
Asynchronous PipeRench: Architecture and Performance Estimations

Hiroto Kagotani Herman Schmit
Okayama University Dept. of ECE
Okayama City, Japan Carnegie Mellon University

kagotani@cne.okayama-u.ac.jp Pittsburgh, PA 15213 USA
herman@ece.cmu.edu

Abstract - PipeRench is a configurable architecture that has the
unique ability to virtualize an application using dynamic reconfigu-
ration. This paper investigates the potential benefits and costs of
implementing this architecture using an asynchronous methodology.
Since clock distribution and gating are relatively easy in the syn-
chronous PipeRench, we focus on the benefit due to decreased timing
pessimism in an asynchronous implementation. Two architectures for
fully asynchronous implementation are considered. PE-based asyn-
chronous implementation yields approximately 80% improvement in
performance per stripe. This implementation, however, requires sig-
nificant increases in configuration storage and wire count. A few
particular features of the architecture, such as the crossbar intercon-
nect structure within the stripe, are primarily responsible for this
growth in configuration bits and wires. These features, however, are
the primary aspects of the PipeRench architecture that make it a
good compilation target.

I. Introduction

Asynchronous logic has experienced a recent revival of
interest in research and academia. The benefits of asynchro-
nous logic, as discussed in the literature and summarized
in [1], include:

• Reduction in design effort: Building a low-skew clock
distribution network for a large ASIC or microprocessor is
one of the most challenging aspects of the design. An asyn-
chronous device has no global clock, and therefore elimi-
nates this design effort.

• Reduction in power dissipation for clocks: In complex
ASICs and microprocessors, the clock consumes a signifi-
cant amount of the total power consumed by the device.
The elimination of a global clock can reduce this power
dissipation.

• Reduction of timing pessimism: Synchronous designs
require the clock period to be greater than or equal to the
worst case critical path, even though that path may be
rarely enabled. As a result, for most cycles, the clock is
slower than it needs to be. Asynchronous designs can, ide-
ally, move from one computation to the next at the time
exactly required by that first calculation.

This paper investigates the asynchronous implementation
of the PipeRench architecture [2]. PipeRench is an architec-
ture supporting virtualization of data paths for reconfigurable
computing. In its current implementation, PipeRench [3] is
implemented using standard synchronous methodology.

There are two independent clocks on the current imple-
mentation of PipeRench: one for the interface and one for the
fabric (or data path). The interface clock connects to about
one thousand registers located in a relatively small area on
chip. It is not a challenge to distribute this clock. In addition,
it does not consume much power. The fabric clock connects
to 16K registers distributed over the entire chip. It is relatively
easy to design a low-power, low-skew distribution network
for the fabric clock, however. The fabric clock loads are regu-
larly distributed around the fabric. A buffered H-tree distrib-
utes the clock symmetrically to all the loads. All wires in the
H-tree network are shielded to avoid any noise problems. The
fabric clock is gated by the control and interface logic so that
it transitions only when computation needs to be performed.
While it is not exploited in the current implementation, it is
possible to use configuration information to determine the
exact set of registers that are being used and that require
clocking, which minimizes clock power dissipation even fur-
ther. Because of its regularity and predictability, the first two
benefits of asynchronous logic do not apply to the PipeRench
architecture. Our examination of asynchronous PipeRench is
motivated, therefore, by the pursuit of increased performance
through the reduction of timing pessimism.

II. Related work

There are a number of papers in the literature on asynchro-
nous, programmable logic. Montage [4] presented an asyn-
chronous FPGA for prototyping of asynchronous logic.
STACC [5] is another asynchronous FPGA architecture. The
STACC paper presents average-case performance as a prime
motivation for the architecture, but does not quantify its bene-
fits or costs. To our knowledge, this is the first paper to dis-
cuss the interaction of hardware virtualization and average
time performance.

