

Incremental Reconfiguration for Pipelined Applications

Herman Schmit
Dept. of ECE, Carnegie Mellon University

Pittsburgh, PA 15213

Abstract

This paper examines the implementation of pipelined
applications using run-time reconfiguration. Throughput
and latency of pipelined applications can be significantly
improved when reconfiguration is performed at the level of
individual pipeline stages, as opposed to configuration of
the entire FPGA. If reconfiguration and execution can be
performed simultaneously, the performance of a pipelined
application approaches its theoretical maximum. This
paper proposes a new FPGA configuration mechanism,
called striping, that supports pipeline stage reconfigura-
tion and simultaneous configuration and execution. Addi-
tionally, the use of the pipeline stage as the atomic unit of
reconfiguration introduces a design abstraction that
enables the development families of upwardly-compatible
FPGAs and virtual hardware design.

1.0 Introduction

Run-time reconfiguration (RTR) has the potential to
greatly increase the performance and applicability of
FPGA-based computing [3]. There are two significant
problems inhibiting the deployment of applications based
on RTR. First, design methodologies for partially reconfig-
ured applications, or local RTR, are completely

ad-hoc

.
Second, existing FPGAs lack reconfiguration mechanisms
that adequately support local RTR.

Many of the computationally intensive tasks typically
targeted by FPGA accelerators have certain regular data
flow patterns that allow the creation of pipelined imple-
mentations. Historically, the creation of a pipelined imple-
mentation has served one purpose: increasing parallelism
and thereby increasing throughput or decreasing power.

This paper proposes the pipeline stage as the basic
unit of reconfiguration. This approach significantly
reduces the latency and increases the throughput of the
implementation, while minimizing the amount of required
external storage. Additionally, the use of the pipeline stage
as the atomic unit of reconfiguration introduces a design
abstraction that enables the development of upwardly-

compatible FPGA families. Upwardly-compatible FPGAs
will provide users with the security of knowing that their
existing applications will still function on future genera-
tions of the FPGA family, at a higher level of performance.

A new FPGA architecture is being developed which
explicitly supports incremental pipeline reconfiguration.
This FPGA, called a striped FPGA, differs from available
FPGAs in two ways. First, this FPGA is reconfigured at a
granularity that corresponds to the chosen basic unit of
reconfiguration, the pipeline stage. An on-chip configura-
tion cache allows pipeline stages to be loaded into the
FPGA cells at a very high speed. Second, the a striped
FPGA has interconnect especially suited for the imple-
mentation of pipelined applications.

The next section describes the configuration mecha-
nisms used by existing FPGAs and the details of striped
reconfiguration. Section 3.0 describes two strategies for
implementing pipelined computations using RTR, and also
describes how well the different configuration mecha-
nisms perform using these implementation strategies. The
final sections of this paper describe configuration control
of a striped FPGA, the proposed cell architecture of our
striped FPGA, and some targeted applications for this
architecture.

2.0 FPGA Configuration Mechanisms

In this section, we describe the three existing mecha-
nisms that are currently used for configuring FPGAs. We
then propose a fourth mechanism, called

striped configu-
ration

, which combines the advantages of the three exist-
ing mechanisms and is especially suited to incremental
reconfiguration for pipelined applications.

2.1 Standard FPGA Configuration

Popular commercial FPGAs such as the Xilinx 4000
family and the Altera FLEX family have exclusive opera-
tional and configuration modes. There is no mechanism to
allow simultaneous operation and configuration or even
partial modification of a configuration that is already
loaded. The atomic unit of reconfiguration is the whole

chip. Configuration data itself is fed into these FPGAs
through a small number of I/O pins. Configuration times
can therefore be thousands or hundreds of thousands of
times longer than the operating cycle time of a design. As
we will show in Section 3.0, this long configuration time
hurts throughput, latency and memory requirement for
pipelined application.

