
Utilizing Horizontal and Vertical Parallelism with a No-Instruction-Set Compiler for

Custom Datapaths
Mehrdad Reshadi, Bita Gorjiara, Daniel Gajski

Center for Embedded Computer Systems (CECS), University of California Irvine

{reshadi, bgorjiar, gajski}@cecs.uci.edu

Abstract

Performance of programs can be improved by utilizing their

horizontal and vertical parallelism. In some processors (VLIW based),

compiler can utilize horizontal parallelism by controlling the schedule of

independent operations. Vertical parallelism is utilized through

pipelining. However, in all processors, structure of pipeline is fixed and

compiler has no control over it. In Application-Specific-Instruction set-

Processors (ASIPs), pipeline structure can be customized and utilized in

the program through custom instructions. Practical constraints on the

instruction decoder limit the number and complexity of custom

instructions in ASIPs. Detecting the frequent and beneficial custom

instructions and incorporating them in the compiler are complex and

sometimes very time consuming tasks.

In this paper, we present an architecture that does not limit the

number of custom functionalities that can be implemented on its

datapath. Instead of using custom instructions and then relying on the

decoder in hardware to generate the control signals, we generate the

control signal values in compiler. Since there are no predefined

instructions in this architecture, we call it No-Instruction-Set-Computer

(NISC). The NISC compiler maps the application directly on the

datapath. It has complete fine grain control over datapath and hence can

very well utilize resources in the hardware as well as horizontal and

vertical parallelism in the program. We also explain the algorithm for

mapping the CDFG of a program on a given datapath in NISC. Using

our algorithm and a NISC architecture with the datapath of a MIPS, we

achieved up to 70% speedup over the traditional MIPS compiler. In

another experiment, we started from a base architecture and customized

it by adding resources and interconnects to increase its horizontal and

vertical parallelism. The algorithm achieved up to 15.5 times speedup by

utilizing the available parallelism in the program and the datapath.

1. Introduction

Performance of applications can be improved by exploiting their

inherent horizontal and vertical parallelism. Horizontal parallelism occurs

when multiple independent operations can be executed simultaneously.

Vertical parallelism occurs when different stages of a sequence of

operations can be overlapped. In processors, horizontal parallelism is

utilized by having multiple functional units that run in parallel and

vertical parallelism is utilized through pipelining.

In VLIW processors, the compiler controls the schedule of parallel

independent operations. However, in all processors, the compiler has no

control over the structure of pipeline. Therefore, the vertical parallelism

of the program may not be efficiently utilized.

In Application Specific Instruction-set Processors (ASIPs), structure

of pipeline can be customized for an application through custom

instructions. At run time, each custom instruction is decoded and

executed on the corresponding custom hardware. Due to practical

constrains on size and complexity of instruction decoder and custom

hardware, only few custom instructions can be actually implemented in

ASIPs. Therefore, only the most frequent or beneficial custom

instructions are selected and implemented. Identifying the beneficial

instructions, implementing an efficient decoder, and incorporating the

new instructions in the compiler are complex tasks and require special

expertise; which may affect the time-to-market of these processors.

In this paper, we present an architecture in which the compiler

determines both the schedule of parallel independent operations

(horizontal parallelism), and the logical flow of sequential operations in

the pipeline (vertical parallelism). The compiler generates code as if each

basic block of program is executed with one custom instruction. A basic

block is a sequence of operations in a program that are always executed

together. Ideally, for each basic block we should have one instruction that

reads the inputs of basic block from a storage (e.g. register file) and

computes the outputs of basic block and stores them back. The large

number of basic blocks in a typical program prevents us from using an

ASIP approach to achieve the above goal. In ASIP, after reading the

binary of a custom instruction from memory, it is decoded into a set of

control words (CWs) that control the corresponding custom datapath and

executes the custom functionality. Instead of having too many custom

instructions and then relying on a large instruction decoder to generate

CWs in hardware; we generate the CWs in compiler by directly mapping

each basic block onto the custom datapath. Therefore, the compiler can

construct unlimited number of custom functionalities utilizing both

horizontal and vertical parallelism of the input program.

Since there are no predefined instructions in our architecture, we call

it No-Instruction-Set-Computer (NISC). A NISC compiler compiles the

application directly to the datapath. It can achieve better parallelism and

resource utilization than conventional instruction-set based compilers. In

fact in our experiments (Section 5), on a MIPS [3] datapath the NISC

compiler achieved up to 70% speedup compared to an instruction-set-

based compiler. However, NISC compiler must solve a more complex

problem because it must deal with all structural details of the datapath. It

should combine traditional compiler techniques with high level synthesis

(HLS) techniques. The core of this compiler is a scheduling and binding

algorithm. Scheduling links the operations of the application to the clock

cycles and datapath resources. Binding involves three subtasks: variable

binding assigns a value to a storage; operation binding assigns an

operation to an FU; and interconnect binding selects a path between two

FUs, or a storage and a FU. In our algorithm, these three subtasks are

done during schedule of each operation. The algorithm has to perform

scheduling and binding simultaneously (see Section 3) and support

features such as datapath/controller pipelining, data forwarding, operation

chaining, multi-cycle and pipelined units.

In Section 2 we describe the NISC architecture and then in Sections

3 and 4 explain the basic idea and the details of the mapping algorithm.