III. PipeRench Architecture Summary

Figure 1 illustrates the PipeRench architecture as described
in [3]. PipeRench is not a general piece of programmable
hardware. Rather, it supports pipelined datapaths. Each pipe-
line stage consists of logic and registered storage. Each con-
nection from one stripe to the subsequent stripe passes
through a register. There are no connections to prior stripes,
or combinational paths to subsequent stripes. Stripes consist

Proceedings of the 11th Annual IEEE Symposium on Field-Programmable Custom Computing Machines (FCCM’03)
1082-3409/03 $17.00 © 2003 IEEE

of a number of processing elements, or PEs, which perform
parallel operations in each pipeline stage. In the current
implementation of PipeRench, there are 16 PEs per stripe,
and each PE contains an 8-bit ALU, a pass register file, and
interconnect resources to communicate with other PEs. The
PEs can be cascaded to construct wider functional units.

PipeRench’s unique feature is its ability to automatically
virtualize hardware, which is enabled by the above constraints
on the application. Figure 2 illustrates the process of virtual-
izing a six stage (or stripe) application on four physical
stripes. PipeRench provides a high degree of compile-ability.
Compile-ability is enabled first by the virtual hardware
model, which frees the compiler from having to fulfill a size
constraint. In addition, PipeRench has intra-stripe intercon-

nect consisting of sixteen eight-bit busses that allow any PE
to communicate with any other PE on the same or subsequent
stripe.

A. Hardware Virtualization and Average-case Performance

The frequency of the fabric clock is determined by the crit-
ical path within the virtual hardware design. The compiler
accepts a cycle time constraint and timing information, and
attempts to create a design that works at the specified fre-
quency. A longer clock period gives the compiler more flexi-
bility in placing and routing operations in the fabric, which
usually results in higher hardware utilization.

It is highly unlikely that the compiler will be able to use the
entire clock cycle in every stripe in the virtual design. Only a
subset of the resources in the design will be on the critical
path. In the current implementation, the fabric clock period is
greater than or equal to the length of the longest path in any of
the virtual stripes. However, in a virtualized hardware device
like PipeRench, a stripe with a critical path may not even be
currently executing in the fabric. To understand what this
means, consider a virtual hardware design consisting of four
stripes. As illustrated in Figure 3, three of the stripes of this
design have a critical path of 1 ns. The remaining stripe has a
critical path of 2 ns. Figure 3 shows a timeline of execution of
this virtual design on a fabric with 3 physical stripes. Only
two of the four cycles in the steady state have the stripe with
the critical path of 2ns configured into the fabric. Therefore,
on half of the cycles in this steady-state, synchronous Pipe-
Rench is being clocked at half the frequency that assures
accurate execution. A performance gain of 33% could be
achieved in this case if we could somehow clock the fabric at
minimum time required by all the virtual stripes currently
running in the fabric.

Figure 4 shows the throughput achieved by a virtual design
as a function of the number of physical stripes. In this case,
the virtual design is 100 stripes, and one of those stripes has a
critical path twice the length of the other 99 stripes. The
straight line shows the throughput as a function of the number
of physical stripes if the design is run at the critical path of the
slowest virtual stripe. The curved line shows the throughput if
the same design is run while the clock is adjusted every cycle
to the longest path in the stripes that are currently configured
into the design.

It is also true that the critical path in a design is not always
activated, even when it is configured into the physical fabric.
To understand what we mean, consider the critical path of a
ripple carry adder. This path goes from the carry-in of the
least-significant bit to the carry-out of the most-significant
bit. Yet this path is only activated if the carry is propagated
across all the bits of the adder. If this is a 32-bit adder, and the
inputs are randomly distributed, the critical path will only be
activated once in every 232 cycles.

FIGURE 1. PipeRench Architecture: with sixteen
stripes consisting of sixteen PEs each.

Stripe 1

Stripe 15

Stripe 8

Stripe 7

Stripe 0PE PE PEPE

Pass Register File
Connections

PE PE PEPE

PE PE PEPE

PE PE PEPE

PE PE PEPE

Configuration Store

R0 State Store

Input Queue

Output Queue

.

.

.
.
.
.

762
128 128

128

FIGURE 2. PipeRench Hardware Virtualization: This
example illustrates the first five cycles of a fabric with
four physical stripes executing an application consisting
of six virtual stripes.

Legend

Stripe 1

Stripe 2

Stripe 6

Stripe 1

Registers

Logic

...