2.2 On-line Configuration

On-line configurable FPGAs have the configuration
storage of the FPGA accessible and writable during execu-
tion mode. The most recent of this class of FPGAs is the
Xilinx 6200 family [7], which maps the entire configura-
tion storage to a region of address space that can be writ-
ten by a connected microprocessor. Reconfiguration can
take place concurrently with execution, and partial recon-
figuration is possible. The atomic unit of reconfiguration
in on-line reconfigurable chips such as the Xilinx 6200 is
fairly small. Any one functional block can be indepen-
dently reconfigured at any one time.

The reconfiguration speed of these chips is still lim-
ited by a relatively narrow interface to the configuration
memory. The Xilinx 6200 has an 32-bit configuration data
bus. All new configurations must be loaded from off-chip
storage, under the control of other hardware such as a
microprocessor. When used to implement pipelined appli-
cations, these FPGAs require significant data storage, or
require extensive routing resources, as will be described in
Section 3.0.

2.3 Multiple-context Configuration

A third type of configuration mechanism is the multi-
ple-context configuration, as proposed in [2] and [5]. This
mechanism is similar to that in a standard FPGA, except
that instead of having one configuration stored in the
FPGA,

n

 complete configurations are loaded into the
FPGA. A global selection bus determines which one of the

n

 configuration should be used during the current cycle.
Logical reconfiguration of the entire FPGA can be accom-
plished in a time comparable to the execution cycle time
of the design, but the atomic unit of reconfiguration
remains the whole chip.

While this mechanism solves configuration speed
problem, it does have limitations. First, the unused config-
uration information must be stored in many small, area-
inefficient memories distributed all over the chip. The size
of a multiple-context cell is therefore significantly larger
than the size of a standard FPGA cell. Furthermore, the
amount of “virtual” hardware emulated by a multiple-con-
text FPGA is limited to

n

 times the physical hardware in
that FPGA. Reconfiguration beyond

n

 contexts must take

place on a low-speed, narrow configuration bus. And, as
we shall show in Section 3.0, FPGAs that use multiple
contexts may require significant data storage to implement
pipelined applications.

2.4 Striped Configuration

Striped configuration combines many of the advan-
tages of on-line configuration and multiple-context config-
uration, and has some additional qualities that are
particularly suited towards implementation of pipelined
applications.

The most important idea of striped configuration is
that the atomic unit of reconfiguration of the FPGA has
been chosen so that it matches a sensible level of reconfig-
uration within the application it is performing. A pipelined
application can be easily decomposed into pipeline stages.
The striped FPGA is separated into a set of stripes, and in
an ideal scenario, each of the application’s stages would fit
into one of the FPGA’s stripes.

An FPGA stripe may be configured in one configura-
tion cycle from the data stored in a wide, on-chip configu-
ration cache, as illustrated in Figure 1. This provides high-
speed reconfiguration, and allows the unused configura-
tion information to be stored in a single large on-chip
RAM, with much higher densities possible than in a multi-
ple-context FPGA. Modification of the configuration
cache can take place concurrently with execution, so there
is no hard limit to the amount of virtual hardware that can
be emulated.

The second basic idea of striped configuration is that
the configuration information within one stripe can move
to a neighboring stripe within the FPGA. This feature is
particularly useful for pipelined applications. In addition,

Figure 1. Stripe Configured FPGA

Configuration
Cache

FPGA
Fabric

Stripes

this feature avoids the problem of requiring the wide con-
figuration bus to run over the entire FPGA fabric, consum-
ing valuable interconnect resources and incurring extra
delay. Instead, the configuration bus comes from the con-
figuration cache and loads the lowest stripe in the FPGA
fabric. Configuration information from that stripe can shift
upwards into other stripes in the fabric.

An FPGA using striped configuration is well suited to
implementing a variety of pipelined applications. In the
next section we will quantify the performance advantages
of striped configuration compared to the other three con-
figuration mechanisms. In Section 4.0 we will discuss
other advantage of striped configuration, the most signifi-
cant of which is upward compatibility. An application that
has been designed for a striped FPGA can be run on future
versions of a compatible FPGA at significantly higher lev-
els of performance. Finally, in Section 5.0 we describe the
functionality of the FPGA fabric we plan to implement in
a striped FPGA, and in Section 6.0 we describe some
example pipelined applications.