This algorithm processes the Control Data Flow Graph (CDFG) [1] of

the program backward and generates a finite state machine (FSM). The

results of various experiments are shown in Section 5. Section 6 reviews

related works and Section 7 concludes the paper.

Figure 1- A sample NISC architecture.

2. NISC Architecture

While the controller of NISC has a predefined structure, its datapath

can be customized to accommodate any application behavior. The

datapath of NISC can be simple or as complex as datapath of a processor.

The controller drives the control signals of the datapath components in

each clock cycle. The NISC compiler generates the control values for

Proceedings of the 2005 International Conference on Computer Design (ICCD’05)
0-7695-2451-6/05 $20.00 © 2005 IEEE

each clock cycle. These values are either stored in a memory or generated

via logic in the controller. Both the controller and the datapath can be

pipelined. Figure 1 shows a sample NISC architecture with a memory

based controller and a pipelined datapath that has partial data forwarding,

multi-cycle and pipelined units, as well as data memory and register file.

Note that few high level synthesis techniques can generate such complex

datapaths directly from application. Such structural details are also

invisible to the traditional compilers that rely on instruction abstraction.

The compiler translates each basic block to a sequence of CWs that

run sequentially without interruption and execute the basic block on the

datapath. In other words, any pipeline stall or context switch (e.g.

interrupt routing call) happens only between basic blocks. This is

analogous to traditional processors in which pipeline stalls or context

switches happen between instructions.

In presence of controller pipeline (e.g. registers PC, CW and Status

in Figure 1), the compiler should also make sure that the branch delay is

considered correctly and is filled with other independent operations. In

Sections 4.1 and 4.2 we describe the details of mapping CFG and DFG of

a program to a given datapath.

The datapath can be generated (allocated) using different techniques.

For example, it can be an IP, reused form other designs, or generated by

high level synthesis. The program, written in a high level language such

as C, is first compiled and optimized by a front end and then mapped

(scheduled and bound) on the given datapath. The result is translated to

an RTL hardware description that is used for simulation (validation),

synthesis (implementation), etc. At any point, after compilation down to

the implementation, the results can be analyzed, and the design can be

improved by refining the datapath and recompiling the program on the

refined datapath. This kind of flow is possible only if we can compile an

application directly to a given pre-synthesized datapath. Figure 2 shows

the above flow.

Figure 2- Generating a NISC architecture for an application.

3. Overview of the Mapping Algorithm

In this section we illustrate the basis of our scheduling and binding

algorithm using an example. The input of algorithm is the CDFG of an

application, netlist of datapath components and the clock period of the

system. The output is an FSM in which each state represents a set of

register transfers actions (RTAs) that execute in one clock cycle. An

RTA can be either a data transfer through buses / multiplexers / registers,

or an operation executed on a functional unit. The set of RTAs are later

used to generate the control bits of components.

As opposed to traditional HSL, we can not schedule operations

merely based on the delay of the functional units. The number of control

steps between the schedule of an operation and its successor depends on

both the binding of operations to functional units (FU) and the delay of

the path between corresponding FUs. For example, suppose we want to

map DFG of Figure 4 on datapath of Figure 5. Operation shift-left (>>)

can read the result of operation + in two ways. If we schedule operation +

on U2 and store the result in register file RF, then operation >> must be

scheduled on U3 in next cycle to read the result from RF through bus B2

and multiplexer M2. Operation >> can also be scheduled in the same

cycle with operation + and read the result directly from U2 through

multiplexer M2. Therefore, selection of the path between U2 and U3 can

directly affect the schedule. Since knowing the path delay between

operations requires knowing the operation binding, the scheduling and

binding must be performed simultaneously.

The basic idea in the algorithm is to schedule an operation and all of

its predecessors together. An output operation in the DFG of a basic

block is an operation that does not have a successor in that basic block.

We start from output operations and traverse the DFG backward. Each

operation is scheduled after all its successors are scheduled. The

scheduling and binding of successors of an operation determine when

and where the result of that operation is needed. This information can be

used for: utilizing available paths between FUs efficiently, avoiding

unnecessary register file read/writes, chaining operations, etc.

Figure 3- Partitioning a DFG into output sub-trees.

We partition the DFG of the basic block into sub-trees. The root of a

sub-tree is an output operation. The leaves are input variables, constants,

or output operations from other basic blocks. If the successors of an

operation belong to different sub-trees, then that operation is considered

as an internal output and will have its own sub-tree. Such nodes are

detected during scheduling. Figure 3 shows an example DFG that is

partitioned into three sub-trees. The roots of the sub-trees (shown with

shaded nodes) are the output operations. The algorithm schedules each

sub-tree separately. If during scheduling of the operations of a sub-tree,

the schedule of an operation fails, then that operation is considered an

internal output and becomes the root of a new sub-tree. A sub-tree is

available for schedule as soon as all successor of its root (output

operation) are scheduled. Available sub-trees are ordered by the mobility

of their root. The algorithm starts from output nodes and schedules

backward toward their inputs, therefore more critical outputs tend to be

generated towards the end of the basic block (similar to ALAP schedule).

Consider the example DFG of Figure 4 to be mapped on the datapath

of Figure 5. Assume that the clock period is 20 units and delays of U1,

U2, U3, multiplexers and busses are 17, 7, 5, 1 and 3 units, respectively.