1

2

1

2

1

3 2

1

3

4

2

4

3

5

Virtual Hardware Design

Physical Hardware Execution (on ring-connected structure)

Cycle 1 Cycle 2 Cycle 3 Cycle 4 Cycle 5

unconfigured

configuring

configured

configuring

1

2 3

4 5

Proceedings of the 11th Annual IEEE Symposium on Field-Programmable Custom Computing Machines (FCCM’03)
1082-3409/03 $17.00 © 2003 IEEE

In summary, synchronous PipeRench currently suffers due
to two kinds of pessimistic estimations of performance: 1) a
portion of the design that is on the critical path may not even
be configured in the fabric and 2) the critical path may not be
activated based on the current inputs. In this paper, we will
examine the reduction of this pessimism in three different
ways. First, we will investigate a technique that allows the
compiler to specify the period of each stripe, and an architec-
ture that uses this information to vary the clock rate. This is
still a synchronous implementation technique, but it attempts
to reduce the first kind of timing pessimism. Second, we will
investigate fully asynchronous implementations of Pipe-
Rench, which reduce both kinds of timing pessimism. We
consider two possibilities: one where the completion status of
an entire stripe is computed, and one where the completion
status is computed individually for each of the sixteen PEs
within one stripe. We use two example applications to investi-
gate the performance benefits of each technique. The first
application is an automatically compiled version of the IDEA
encryption algorithm, and the second is a manually optimized
version of that same algorithm. This allows us to explore the

interaction between the compiler and the asynchronous archi-
tecture.

IV. Variable Clock Approach

The first architectural experiment we have conducted con-
sists of using the existing PipeRench synchronous model,
with estimates of timing for each of the components (inter-
connect, functional unit and registers). First, we determine the
longest timing path in the whole virtual hardware design. This
would be the fastest that we could run the existing hardware
with certainty that we have no timing problems. Second, we
determine the longest timing path within each stripe. The
results are shown in Figure 5(a). This is a plot of the automat-
ically compiled version of IDEA encryption [6] using the DIL
compiler [7] with no timing constraints specified. Because no
timing constraints are specified or enforced, the DIL compiler
focusses on increasing the utilization of the PEs in the fabric.
As a result, the lengths of the critical paths for each stripe are
widely distributed. The units in Figure 5 are abstract and
based on best-effort architectural estimates of delay. We have
not yet calibrated these numbers with the physical chip.

Next, we take this timing data, and with a simple timing
simulator, determine how long it would take to execute the
application using:
• A constant clock at a period equal to the longest critical

path in the entire virtual hardware design, and
• A variable clock that has a period equal to the longest criti-

cal path in the portion of the virtual hardware design that is
currently configured in the hardware.
The results of this experiment are plotted in Figure 6 as

throughput versus physical stripes. In this paper, because of
the lack of hard numbers for delay, all throughput numbers
are relative and unitless. The difference in throughput
between the fixed and variable clocks is most pronounced
when the number of physical stripes is small. This design has
111 virtual stripes. Therefore, when the number of physical
stripes is equal to or greater than 111, the throughput for both

FIGURE 3. Hardware Virtualization: Using a design with variable periods for each stripe

Stripe 1: 2ns path

Stripe 2: 1ns path

Stripe 3: 1ns path

Stripe 4: 1ns path

Virtual Hardware Design

Stripe 1

Stripe 2

Stripe 3

Stripe 2

Stripe 3

Stripe 4

Stripe 3

Stripe 4

Stripe 1

Stripe 1

Stripe 4

Stripe 2

Steady State Reconfiguration Pattern

...

Cycle: n n+1 n+2 n+3

Shortest
Period:

2ns 1ns 1ns 2ns

FIGURE 4. Throughput comparison of optimal and
worst-case clocking. The y-axis shows throughput as a
percentage of throughput achievable if there is no
hardware virtualization.

0%

20%

40%

60%

80%

100%

120%

0 25 50 75 100 125

Physical Stripes

T
h

ro
u

g
h

p
u

t

Optimal

Worst-Case

Proceedings of the 11th Annual IEEE Symposium on Field-Programmable Custom Computing Machines (FCCM’03)
1082-3409/03 $17.00 © 2003 IEEE

solutions is equivalent, because it is certain the stripe with the
critical path is configured in the fabric. In fact, looking at the
delay histogram in Figure 5(a), one can see that the greatest
span of stripes without a long delay (over 40 units) is only
about 47 stripes (from stripe 15 to 62). Therefore, when there
are more than 47 physical stripes, the chip must run with a
period of 40 units or greater.