3.0 Implementing Pipelined Applications
using RTR

The application we will examine is a very deeply
pipelined application, such as a high-order FIR filter.
Assume that this application has

S

 identically-sized pipe-
line stages. Further assume that there are

K

 bytes of data
flowing between each stage of the filter every cycle, and
between the filter input and output. This assumption, that
there is a constant amount of data flowing between each
stage in each cycle rarely holds in real pipelined applica-
tions. The assumption is made to ease the following analy-
sis. None of the following methods rely on constant data
flow between stages.

To implement this application, we have FPGAs with a
fixed logic capacity. Assume that in order to statically
implement the whole filter we would require

N

 of these
FPGAs, as illustrated in Figure 2. If the execution of a
pipeline stage takes

T

, then the throughput of the static, N-
FPGA implementation of this filter is bytes per sec-
ond.

We will use RTR to implement this filter in one FPGA
of similar capacity. The theoretical maximum throughput
of the 1-FPGA implementation of this filter using RTR is

 simply due to the reduction in computing hard-
ware. We will examine the implement this filter using
component-level reconfiguration and partial reconfigura-
tion, and examine the performance characteristics and
memory requirements of each implementation technique.

K T⁄

K NT()⁄

3.1 Component-level Reconfiguration

Using component-level reconfiguration, the

N

 differ-
ent FPGA configurations from the

N

-FPGA design are
used to configure a single FPGA. This level of reconfigu-
ration has also been called Global RTR in [3]. The config-
uration controller loads one configuration, and allows the
FPGA to perform operations on pieces of data. It takes

 cycles to get the first result from this configuration,
and cycles to get the remaining results. Therefore,
the time required to complete these computations, in sec-
onds, is:

(EQ 1)

After this computation is complete, the system con-
troller reconfigures the FPGA with the next configuration
in the sequence as illustrated in Figure 3. If it takes

C

Figure 2. Example Pipelined Application

f3(x)

f4(x)

f5(x)

f6(x) }

f1(x)

f2(x)

}
}

S = 6, N = 3

FPGA #1

{ f1, f2 }

FPGA #2

{ f3, f4 }

FPGA #3

{ f5, f6 }

Input
Input

X

S N⁄
X 1–

T X 1– S N⁄+()

cycles to reconfigure the FPGA, then the throughput of
this implementation can be described using the formula:

(EQ 2)

Throughput falls short of the ideal based on two fac-
tor. The first factor is the penalty suffered for having to
repeatedly fill and empty the pipeline between reconfigu-
rations. This factor is reflected in the term in
(EQ 2). The second factor is the penalty for reconfigura-
tion, which is reflected in the term. Both of these
terms can be reduced by increasing . The relationship of

C

 and

X

 on throughput is shown in Figure 4 for a pipelined
application. In this graph,

S

 = 100 and

N

 = 10. The ideal
performance of this implementation is . The
value on the

y

-axis indicates how actual throughput com-
pares to this ideal. When C is small, this graph shows the
throughput degradation due to the pipeline penalty. When
C is large, the pipeline penalty becomes relatively unim-
portant because the throughput degradation due to config-
uration time is so large.

It would seem that increasing

X

 is the best way to
increase the throughput of implementation. The first prob-
lem with arbitrarily increasing

X

 is that the latency of the
implementation increases. The best-case latency for this
implementation is:

Figure 3. Component-level Reconfiguration

Ti
m

e

R
A

M

reconfiguration

R
A

M

reconfiguration

R
A

M

reconfiguration

Config #1

{ f1, f2 }

Config #2

{ f3, f4 }

Config #3

{ f5, f6 }

Input

Input

Input

Throughput
KX

NT X
S
N
---- 1– C+ + 

 
-- K

T N
S N–

X
------------- NC

X
--------+ + 

 
--= =

S N–() X⁄

NC() X⁄
X

K 10T()⁄

(EQ 3)

Worst-case latency for this implementation can be as
high as two times the best-case latency, because new input
data might arrive just after the first reconfiguration has
been replaced by the second reconfiguration, in which case
that data will have to wait in a buffer for this entire
sequence of configurations to conclude before its compu-
tation begins.