We schedule the operations of basic block so that all results are available

before last cycle, i.e. 0; therefore, the RTAs are scheduled in negative

cycle numbers. In each step, we try to schedule the sub-trees that can

generate their results before a given cycle clk. The clk starts from 0 and is

decremented in each step until all sub-trees of a basic block are

scheduled.

Figure 4- A sample DFG. Figure 5- A sample datapath.

During scheduling, different types of values may be bound to

different types of storages (variable binding). For example, global

variables may be bound to memory, local variables to stack or register

file, and so on. A constant is bound to memory or control word (CW)

register, depending on its size. A control word may have limited number

of constant fields that are generated in each cycle along with the rest of

control bits. These constant fields are loaded into the CW register and

then transferred to a proper location in datapath. The NISC compiler

determines the values of constant(s) in each cycle. It also schedules

proper set of RTAs to transfer the value(s) to where it is needed.

When scheduling an output sub-tree, first step is to know where the

output is stored. In our example, assume h is bound to register file RF.

We must schedule operation >> so that its result can be stored in

destination RF in cycle -1 and be available for reading in cycle 0. We first

select a FU that implements >> (operation binding). Then we make sure

that a path exists between selected FU and destination RF and all

elements of the path are available (not reserved by other operations) in

cycle -1 (interconnect binding). In this example we select U3 for >> and

bus B4 for transferring the results to RF. Resource reservation will be

finalized if the schedule of operands also succeeds. The next step is to

× ×

+

>>

a b c d

e f

g

h

2

e=a×b;

f=c×d;

g=e+f;

h=g >> 2;

Proceedings of the 2005 International Conference on Computer Design (ICCD’05)
0-7695-2451-6/05 $20.00 © 2005 IEEE

schedule proper RTAs in order to transfer the value of g to the left input

port of U3 and constant 2 to the right input port of U3. Figure 6 shows the

status of schedule after scheduling the >> operation. The figure shows the

set of RTAs that are scheduled in each cycle to read or generated a value.

At this point, B3 and M2 are considered the destinations to which values

of 2 and g must be transferred in clock cycle -1, respectively.
clock→

operation↓
-3 -2 -1

g M2=?;

2 B3=?;

h B4=U3(M2, B3); RF(h)=B4;

Figure 6- Schedule of RTAs after scheduling >> operation.

In order to read constant 2, we need to put the value of CW register

on bus B3. As for variable g, we schedule the + operation on U2 to

perform the addition and pass the result to U3 though multiplexer M2.

Note that delay of reading operands of + operation and executing it on

U2, plus the delay of reading operands of >> operation and executing it

on U3 and writing the results to RF is less than one clock cycle.

Therefore, all of the corresponding RTAs are scheduled together in clock

cycle -1. The algorithm chains the operations in this way, whenever

possible. The new status of scheduled RTAs is shown in Figure 7. In the

next step, we should schedule the × operations to deliver their results to

the input ports of U2.
clock→

operation↓
-3 -2 -1

e M1=?;

f B2=?;

g M2=U2(M1, B2);

2 B3=CW;

h B4=U3(M2, B3); RF(h)=B4;

Figure 7- Schedule of RTAs after scheduling + operation.

The left operand (e) can be scheduled on U1 to deliver its result

through register R1 in cycle -2 and multiplexer M1 in cycle -1. At this

point, no other multiplier is left to generate the right operand (f) and

directly transfer it to the right input port of U2. Therefore, we assume that

f is stored in the register file and try to read it from there. If the read is

successful, the corresponding × operation (f) is considered as an internal

output and will be scheduled later. Figure 8 shows the status of schedule

at this time. The sub-tree of output h is now completely scheduled and the

resource reservations can be finalized.
clock→

operation↓
-3 -2 -1

c B1=RF(c);

d B2=RF(d);

e R1=U1(B1, B2); M1=R1;

f B2=RF(f);

g M2=U2(M1, B2);

2 B3=CW;

h B4=U3(M2, B3); RF(h)=B4;

Figure 8- Schedule of RTAs after scheduling h sub-tree.

The sub-tree of internal output f must generate its result before cycle

-1 where it is read and used by operation +. Therefore, the corresponding

RTAs must be scheduled in or before clock cycle -2 and write the result

in register file RF. The path from U1 to RF goes through register R1 and

hence takes more than one cycle. The second part of the path (after R1) is

scheduled in cycle -2 and the first part (before R1) as well as the

execution of operation × on U1 is scheduled in cycle -3. The complete

schedule is shown in Figure 9.
clock→

operation↓
-3 -2 -1

a B1=RF(a);

b B2=RF(b);

c B1=RF(c);

d B2=RF(d);

e R1=U1(B1, B2); M1=R1;

f R1=U1(B1, B2); B4=R1; RF(f)=B4; B2=RF(f);

g M2=U2(M1, B2);

2 B3=CW;

h B4=U3(M2, B3); RF(h)=B4;

Figure 9- Schedule of RTAs after scheduling all sub-trees.

In the above example, we showed how the DFG is partitioned into

sub-trees during scheduling. We also showed how pipelining, operation

chaining, and data forwarding are supported during scheduling.