From an implementation perspective, a truly variable clock
is difficult to implement. PLLs can generate variable clock
frequencies but these devices cannot change the clock period

on a cycle-by-cycle basis. PLLs take time to stabilize at a new
frequency. One way to possibly implement this variable clock
would be to use a single high-speed clock. Each stripe would
express its critical path as a multiple of that very short clock
period. Hardware would compute the maximum timing path
currently in the hardware. A counter, running on the high-
speed clock, would count up to the maximum timing path to
determine the time for the next clock pulse. This design is
illustrated in Figure 7.

FIGURE 5. Delay distribution in compiler-generated (a) and manually optimized (b) IDEA encryption.

(a) (b)

Maximum delay for each stripe

Manually Optimized

0

10

20

30

40

50

0 10 20 30 40

Virtual stripe
D

e
la

y
 U

n
it
s

Maximum delay for each stripe

Automatically Compiled

0

10

20

30

40

50

0 10 20 30 40 50 60 70 80 90 100 110

Virtual stripe

D
e

la
y
 U

n
it
s

FIGURE 6. Throughput versus Physical Stripes using Automatically Compiler IDEA Encryption and
Variable Clock: (a) full range, (b) zoomed in for less than 40 physical stripes.

(a) (b)

0

5

10

15

20

25

0 20 40 60 80 100 120

Physical stripes

T
h

ro
u

g
h

p
u

t

Fully Variable Clock Fixed Synchronous Clock

0

2

4

6

8

10

0 10 20 30 40

Physical stripes

T
h

ro
u

g
h

p
u

t

Fixed Synchronous Clock Fully Variable Clock

Proceedings of the 11th Annual IEEE Symposium on Field-Programmable Custom Computing Machines (FCCM’03)
1082-3409/03 $17.00 © 2003 IEEE

Of course, this solution means that somewhere on the chip
there must be a very high frequency clock, and the critical
path of a stripe can only expressed in multiples of that clock
period. This high frequency clock should run at some multi-
ple N of the frequency of the fixed clock required for the vir-
tual hardware design. Other stripes would have their critical
path expressed as a number less than or equal to N. If N is
large, it allows very fine timing control, but also requires a
very high speed clock and a larger counter that is capable of
running at that frequency. Smaller values for N are easier to
implement, but causes the timing of more stripes to be overes-
timated. Experimentally, we determined that with N=8 we
can achieve 85% of the benefit of a fully variable clock. A
larger N improves performance slowly, and makes implemen-
tation much more difficult. Clock multiples less than eight
dramatically reduce the gain from variable clocking in this
example.

The performance benefit of this technique is greatest when
the distribution of critical path delays is very great between
stripes. The best-case scenario for this technique occurs when
the compiler has done a poor job of balancing delays between
stripes. Running without timing constraints, the DIL compiler
does not do a very good job optimizing the schedule or place-
ment. The compiler could be improved, but we found it more
expedient to hand-optimize this application. Special attention
was paid to balancing critical path delay and improving utili-
zation. The resulting design is much smaller (50 stripes) and
has a much shorter critical path. The delay histogram of this
design is shown in Figure 5(b). The results of the variable
clock implementation of this design are shown in Figure 8. It
can be seen that there is almost no benefit to the variable
clocking approach, except for compensating for bad compila-
tion.

V. Fully-Asynchronous Approaches

The compile-time approach to exploiting variable timing
does not seem to pay off. We now investigate whether
dynamic computation of the completion of a cycle can sub-
stantially improve performance. In our first experiment in
fully asynchronous implementation, we assume that each
stripe is capable of computing when it was done. The next
computation can proceed when every stripe in the fabric com-
pletes its computation. This leverages the fact that the critical
path even within a stripe is a worst-case number. During real
execution, worst-case timing paths may not be activated,
allowing the computation to proceed even faster. In a later
experiment, we will discuss the benefits of determining com-
pletion on an individual PE basis within the stripe.

FIGURE 7. One Possible Variable Clock
Implementation Schemes: using one counter with P-
input maximum computation.