The second problem with increasing

X

 is that it is nec-
essary to have enough memory to store all the data output
from one block during reconfiguration so that it can be
used as the input to the next block of the pipeline. The
required amount of memory is:

(EQ 4)

If

X

 is very large, it will be difficult to fit the entire
memory on the same chip as the FPGA. If this is the case,
the time required to access off-chip memory may increase

T

, degrading performance of the whole system.
Any type of FPGA can be reconfigured using compo-

nent-level reconfiguration. It is the only mode possible for
standard FPGAs, as well as multiple-context FPGAs.
Standard FPGAs have a very large value of

C

. On-line
reconfigurable FPGAs can be reconfigured on a compo-
nent-level basis by simply halting execution until the
entire FPGA fabric has been reconfigured.

Table 1 shows typical values of

C

for two available
Xilinx components using the fastest configuration mode

Latency NT X
S
N
---- 1– C+ + 

 =

Figure 4. Throughput vs. C and X

Configuration Cycles, C

T
hr

ou
gh

pu
t v

s.
 Id

ea
l K

/(
N

T
)

1E-05

1E-04

1E-03

1E-02

1E-01

1E+00

1 1 0 100 1000 10000

X = 1 X = 10

X = 100 X = 1000

Memory KX=

available for that component. These results were com-
puted assuming a modest operating frequency of 33 MHz.
Obviously, reconfiguration time is going to play a critical
role in determining throughput, or latency and memory
requirements for applications which use these compo-
nents.

Multiple-context FPGAs have a

C

 value one cycle or
less. While this effectively eliminates the configuration
penalty, it does not reduce the effect of the pipeline pen-
alty. In addition, multiple-context FPGAs can only be
effective if .

3.2 Incremental Pipeline Reconfiguration

Incremental pipeline reconfiguration is a restricted
form of local RTR [3], in which the pipeline is separated
into

S

 components, each corresponding to one pipeline
stage. The FPGA can hold of these pipeline stages,
and the reconfiguration happens in an incremental manner.
During each stage of the computation, we add one addi-
tional stage to the configuration, and remove a stage if
necessary to keep the amount of configuration within the
capacity of the FPGA. Figure 5 illustrates this procedure.
Reconfiguration in this manner can be visualized as the
scrolling of a window through the computation.

Assume that the time it takes to execute a pipeline
stage is

T

, and the number of execution cycles required to
reconfigure this entire FPGA is

C

. Therefore, the time
required to substitute a new pipeline stage into the config-
uration is, ideally, . Because we have to config-
ure S pipeline stages, the total reconfiguration time for one
sweep through the application will be

TCN

. Execution of
the entire pipeline will take

S

 cycles for the first element of
data, and cycles to get the remaining data out of

Part Config. Time C Reference

XC4028EX 8.35 ms 275,000 [8]
XC6216 92 µs 3036 [7]

Table 1. Commercial FPGA Configuration Times

N Contexts≤

S N⁄

TC N S⁄()

S N⁄() 1–

the configuration. Therefore, the best-case latency and
throughput of this implementation can be described with
the following expressions:

(EQ 5)

(EQ 6)

Figure 6 shows the relationship of throughput to the
configuration cycles, C. For comparison, two curves for
component-level reconfiguration with X = 100 and X = 10
are shown. Figure 7 shows the plots of best-case latency
for the same three implementations. These graphs show
that when C is small, the incrementally reconfigured
implementation exhibits both high throughput and low
latency. When C is large, the throughput exhibited by the
incrementally reconfigured design exhibits behavior very

Figure 5. Pipeline Stage Reconfiguration
Ti

m
e

reconfiguration

 {f1}

reconfiguration

 { f1, f2 }

reconfiguration

reconfiguration

 { f2, f3 }

 { f5, f6 }

 { f6 }

...

Input

Input

Input

Input

Input

Latency T S
S
N
---- 1– CN+ + 

 =

Throughput
K

S
N

T S
S
N
---- 1– CN+ + 

 
--- K

T N 1 N
S
----–

N
2

S
------C+ + 

 
---= =

similar to the component-level reconfigured implementa-
tion with .