4. Compiling an application to a custom datapath

In this section we describe our algorithm for compiling the

application to a custom datapath. When compiling the CDFG of each

function of a program, we must consider the structure of the controller for

compiling the control flow graph (CFG) and consider the structure of

datapath for compiling the DFG. This process is described in the next two

subsections. Description of the algorithm uses the following definitions:

• Each basic block has a schedule status ss, where ss.RTAs(clk) stores

the set of scheduled RTAs in clock cycle clk, and ss.resTable(clk)

stores the reservation status of resources in clock cycle clk, and

ss.length shows the number of scheduled states for that block.

• For an operation op, op.result is the value generated by op and

op.operands is the list of results of predecessors of op.

• For a functional unit FU, FU.output is the output port of FU and

FU.inputs is the set of input ports of FU. A functional unit may

implement multiple operations. For each operation, FU.timing

represents the delay of the unit (or its stages if it is pipelined) as

well as the duration of applying the control signals to the unit.

• A path p is the list of resources that can transfer a value from one

point to another. These resources include busses, multiplexers and

registers. The timing of resources of p is stored in p.timings and is

calculated base on delay of buses or multiplexers, or setup time and

read delay of registers or register-files.

• A destination dst is a storage or an input port of a functional unit.

4.1 Mapping the CFG of the program

The result of NISC compiler is an FSM that can be implemented in

logic or using a memory. In a memory-based implementation the state

register is a program counter register (PC). Therefore, a state change in

the FSM corresponds to incrementing the PC or loading it with a new

value using a jump operation. While incrementing PC always takes one

cycle, loading it with a new value may take more than one cycle. The

result of scheduling a basic block is always a sequence of states (marked

by value of clk). We may only need a jump at the end of a basic block, if

the last state of the block is not before the first state of the next basic

block. In the algorithm, we assume that the order of basic blocks is given,

and that there may be jump operation at the end of some basic blocks.

Since we perform the scheduling backward, the result will be a set of

states numbered from –N to +bd. The return address of a function is

loaded into PC at state 0. Constant bd is the branch delay of the

architecture, i.e. in a basic block, after loading the target address of a

jump operation into PC, bd more control words will be executed from

that basic block. Value of bd depends on the distance between PC and

control word register, which is fixed and unique. Usually, this delay is 0

or 1 cycle in NISC.
00

01

02

03

04

05

06

07

08

ScheduleFunction(FSM fsm, ordered list of basic blocks blkList)

clk = 0;

bd = branch delay;

 foreach (blk ∈ reverse of blkList)

 if (blk has a jump operation)

ScheduleOperation(blk.jump, clk, blk.ss, PC);

ScheduleBasicBlock(blk, clk+bd);

 add blk.ss states to fsm;

clk = clk – blk.ss.length;

Figure 10- The ScheduleFunction procedure.

In procedure ScheduleFunction (Figure 10), the blkList contains the

topologically ordered list of basic blocks where the last element of the list

is the return block. The blocks of blkList are processed in reverse order,

starting from return block and after scheduling each block, the results are

added to the fsm. In the main loop of ScheduleFunction (lines 3-8), before

scheduling the body of a basic block, the jump operation at the end of

block is scheduled. The same way that a + operation is mapped to an

adder or ALU and writes its results to a register or register file, the jump

is considered an operation that is mapped to address generator and writes

its result to the PC register in cycle clk. In this way, we can schedule

jump the same way that we schedule other operations (line 5). In order to

Proceedings of the 2005 International Conference on Computer Design (ICCD’05)
0-7695-2451-6/05 $20.00 © 2005 IEEE

make sure that the branch delay of the jump operation is filled by other

operations in the basic block, we try to schedule the DFG of the basic

block from cycle clk+bd (line 6). After scheduling each basic block, the

new value of clk is calculated by decrementing the number of states in the

block (line 7). The ScheduleBasicBlock and ScheduleOpertion functions

are described in Section 4.2. After scheduling all functions of a program,

fsm will contain the final FSM of the design.

4.2 Mapping the DFG of the program

The variable, operation, and interconnect bindings are performed

during the schedule of each operation. We also allow pre-binding of

variables and operations so that the designer or other algorithms can

control the results. For example, a partitioning algorithm may partition

the variables and pre-bind them to two memory units.
00

01

02

03

04

05

06

07

08

09

10

11

12

13

14

15

16

ScheduleBasicBlock(block blk, clock lastClock)

Roots = {output operations in blk.DAG};

clk = lastClock;

 while(Roots ≠ ∅)

AvailableOutputs = ∅;

 foreach (operation op ∈ Root)

 if (all successor of op are scheduled after clock clk)

AvailableOutputs = AvailableOutputs + {op};

 Sort AvailableOutputs by OperationPriorities;

 foreach (operation op ∈ AvailableOutputs)

internalOutputs=∅;

 if (op.result is not pre-bound to a storage)

 bind op.result

 destination dst = storage of op.result

 if (ScheduleOperation(op, clock ,blk.ss, dst))

Roots = Roots – {op} + internalOutputs;

clk=clk-1;

Figure 11- The ScheduleBasicBlock procedure.

Figure 11 shows the ScheduleBasicBlock procedure that performs

the scheduling and binding for each basic block of a CDFG. In the main

loop of this function (lines 3-16) the available output operations, i.e. sub-

tree roots that can generate their results at clock cycle clk, are collected

and sorted based on a priority function, such as operation mobility.