Stripe 1

Stripe 15

Stripe 8

Stripe 7

Stripe 0PE PE PEPE

Pass Register File
Connections

PE PE PEPE

PE PE PEPE

PE PE PEPE

PE PE PEPE

Configuration Store

.

.

.
.
.
.

dly

dly

dly

dly

dly m
a
x

counter

high freq
clock

variable
fabric
clock

FIGURE 8. Throughput versus Physical Stripes: Variable Clock, IDEA manually optimized. (a) full range,
(b) zoomed in on less than 30 stripes.

(a) (b)

0

5

10

15

20

25

30

35

40

45

0 10 20 30 40 50 60

Physical stripes

T
h

ro
u

g
h

p
u

t

Fully Variable Clock Fixed Synchronous Clock

0

5

10

15

20

25

0 5 10 15 20 25 30

Physical stripes

T
h

ro
u

g
h

p
u

t

Fully Variable Clock Fixed Synchronous Clock

Proceedings of the 11th Annual IEEE Symposium on Field-Programmable Custom Computing Machines (FCCM’03)
1082-3409/03 $17.00 © 2003 IEEE

A. Stripe-based Completion

To measure the potential speedup of this technique, we
instrumented the conventional fixed-clock PipeRench simula-
tion model so that we could determine when the outputs from
each stripe stop changing during each cycle.The difference
between the instant the outputs stop changing and the end of
the fixed clock period is called the slack time. That slack time
is accumulated during the course of a substantial computa-
tion. We measure the time that the fixed-clock simulation
takes to perform the computation. Assuming we had a perfect
completion circuit with no pessimism, we could subtract the
accumulated slack time from the time it took the fixed-clock
implementation to complete.

Graphs of throughput versus physical hardware are shown
in Figure 9. In this figure we show both the compiled and
hand-optimized IDEA kernels. The maximum benefit of this
approach is approximately 20% compared to the fixed clock
implementation. Unlike the variable-clock approach, the ben-
efit of fully asynchronous implementation spans all imple-
mentations, and does not decrease as the size of the physical
hardware grows. True asynchronous implementations even
show improvement in performance for hand-optimized imple-
mentations of the PipeRench design.

B. Implementation Issues for Stripe-based Completion

A possible implementation of PipeRench with stripe-based
completion is shown in Figure 10. We assume that all the
1024 bits of output from the register file from one stripe are
connected to the subsequent stripe and are bundled with a
request and acknowledge wire to allow the communication to
be self-timed. Request and acknowledge signal must also

accompany the global input bus and the global output bus. A
token indicating the current stripe that is being reconfigured is
propagated around the ring of the fabric. The token moves
from one stripe to the next when reconfiguration is done on
one stripe, and the computation on the subsequent stripe is
complete.

The costly part of this implementation is the hardware that
computes the completion of an entire stripe. Since there are
sixteen eight-bit PEs in a stripe, this computation may be
rather complex, and will require some long wires. It may be
more efficient, therefore to reduce the size of the component
that computes completion. The next section investigates the
implementation of PipeRench where each of the PEs compute
their own completion.

C. PE-based Completion

Estimating performance for a asynchronous implementa-
tion using PE-based completion is more challenging because
the current PipeRench architecture fundamentally reconfig-
ures on a stripe-wide basis. PE-based completion provides a
new alternative, however, because one PE in a stripe can com-
plete its computation and begin reconfiguring before the other
PEs in the stripe are done with their computation. As a result,
the “wave front” of reconfiguration can deform around slow
computations, as illustrated in Figure 11.

We constructed a complete Verilog simulation model

of PipeRench using PE-based completion. This simulation

requires tremendous amounts of memory. In fact, simulating

PipeRench with 25 stripes requires about 4 GB of memory.

We could not effectively simulate a PipeRench fabric greater

than 25 stripes. We again simulated the chip on the two ver-

FIGURE 9. Throughput versus Physical Stripes: Stripe-based asynchronous compared against variable
clock and fixed clock. (a) compiled IDEA, (b) manually optimized IDEA.