These graphs again demonstrate the importance of
configuration cycles, C, in the throughput and latency
equations. As C approaches zero, the throughput and
latency of the incrementally reconfigured FPGA approach
their respective theoretical maximums. Component-level
reconfigured implementations can only trade throughput
for latency, and can therefore never optimize both quanti-
ties simultaneously.

Another advantage of pipeline stage reconfiguration is
that all intermediate results remain stored in the appropri-
ate pipeline stage. There is no need for supplemental stor-
age.

X S N⁄≈

Figure 6. Throughput of Incremental and
Component-level Reconfiguration

Configuration Cycles, C

T
hr

ou
gh

pu
t v

s.
 Id

ea
l

1E-03

1E-02

1E-01

1E+00

1 1 0 100 1000 10000

Component X = 10

Component X = 100

Incremental

Figure 7. Latency of Incremental and Component-
level Reconfiguration

Configuration Cycles, C

La
te

nc
y

(c
yc

le
s)

1E+01

1E+02

1E+03

1E+04

1E+05

1 1 0 100 1000 10000

Component X = 10

Component X = 100

Incremental

The most important characteristic of incremental
pipeline reconfiguration is that the presence of more hard-
ware transparently results in higher throughput. Figure 6
shows how throughput increases as the amount of real
hardware in the FPGA approaches the amount of virtual
hardware in the pipelined application (as N approaches
one.) The non-linearity of this graph is due to the fact that
each run through the pipelined application, the FPGA has
to be completely emptied before it can begin another
sweep through the application. As a result, when the
amount of real hardware is just slightly less than the
amount of virtual hardware (N is slightly greater than one),
throughput is half of the maximum. When the amount of
real hardware equals or exceeds the amount of virtual
hardware, the pipeline no longer has to be repeatedly emp-
tied and filled, resulting in a large performance boost. If an
application could begin execution at the top of pipeline
again while the bottom of the pipeline was emptying, this
graph would be linear. This scenario is possible whenever
the bottom and top of the pipeline do not share any global
resources, like data busses or memories.

Only on-line reconfigurable FPGAs and striped
FPGAs are capable of incremental pipeline reconfigura-
tion. There are two problems with using pipeline reconfig-
uration on an on-line reconfigurable FPGA like the
XC6200 series. First, the relatively low bandwidth of the
configuration bus may make the effective value of C quite
large. This limitation could be fixed by incorporating an
on-chip configuration cache and widening the connection
between the memory and the FPGA fabric. Second, there
is a problem caused by interconnecting the substituted
pipeline stages in on-line reconfigurable FPGAs. At the
beginning of execution, the pipeline stages are placed in
previously empty locations in the FPGA. After the FPGA

0
1
2
3
4
5

6
7
8
9

1 0

0 % 25% 50% 75% 100%

Figure 8. Throughput of Incremental and
Component-level Reconfiguration

T
hr

ou
gh

pu
t I

m
pr

ov
em

en
t

Real Hardware (% of Virtual)

fills up, the oldest pipeline stage is replaced with the next
stage. Sometimes the location of the old stripe is far from
where the newest stripe would prefer to be, as happens
when stage f5 replaces stage f1 in Figure 9a. In order to
connect stage f4 to stage f5 in this example, the FPGA
would have to have significant global interconnect
resources. Also, the delay of this data transfer across the
whole chip might significantly increase T.

The striped FPGA solves these problems by integrat-
ing an on-chip configuration cache and by shifting config-
uration data within the FPGA fabric. As illustrated in
Figure 9b, when a new pipeline stage is placed in the fab-
ric, it can always be placed adjacent to the stage previous
to it in the fabric. Old pipeline stages are removed by shift-
ing them off the top of the FPGA fabric.

Figure 9. Pipeline Stage Placement and Routing

Ti
m

e

f1

f1
f2

f1
f2
f3

f1
f2
f3
f4

f5
f2
f3
f4

Online Reconfigurable
FPGA

Striped
FPGA

f1

f1
f2

f1
f2
f3

f1
f2
f3
f4

f2
f3
f4
f5

(a.) (b.)

