the video-codec in Figure 9.

8. Conclusions

We describe a new general approach to solving dynamic hardware reconfiguration
problems as more-dimensional packing problems. Using the concept of packing
classes, new methods for obtaining fast lower bounds, and branch-and-bound tech-
niques, we obtain an algorithm that solves these more-dimensional packing prob-
lems to optimality. Several practical benchmark instances as described here provide
some evidence of the general applicability of our approach. Clearly, more compli-
cated test instances only increase the necessity for our approach of using powerful
tools from discrete optimization.

The presented methodology may be considered as a step towards prototyping
communicating piecewise regular algorithms (Tei93; Pla97) in hardware using recon-
figurable FPGA technology. The main advantages of such a methodology are 1)
the reuse of resources in such computation intensive algorithms in time and space,
and of course, 2) the programmability of the target architecture while being able to
guarantee (near) real-time performance.

Concerning future research, we consider important extensions arising from
requiring weaker time constraints for the tasks, such that only precedence con-
straints are given when optimizing the layout, instead of a fixed schedule. This is
also a natural issue in the context of more-dimensional packing, where we may have
constraints for the way of stacking boxes. For this purpose, we have to guarantee
that the complement of a graph Gi in a packing class has a transitive orientation
that contains the given partial order.

Another variation arises for instances where it may be possible to reuse parts of a
given layout for similar tasks, such that some reconfiguration times for tasks can be

Table 3. Computational results for optimizing reconfigurations for the Video-Codec

Container sizes (#iterations/ Max. resources
Test ht hx hy CPU-time) (s) P/B/D

1 59 89 89 35/0.11 2/1/1
2 61 89 89 40/0.18 1/1/1
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saved. We hope to deal with this issue by treating problems of this type as knapsack
problems with additional set cover constraints.

Notes

1. Here, each module is modeled by a cuboid. Such simplification, obtained by taking the axis-parallel
hull over the 3D polytope, makes the following placement problem easier.

2. A static memory allocation may be deduced directly from the static placement.
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