(a) (b)

0

5

10

15

20

25

30

0 20 40 60 80 100 120 140

Physical stripes

T
h

ro
u

g
h

p
u

t

Fully Async (Stripe) Fully Variable Clock

Fixed Synchronous Clock

0

10

20

30

40

50

60

0 10 20 30 40 50 60 70

Physical stripes

T
h

ro
u

g
h

p
u

t

Fully Async (Stripe) Fully Variable Clock

Fixed Synchronous Clock

Proceedings of the 11th Annual IEEE Symposium on Field-Programmable Custom Computing Machines (FCCM’03)
1082-3409/03 $17.00 © 2003 IEEE

sions of the IDEA encryption algorithm. The results are

shown in Figure 12.

PE-based reconfiguration shows a dramatic improve-

ment in the performance of the system. Since much of the

IDEA application consists of 16-bit additions, and these are

implemented by cascading two eight-bit PEs, PE-based com-

pletion allows the least significant PE to begin its reconfigu-

ration before the most significant PE has completed the

addition. Compared against fully synchronous operation, the

PE-based asynchronous implementation improves perfor-

mance by approximately 80%. Both compiler-generated and

manually-optimized design benefit from the PE-based imple-

mentation.

To demonstrate that these basic performance trade-

offs hold for other applications, we also used DIL to map the

Discrete Cosine Transform, or DCT, to PipeRench. The per-

formance numbers for all four considered clock architectures

are shown in Figure 13. Again, the PE-based asynchronous
approach is the best technique, followed by the stripe-based
asynchronous approach and the variable clock approach. This
virtual hardware application has one very long stripe, which
means that variable clock actually does better than fixed clock
over a larger spread of physical stripes than was seen with
IDEA.

D. Implementation Issues for PE-based Completion

The structure of our simulation model of the PE-based
asynchronous PipeRench is illustrated in Figure 14. The cir-
cuit requires an interface to the external configuration circuit
similar to the stripe-based architecture in Figure 10, except
that each PE has a configuration token. In addition, this
implementation requires a completion network internal to
each stripe.

The costliest aspect of this implementation is the crossbar
routing network. In synchronous PipeRench, each PE can
broadcast a value to every PE on that stripe or the next stripe.
The source PE has no configuration information that indicates
which PEs it sends its value to. This is difficult to implement
in an asynchronous methodology, because every connection
requires both the source and the destination to be aware of the
connection, so that it can watch the correct request and
acknowledge signals. As a result, the configuration space of

FIGURE 10. Possible Implementation of Stripe-based Asynchronous PipeRench.

s
to

re
/o

u
tp

u
t
b

u
s
e

s

c
o

n
fi
g

/r
e
s
to

re
/i
n

p
u

t
b

u
s
e

s

re
g

is
te

r
fi
le

 d
a
ta

config enable token

Environment interface
(including IO queues, configuration store and state store)

stripe

stripe

stripe

a
ck

re
q

a
ckre

q

FIGURE 11. Variable wave front of reconfiguration
through an asynchronous PE-based implementation
of PipeRench.

Legend

configuring

configured

configuring

5

5

5

5

Proceedings of the 11th Annual IEEE Symposium on Field-Programmable Custom Computing Machines (FCCM’03)
1082-3409/03 $17.00 © 2003 IEEE

each PE must be increased to allow the PE to watch the cor-
rect acknowledge signals. Synchronous PipeRench frequently
uses this technique of sending a result and not being aware of
its destination. The configuration word for each PE grows
from 42 bits in the synchronous implementation to 178 bits in
the PE-based synchronous implementation.

The other costly aspect of PE-based asynchronous imple-
mentation is the additional wires required for all interfaces.
Nearly twice as many wires must go into or come out of each
PE compared to the synchronous implementation. This is cru-
cial, because synchronous PipeRench is nearly a wire-bound
design. When implemented in a technology with five metal

layers, the synchronous PE was wire-bound. Even in 0.18
micron, with six metal layers, the PE would clearly become
wire-bound if the wire count crossing the PE boundary was to
double.

Without doing a more detailed design, it is impossible to
determine more accurately the area impact of asynchronous
implementation. Assuming an application is virtualized,
asynchronous implementation would only be beneficial if it
does not increase area by more than 80%.

FIGURE 12. Throughput versus Physical Stripes: PE-based Synchronous compared against other alternatives. (a)
compiled IDEA, (b) manually optimized IDEA.