During scheduling of each of these output operations, some internal

outputs may be generated. If the schedule of the operation is successful,

then the operation is removed from the set of sub-tree roots (Roots) and

the newly generated internal outputs are added to the list in order to be

processed later (lines 14-15). In each iteration of the loop, the clk is

decremented and available output operations are collected and scheduled

until all sub-trees in the block are processed.
00

01

02

03

04

05

06

07

08

09

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

bool ScheduleOperation(operation op, clock clk, schedule status ss, destination dst)

 if (op is pre-bound to a functional unit)

F = {functional unit to which op is pre-bound};

 else

F = {functional units that implement op sorted by UnitPriorities};

 foreach(FU ∈ F)

P = {paths from FU.output to dst sorted by PathPriorities};

 foreach(p ∈ P)

p.timings.end = clock;

 calculate p.timings.start;

 if (resources of p are not reserved in ss.resTable)

FU.timing.end = p.timings.start;

 calculate FU.timing.start;

 if (FU is not reserved in ss.resTable)

copyStatus = ss;

 if (ScheduleOperands(op, FU.timing.start, copyStatus, FU))

ss = copyStatus;

 reserve FU and p in ss.resTable;

 add corresponding RTAs to ss.RTAs;

 return TRUE;

 bind op.result;

 if (ScheduleRead(op.result, clk, ss, dst))

internalOutputs = internalOutputs + {op};

 return TRUE;

 return FALSE;

Figure 12- The ScheduleOperation function.

The ScheduleOperation function (Figure 12) tries to schedule an

operation op so that its result is available at dst at clock cycle clk. If op is

not pre-bound to a specific functional unit, then the list of functional units

that can execute op is stored in F and sorted by the UnitPriorities (lines 1-

4). This priority function depends on the delay of the unit as well as the

paths from output of the unit to the destination dst. After selecting a

functional unit FU, all paths from FU to dst are stored in P and sorted by

a PathPriority. The timings of FU and a selected path p are calculated so

that the output of FU is available at dst at clock cycle clk (lines 7-12). If

FU and all of the resources on the path p are not reserved in the

ss.resTable at the corresponding calculated times, then algorithm tries to

schedule the operands of op by calling the ScheduleOperands function. If

the schedule of operands succeeds, then selected functional unit FU and

path p are reserved (operation and interconnect binding) (lines 15-19).

We pass a copy of scheduling status (copyStatus) to function

ScheduleOperands to make sure that original status changes only if all

operands are successfully scheduled. If scheduling failed after trying all

functional units, the ScheduleOperation function tries to bind the result of

operation to a storage and schedule a read from that storage. If the read

succeeds, the operation is added to the internalOutputs for later

processing.
00

01

02

03

04

05

06

07

08

09

10

11

bool ScheduleOperands(operation op, clock clk, schedule status ss, functional

unit FU)

 foreach(operand o ∈ op.operands)

 destination dst = FU.inputs corresponding to o;

 if (o is a variable or a constant)

 if (o is not pre-bound to a storage)

 bind o to a storage;

 if (! ScheduleRead(o, clk, ss, dst))

 return FALSE;

 else if (! ScheduleOperation(o, clk, ss, dst))

 return FALSE;

 return TRUE;

Figure 13- The ScheduleOperands function.

The ScheduleOperands function (Figure 13) schedules the operands

of an operation op on a selected functional unit FU so that their values are

available on corresponding input ports of FU at clock cycle clk. If an

operand is a variable or a constant, then this function tries to schedule a

read from the corresponding storage. Otherwise, it calls the

ScheduleOperation function. The function succeeds only if all operands

can be scheduled.
00

01

02

03

04

05

06

07

08

09

bool ScheduleRead(value v, clock clk, schedule status ss, destination dst)

P = {paths from storage of v to dst sorted by PathPriorities};

 foreach(p ∈ P)

p.timings.end = clk;

 calculate p.timings.start;

 if (resources of p not reserved in ss.resTable)

 reserve p in ss.resTable;

 add corresponding RTAs to ss.RTAs

 return TRUE;

 return FALSE;

Figure 14- The ScheduleRead function.

In the ScheduleRead function (Figure 14), the best available path that

can transfer a value from its storage to the specified destination at clock

cycle clk is selected and scheduled.

5. Experiments

In this section we report preliminary results of implementing our

algorithm in a NISC compiler that is being developed as part of the NISC

based design tool set. The input to the compiler is the netlist of datapath

components as well as the application written in ANSI C. To evaluate our

algorithm we compiled a set of benchmarks on a set of architectures and

evaluated the schedules. We reused the same datapath to compile and

implement different benchmarks. We also started from a simple

architecture and iteratively refined it to improve the result performances.

For each experiment, we simulated and synthesized the generated RTL

description in order to extract the timing information.

For benchmarks, we used the bdist2 function (from MPEG2

encoder), DCT 8x8, FFT, and a sort function (implementing the bubble

sort algorithm). The FFT and DCT benchmarks have data independent

control graphs. The bdist2 benchmark works on a 16×h block and we

used h=10 in our experiments. For the sort benchmark, we calculated the

best case and worst case results for sorting 100 elements. Among these

benchmarks, FFT has the most parallelism and sort is a fully sequential

Proceedings of the 2005 International Conference on Computer Design (ICCD’05)
0-7695-2451-6/05 $20.00 © 2005 IEEE

code. A demo of the tool and the details of benchmarks and architectures

are available at [2].