4.0 Striped Configuration Control and
Design

A significant advantage of striped configuration is that
the increased size of the atomic unit of reconfiguration
eases problems of configuration control and algorithm
design for RTR. While the primary contents of the config-
uration cache are configuration bits for the FPGA fabric, it
will also contain control information, such as the address
in the cache of the next stripe to load, whether and when
this stripe can be shifted off the top of the FPGA fabric,
and whether this stripe can read or write the global data
buses that route external data to all the stripes. The current
control mechanism envisioned for a striped FPGA copro-
cessor is illustrated in Figure 10.

The first advantage of this control methodology is that
it reduces the burden of reconfiguration control which will
usually be placed upon the microprocessor. In a striped
FPGA with this control mechanism, the microprocessor
can input the first address of a pipelined application, which
will initiate its execution, and then do perform some other
task relevant to the current application.

The design methodology for striped FPGAs allows
any pipeline to be broken up into a set of stripes which can
be run on a compatible striped FPGA. The control mecha-
nism can load the application into an FPGA with any num-
ber of physical stripes. Throughput will increase as the
number of stripes increases, allow us to create applications
which run on a variety of FPGAs at different performance
levels. We could therefore have some FPGAs have more
on-chip storage and fewer physical stripes, or vice versa.
A design constructed for one chip could run on any of the
other chips, albeit at a different performance level. In addi-
tion, older pipeline designs will still run on FPGAs built
with newer, denser technology, at higher levels of perfor-

Figure 10. Stripe Control

FPGA
Fabric

Configuration
Cache

Address

Control
Unit

µP Interface

Condition Codes

Control &
Next Addr.

Configuration

mance. This upward-compatibility will allow the users to
preserve their significant investment in the design of appli-
cations for FPGAs.

5.0 Proposed FPGA fabric

There are three significant constraints that the
designer must deal with when designing a striped FPGA.
First, the width of the stripe must match the width of the
memory that stores the configuration information. Second,
a stripe should be able to implement a non-trivial, pipe-
lineable, portion of the application using a limited budget
of configuration bits. Third, the interconnect between
stripes must be very regular, because the configuration
information for any logical stripe can be relocated to any
physical stripe. In this section we will give brief summa-
ries of our approach to these design constraints.

For the configuration cache, we could use an SRAM
that has 768 configuration bits and is 6.8mm wide using
0.5µm technology. Since our applications are frequently
based on small data elements, we have developed a cell
that can function as a 4-bit ALU, a 4-bit MUX, or one of
nine possible 4-input gates. A 4-bit register can be option-
ally connected to the output of this cell, and the carries for
4-bit ALUs can be cascaded to form bigger adders or sub-
tracters. Our estimate for the width of these cells is 200
microns (including 50 microns for vertical interconnect)
and it requires seven bits of configuration. If we make the
width of a stripe match the width of the memory, we
would be able to fit 32 of these cells in each stripe. The
number of bits from the SRAM in 200 microns is 24,
therefore there are 17 bits remaining for the configuration
of the interconnect for each cell.

The interconnect architecture for two stripes is illus-
trated in Figure 11. Horizontal, or intra-stripe interconnect
is used to connect between cells on the same stripe and the
stripe immediately above. The vertical interconnect is glo-
bal, and is primarily used to get data from the I/Os to some
or all of the stripes in the fabric. Because the interconnect
is either global or very local, it is possible to locate a stripe
anywhere within the fabric, as long as it is adjacent to its
pipeline predecessor and successor. The idea of relocat-
able hardware was discussed in [6]. The interconnect for
this chip directly supports this concept.

The height of each cell is estimated at 300 microns,
including about 150 microns for horizontal interconnect. If
a 10mm by 6.8mm die is half allocated to on-chip configu-
ration memory and half allocated to FPGA cells, we would

have approximately 256 stripes of configuration in the
cache, and 16 physical stripes in the fabric.

6.0 Example Applications

Our design effort is presently focussed on two specific
applications, encryption using the IDEA cipher[4], and
algorithms for SAR image recognition and identification.
Both of these applications can be significantly accelerated
by implementing a deep pipeline.