(a) (b)

0

1

2

3

4

5

6

7

8

9

10

0 5 10 15 20 25 30

Physical stripes

T
h
ro

u
g
h
p
u
t

PE-based Asynchronous Stripe-based Asynchronous

Fixed Synchronous Clock

0

5

10

15

20

25

30

35

40

0 5 10 15 20 25 30

Physical stripes

T
h
ro

u
g
h
p
u
t

PE-based Asynchronous Stripe-based Asynchronous

Fixed Synchronous Clock

FIGURE 13. DIL-compiled DCT and the throughput vs. stripes trade-off for four clocking strategies.

0

5

10

15

20

25

30

0 20 40 60 80 100

Physical Stripes

T
h

ro
u

g
h

p
u

t

PE-based Async Stripe-based Async

Fully Variable Clock Fixed Synchronous Clock

Proceedings of the 11th Annual IEEE Symposium on Field-Programmable Custom Computing Machines (FCCM’03)
1082-3409/03 $17.00 © 2003 IEEE

E. Asynchronous Implementation versus Compile-ability

One of the key interesting trade-offs we have discovered is
that the features that make PipeRench a great compilation tar-
get are also those that make the architecture expensive to
implement in an asynchronous manner. A PE-based architec-
ture would be much more efficient if it only had local connec-
tions to other PEs within the stripe. But the crossbar
interconnect within the stripe is what makes PipeRench capa-
ble of guaranteeing one-pass compilation.

VI. Conclusions

Asynchronous implementation of PipeRench can improve
performance for each stripe by approximately 80%. Only PE-
based completion, however, seems to offer a significant
speedup for both optimized and automatically compiled
designs and for all levels of virtualization. Using a variable
synchronous clock only seems to make up for poor compila-
tion quality. Stripe-based completion does not seem reason-
able to implement. The current PipeRench architecture is not
well suited to asynchronous implementation, however. A dif-
ficult issue is that the same features that make the architecture
a good compilation target are also the most costly features in
the asynchronous implementation.

VII. Acknowledgments

This work was made possible by the Ministry of Education,
Culture, Sports, Science and Technology of Japan, who sup-
ported Professor Kagotani’s visit to Carnegie Mellon Univer-
sity. Professor Schmit is supported in part by an NSF
CAREER grant and the Gigascale Research Center.

VIII. References

[1] C. J. Myers, Asynchronous Circuit Design, Wiley, 2001.
[2] S. C. Goldstein, H. Schmit, M. Budiu, S. Cadambi, M. Moe, and R. Tay-

lor, “PipeRench: A Reconfigurable Architecture and Compiler” in Com-
puter, pp. 70-77, April, 2000.

[3] H. Schmit, D. Whelihan, A. Tsai, M. Moe, B. Levine, R. R. Taylor,
“PipeRench: A Virtualized Programmable Datapath in 0.18 Micron
Technology,” Proceedings of the IEEE Custom Integrated Circuits Con-
ference (CICC), 2002.

[4] S. Hauck, S. Burns, G. Borriello, and C. Ebeling, “An FPGA for Imple-
menting Asynchronous Circuits,” in IEEE Design & Test of Computers,
Vol. 11, No. 3, pp. 60-69, 1994.

[5] R. Payne, “Self-timed FPGA Systems,” in Field-Programmable Logic &
Applications, pp. 21-35, Springer-Verlag, Berlin 1995.

[6] B. Schneier, Applied Cryptography, Second Edition, Wiley, 1996.
[7] M. Budiu and S. C. Goldstein, “Fast Compilation for Pipelined Recon-

figurable Fabrics,” in International Symposium on FPGAs, 1999.

FIGURE 14. Possible Implementation of PE-based Asynchronous PipeRench.

store/output buses

config/restore/input buses

register file data

config enable token

PE

PE

PE

Environment interface
(including IO queues, configuration store and state store)

PE

PE

PE

PEPE PE

Complete connection network

Vertical connection between PEs

Horizontal connection between PEs

Proceedings of the 11th Annual IEEE Symposium on Field-Programmable Custom Computing Machines (FCCM’03)
1082-3409/03 $17.00 © 2003 IEEE