First, we evaluated the schedule of benchmarks on two processor-

like NISC architectures. The datapath of NM1 architecture is the same as

a MIPS M4K Core [3]. The NM2 architecture extends the datapath of

NM1 by adding one more ALU and 2 more register-file read ports.

Because of their similar datapath, the clock periods of these architectures

are similar. For MIPS, NM1, and NM2, Table 1 shows the execution

cycle counts of benchmarks and their corresponding speedups vs. MIPS.

We used a gcc-based cross compiler to compile and optimize the

benchmarks for MIPS. Note that although NM1 and MIPS have the same

datapath, the benchmarks run up to 70% faster on NM1. The parallelism

in NM1 (and MIPS) is limited by the number of register-file read/write

ports. However, our algorithm has well utilized the pipelining and data

forwarding paths between components and achieved the speedup by

avoiding unnecessary accesses to the register file and controlling the flow

of information in the pipeline. By utilizing the vertical and horizontal

parallelism in NM2, the benchmarks run up to 100% faster than MIPS.

These results show that by having more control over datapath, the NISC

compiler generates better results than an instruction-set-based compiler.

Table 1- Cycle counts and speedups on MIPS and MIPS-like NISCs.

Cycle count Speedup vs. MIPS

MIPS NM1 NM2 MIPS NM1 NM2

bdist2: block 16x10 6727 5204 4363 1.00 1.29 1.54

DCT 8x8 13058 10772 10644 1.00 1.21 1.23

FFT 277 162 133 1.00 1.71 2.08

Sort: Best case (N=100) 45642 40103 40004 1.00 1.14 1.14

Sort: Worst case (N=100) 50493 54656 54557 1.00 0.92 0.93

To evaluate the utilization of vertical parallelism, we used a set of

architectures that had the same number and type of functional units and

storages but had different pipeline structure. We started with an

architecture with no pipelining (NP) similar to Figure 15(a). Then we

added controller pipelining (CP) by adding CW and status registers in

front of control memory (CMem) and address generator (AG),

respectively. We then added datapath pipelining (CDP) by adding

registers to the input/output ports of functional units and data memory. At

the end, we added data forwarding (CDP+F) by adding interconnects

from output of functional units to the input registers of other functional

units. The final architecture is similar to what is shown in Figure 15(b).

(a) Simple Datapath (NP) (b) Complex Datapath (CDP+F)

Figure 15- Experimental NISC Datapaths

After compiling the benchmarks on the above datapaths, we

generated corresponding Verilog files. To get the number of execution

cycles, we simulated the files; and to get the clock periods we synthesized

them on a Xilinx Virtex-II Pro FPGA package using the Xilinx ISE tools.

In Table 2 under each architecture column, the clock period; as well as

number of cycles (first column); execution delay (cycles count × cycle

period) in micro-seconds; and speedup vs. NP is shown. Note that while

adding pipelining reduces the clock period, it may increase the cycle

counts especially if there is not enough parallelism in the benchmark.

Therefore, except for FFT, the cycle count of other benchmarks increases

when we move from NP, to CP and CDP. The considerable decrease of

execution cycle counts from CDP to CDP+F is because of utilizing the

data forwarding paths. Nevertheless, the execution times of benchmarks

have decreased due to improvements of cycle periods.
NP CP CDP CDP+F NM1 NM2

clock (ns) 12.4 9.8 5.4 6.7 8.6 8.7

bdist2 6143 76.2 1.0 6326 62.0 1.2 7168 38.7 2.0 5226 35.0 2.2 5204 44.8 1.7 4363 38.0 2.0

DCT 10450 129.6 1.0 11764 115.2 1.1 14292 77.2 1.7 13140 88.0 1.5 10772 92.6 1.4 10644 92.6 1.4

FFT 219 2.7 1.0 220 2.2 1.3 218 1.2 2.3 166 1.1 2.4 162 1.4 1.9 133 1.2 2.3

Sort: Best 25447 315.5 1.0 35349 346.4 0.9 84161 454.5 0.7 74162 496.9 0.6 40103 344.9 0.9 40004 348.0 0.9

Sort: Worst 35149 435.8 1.0 49902 489.0 0.9 98714 533.1 0.8 88715 594.4 0.7 54656 470.0 0.9 54557 474.6 0.9

Table 2- Execution delay (us) of benchmarks and speedup vs. NP.

In the previous experiments, we neither used any optimization (such

as loop unrolling) nor modified the source code of benchmarks to

increase the parallelism. As another set of experiments, we partially

unrolled and combined the nested loops in the source code of DCT, and

scheduled the new version on our architectures. We also designed a

custom architecture for the modified DCT and collected the results after

simulation and synthesis. Figure 16 shows the main loop of the new

version. In the original version, there were three loops that iterate from 0

to 7 for three variables i, j, and k. We unrolled the inner loop (k) and

combined the loops of i and j into one loop. The commented codes in

Figure 16 show how the conversion has been done. In this figure, *(x)

means that the memory content at address x is being loaded or stored.
ij=0;

do {

 //Original: sum+= A[i][k] × B[k][j];

 //Converted to: sum+= *(A+ (i×8+k)) × *(B + (k×8+j));