The IDEA cipher consists of eight rounds of the com-
putation illustrated in Figure 12. The three operations in
this computation are 16-bit addition, XORing, and multi-
plication modulus . Obviously there is a great deal
of parallelism in this computation, through both parallel
execution and pipelining. The Z operands in this computa-
tions are portions of the key. By creating a different imple-
mentation for each key, we can propagate these constants
and significantly reduce the hardware and delay of the
multiplication operation. A key-specific configuration
could be created before the communication, and sent over
the public key encrypted channel. Alternately, there may
be quick procedural methods of creating the multiplication
blocks using the key as a parameter.

One of the most computationally intensive tasks in
ATR target recognition algorithms is the shape sum com-
putation [1]. This computation typically takes as input a 64
by 64 image with eight bits per pixel, and a 32 by 32
image template with one bit per pixel. In order to compute
the shape sum, we place the template at some location
within the input image and use it to mask the image, so
that whenever a pixel in the template is zero, the corre-
sponding pixel in the image is set to zero. The shape sum

Figure 11. Basic Interconnect Architecture

Cell Cell Cell

Cell Cell Cell

2
16

1–

is the average value of the pixels in the 8-bit image whose
corresponding bit in the template is one.

The templates are sparse; only about 10% of the pix-
els are on. But for each image the shape sum must be com-
puted for thousands of templates, and for all the possible
displacements of the template in the input image. Because
this computation must be performed at every displacement
of the template, it is possible for us to create a pipelined
implementation of this computation for each template. We
will broadcast 128 bits of image data (16 pixels) over the
entire fabric at each cycle. Such an implementation would
have at least 64 stages. More stages may be required to do
the division by a constant in order to arrive at an average
pixel value. To further increase throughput, it is possible to
create pipelines that simultaneously compute the shape
sums for sets of similar templates.

Figure 12. One round of the IDEA Cipher

Z1

X1

Z2

X2

Z3

X3

Z4

X4

Z5

Z6

16-bit XOR

16-bit multiplication modulo 216+1

16-bit addition modulo 216

7.0 Conclusions

The performance of pipelined applications on RTR
based systems is highly dependent on the type of reconfig-
uration used. Reconfiguring at the granularity of pipeline
stages can increase the throughput of an implementation,
without significantly increasing the latency or required
storage. If simultaneous reconfiguration and execution are
possible, the performance is increased to the theoretical
maximum of an RTR system. Striped FPGAs can reconfig-
uration at the pipeline level while simultaneously execut-
ing that pipeline. In addition, the use of the pipeline stage
as the atomic unit of reconfiguration introduces a design
abstraction that enables the development of CAD tools for
RTR, and makes possible the creation of families or
upwardly-compatible FPGAs.

8.0 Acknowledgments

The author wishes to thank DARPA (under contract
DABT63-96-C-0083) for funding this research.

9.0 References

[1] B. Bray, Private communication, November, 1996.
[2] A. DeHon, “DPGA-Coupled Microprocessors: Commod-

ity ICs for the Early 21st Century,” in Proceedings IEEE
Workshop on FPGAs for Custom Computing Machines,
pp. 31-39, April, 1994.

[3] B. L. Hutchings and M. J. Withlin, “Implementation
Approaches for Reconfigurable Logic Applications,” in
Field-Programmable Logic and Applications, FPL ‘95,
pp. 419-428, Oxford, 1995.

[4] B. Schneier, Applied Cryptography, Wiley, New York,
1996.

[5] S. Trimberger, D. Carberry, A. Johnson, J. Wong, “A Time-
Multiplexed FPGA,” in Proceedings IEEE Symposium on
FPGAs for Custom Computing Machines, April, 1997.

[6] M. J. Withlin and B. L. Hutchings, “A Dynamic Instruction
Set Computer,” in Proceedings IEEE Symposium on
FPGAs for Custom Computing Machines, pp. 99-107,
April, 1995.

[7] Xilinx, XC6200 Field Programmable Gate Arrays, Version
1.7, October, 1996.

[8] Xilinx, XC4000 Series Field Programmable Gate Arrays,
Version 1.04, September 18, 1996.