 //Converted to: sum+= *(A+ ((ij&0xF8)|k)) × *(B + (k|(ij&0x7)));

 i8 = ij & 0xF8; //i × 8 => (i8|k) = (i×8+k)

 j = ij & 0x7;

 aL = *(A+ (i8|0)); bL = *(B + (0|j)); sum = aL × bL;

 aL = *(A+ (i8|1)); bL = *(B + (8|j)); sum += aL × bL;

 aL = *(A+ (i8|2)); bL = *(B + (16|j)); sum += aL × bL;

 aL = *(A+ (i8|3)); bL = *(B + (24|j)); sum += aL × bL;

 aL = *(A+ (i8|4)); bL = *(B + (32|j)); sum += aL × bL;

 aL = *(A+ (i8|5)); bL = *(B + (40|j)); sum += aL × bL;

 aL = *(A+ (i8|6)); bL = *(B + (48|j)); sum += aL × bL;

 aL = *(A+ (i8|7)); bL = *(B + (56|j)); *(C + ij) = sum + (aL × bL);

 ++ij;

} while(ij<64);

Figure 16- The main loop of modified DCT.

Figure 17 shows the custom NISC architectures that we designed for

the modified DCT. The architecture has very irregular deep pipelines,

and the compiler should perform operation chaining on the OR and ALU

components. The multiply and add (accumulate) operations are chained

as well. We used the pre-binding feature of our algorithm and forced it to

bind variables aL, bL and sum in Figure 16 to the registers aL, bL and

Sum in datapaths of Figure 17. Table 3 shows cycle periods, cycle counts,

execution delays and speedups vs. architecture NP for both the DCT and

its modified version. Since the modified DCT has inherent horizontal and

vertical parallelism, the added interconnects and resources to NP improve

the performance significantly in other architectures (upto 15.5 times in

the Custom architecture). The results also show that, although the

modified DCT runs slower than the original DCT on previous

architectures, it outperforms the others on the custom datapaths.
Original DCT Modified DCT

arch.
clock

(ns)

#clo
ck

s

delay(µ
s)

sp
eed

up

#clo
ck

s

delay(µ
s)

sp
eed

up

NP 12.4 10450 129.6 1.0 33186 411.6 1.0

CP 9.8 11764 115.2 1.1 24604 241.2 1.7

CDP 5.4 14292 77.2 1.7 38850 209.8 2.0

CDPF 6.7 13140 88 1.5 17434 116.8 3.5

NM1 8.6 10772 92.6 1.4 13586 116.8 3.5

NM2 8.7 10644 92.6 1.4 11154 97 4.2

Custom 9 - - - 2952 26.6 15.5

Figure 17- Custom NISC for DCT. Table 3- Performances.

Note that in these examples, we only customized the datapath and the

compiler automatically utilized the custom pipeline structure. We did not

need to generate any custom instruction and modify the compiler to use

it. Although in its early experimental phases, our NISC compiler is

generating encouraging results on different architecture ranging from

simple to complex. The results indicate that different architectural

features such as controller / datapath pipelining, data forwarding, and

operation chaining, are very well utilized by our algorithm.

6. Related works

Because the architecture style of NISC is new, little research has

been done on the mapping algorithms for NISC. However, some of

techniques developed in the areas of ASIPs, high level synthesis, and

retargetable compilers can be directly or indirectly related to NISC. The

application analysis techniques in ASIP domain can be used to select or

generate proper datapaths in NISC. A survey of different ASIP

Proceedings of the 2005 International Conference on Computer Design (ICCD’05)
0-7695-2451-6/05 $20.00 © 2005 IEEE

techniques and approaches is presented in [4]. In this paper we presented

a scheduling and binding algorithm for mapping the CDFG of the

program on a given datapath in NISC. There has been an extensive body

of work on scheduling and binding algorithms in the area of high level

synthesis and retargetable compilers, which we review in this section.

List-based scheduling techniques [5] are used to solve resource

constrained scheduling problem in which the number of resources of

different types are limited. List scheduling processes each control step

sequentially. At each control step, it tries to choose the best operation

from the list of candidate operations, subject to resource constraints. List

scheduling uses a ready-list, which keeps all nodes that their predecessors

are already scheduled. The ready-list is always sorted with respect to a

priority function. The priority function always resolves the resource

contention among operations, i.e. operations with lower priority will be

deferred to the next or later control steps. The quality of the results

produced by a list-based scheduler depends predominantly on its priority

function.

Mobility of the operation, i.e. the difference between ASAP (as soon

as possible) and ALAP (as late as possible) times, is commonly used as

the priority function in many HLS systems. Different priority functions

and heuristics have been proposed to improve the quality of list

scheduling. The proposed list scheduling algorithms in [6] and [7] uses

mobility as the primary priority functions. To break the tie among a set of

available operations with similar mobility, they assign higher priority to

those operations that contribute to the same output. Before scheduling

begins, they analyze the outputs of operations in the DFG by constructing

a set of trees (cones) that start from output nodes as roots. However, they

use a conventional scheduler that starts from inputs and proceeds

forward, and the output trees are only used to break the tie during

schedule. A similar approach is used in [8] and [9] for scheduling on

VLIW architectures. Output trees in DFG are also used for instruction

selection using the maximal-munch algorithm. Processing the DFG

backward, from outputs towards inputs, has proven to be very fruitful.

However, this idea has been mainly used in priority functions but not the

scheduling algorithm itself.

Getting a fixed architecture model as input is a common assumption

in retargetable compilers, mostly used for ASIPs. But usually in these

compilers the architecture model is described in terms of instructions,

which is a much higher level of abstraction than the structural details of

the architecture. Even compilers such as RECORD [10] and CHESS [11]

that use a structural description of architecture, extract the higher level

instruction information for using in the compiler. The RECORD

compiler extracts behavioral model of instructions from MIMOLA HDL

[12]. They assume a horizontal microcode machine with single cycle

operation. They process the structure of the datapath from destination

storages towards source storages to extract valid register transfers (RTs).

After analyzing the controller, they reject illegal RTs that do not

correspond to an instruction, and use the remaining RTs in the compiler.

The CHESS compiler uses the nML language [13] to extract the

instruction set graph (ISG) that captures structural resources in the

architecture that are used by each instruction.

Regardless of the approaches, every compiler generates a stream of

processor instructions and assumes that the processor itself deals with the

control signals of its component. Since there is no instruction in NISC,

the compiler directly maps the program to the datapath. In this way,

compiler has complete fine-grain control over datapath and can achieve

better parallelism and resource utilization. However, not only the

compiler should generate the schedule, it should also generate the control

values of architecture component in each cycle. Therefore, the NISC

compiler must deal with much more structural details and solve a more

complex problem than traditional processor compilers.

In all HLS approaches scheduling is done mainly based on the delay

of functional units, while all or part of binding (especially interconnect

binding) is done afterwards. This is not possible in NISC and scheduling

and binding must be done simultaneously (see Section 3).

7. Conclusion

In this paper, we introduced No-Instruction-Set-Computer (NISC)

architecture and described an algorithm for compiling applications on this

architecture. In NISC, there is no predefined instruction. The compiler

maps the program directly on the datapath and generates the control

signal values that execute the program. Since the compiler has complete

control over datapath, it can construct any custom functionality and

utilize horizontal and vertical parallelism in programs. The NISC

approach also enables design reuse and refinement. We showed that a

NISC with a datapath similar to that of a MIPS M4K can perform up to

70% better. We predict the same applies when using datapath of other

embedded processor cores.

Our algorithm is different from HLS techniques because it assumes

that the datapath is given and is fixed during scheduling and binding. It

performs the scheduling and binding simultaneously while processing the

CDFG backward. It is also different from conventional instruction-set

based compiler techniques because it directly maps the program on a

given datapath without using any high-level instruction abstraction.

Consequently, it must deal with all structural details of the architecture

and solve more complex problems.

Our experiments indicate that the compiler efficiently supports

features such as controller / datapath pipelining, data forwarding, multi-

cycle and pipeline units, and operation chaining. In one set of

experiments, we partially unrolled and combined the nested loops in the

source code of a DCT 8x8, and compiled it on a custom datapath. We

achieved considerably better results in terms of cycle count and total

execution delay (up to 15.5 times faster). The results of our experiments

indicate that in presence of parallelism in the application and the datapath,

our algorithm generates promising results on the NISC architecture.

8. References

[1] A. Orailoglu and D.D. Gajski, “Flow graph representation”, Design

Automation Conference, 1986.

[2] http://www.cecs.uci.edu/~reshadi/projects/nisc/

[3] MIPS32® M4K™ Core, http://www.mips.com

[4] M.K. Jain, M. Balakrishnan, and A. Kumar, “ASIP Design

Methodologies: Survey and Issues”, In Proceedings of the Fourteenth

International Conference on VLSI Design, 2001.

[5] D. Gajski, N. Dutt, A. Wu, S. Lin, "High-Level Synthesis Introduction

to Chip and System Design", Kluwer Academic Publishers, 1994.

[6] S. Govindarajan, R. Vemuri, "Cone-Based Clustering Heuristic for

List-Scheduling Algorithms", Proceedings of European Design & Test

Conference (ED&TC), 1997.

[7] A.M. Sllame, V. Drabek, "An efficient list-based scheduling algorithm

for high-level synthesis", Proceedings of the Euromicro Symposium on

Digital System Design, 2002.

[8] E. Ozer, S. Banerjia, “Unified Assign and Schedule: A New Approach

to Scheduling for Clustered Register File Microarchitectures”, MICRO-31,

1998.

[9] J. R. Ellis, “Bulldog: A compiler for VLIW architectures”, Cambridge,

MA: The MIT Press, 1986.

[10] R. Leupers, P. Marwedel, "Retargetable Generation of Code Selectors

from HDL Processor Models", European Design and Test, 1997.

[11] J. Van Praet, D. Lanneer, G. Goossens, W. Geurts, H. De Man, "A

Graph Based Processor Model for Retargetable Code Generation",

European Design and Test Conference, 1996.

[12] P. Marwdedel, “The MIMOLA Design System: Tools for the Design

of Digital Processors”, Design Automation Conference, 1984.

[13] A. Fauth, J. Van Praet, M. Freericks, "Describing instruction set

processors using nML", European Design and Test Conference, 1995.

Proceedings of the 2005 International Conference on Computer Design (ICCD’05)
0-7695-2451-6/05 $20.00 © 2005 IEEE

