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Abstract 

Performance of programs can be improved by utilizing their 

horizontal and vertical parallelism. In some processors (VLIW based), 

compiler can utilize horizontal parallelism by controlling the schedule of 

independent operations. Vertical parallelism is utilized through 

pipelining. However, in all processors, structure of pipeline is fixed and 

compiler has no control over it. In Application-Specific-Instruction set-

Processors (ASIPs), pipeline structure can be customized and utilized in 

the program through custom instructions. Practical constraints on the 

instruction decoder limit the number and complexity of custom 

instructions in ASIPs. Detecting the frequent and beneficial custom 

instructions and incorporating them in the compiler are complex and 

sometimes very time consuming tasks. 

In this paper, we present an architecture that does not limit the 

number of custom functionalities that can be implemented on its 

datapath. Instead of using custom instructions and then relying on the 

decoder in hardware to generate the control signals, we generate the 

control signal values in compiler. Since there are no predefined 

instructions in this architecture, we call it No-Instruction-Set-Computer 

(NISC). The NISC compiler maps the application directly on the 

datapath. It has complete fine grain control over datapath and hence can 

very well utilize resources in the hardware as well as horizontal and 

vertical parallelism in the program. We also explain the algorithm for 

mapping the CDFG of a program on a given datapath in NISC. Using 

our algorithm and a NISC architecture with the datapath of a MIPS, we 

achieved up to 70% speedup over the traditional MIPS compiler. In 

another experiment, we started from a base architecture and customized 

it by adding resources and interconnects to increase its horizontal and 

vertical parallelism. The algorithm achieved up to 15.5 times speedup by 

utilizing the available parallelism in the program and the  datapath.  

1. Introduction 

Performance of applications can be improved by exploiting their 

inherent horizontal and vertical parallelism. Horizontal parallelism occurs 

when multiple independent operations can be executed simultaneously. 

Vertical parallelism occurs when different stages of a sequence of 

operations can be overlapped. In processors, horizontal parallelism is 

utilized by having multiple functional units that run in parallel and 

vertical parallelism is utilized through pipelining.  

In VLIW processors, the compiler controls the schedule of parallel 

independent operations. However, in all processors, the compiler has no 

control over the structure of pipeline. Therefore, the vertical parallelism 

of the program may not be efficiently utilized.  

In Application Specific Instruction-set Processors (ASIPs), structure 

of pipeline can be customized for an application through custom 

instructions. At run time, each custom instruction is decoded and 

executed on the corresponding custom hardware. Due to practical 

constrains on size and complexity of instruction decoder and custom 

hardware, only few custom instructions can be actually implemented in 

ASIPs. Therefore, only the most frequent or beneficial custom 

instructions are selected and implemented. Identifying the beneficial 

instructions, implementing an efficient decoder, and incorporating the 

new instructions in the compiler are complex tasks and require special 

expertise; which may affect the time-to-market of these processors.  

In this paper, we present an architecture in which the compiler 

determines both the schedule of parallel independent operations 

(horizontal parallelism), and the logical flow of sequential operations in 

the pipeline (vertical parallelism). The compiler generates code as if each 

basic block of program is executed with one custom instruction. A basic 

block is a sequence of operations in a program that are always executed 

together. Ideally, for each basic block we should have one instruction that 

reads the inputs of basic block from a storage (e.g. register file) and 

computes the outputs of basic block and stores them back. The large 

number of basic blocks in a typical program prevents us from using an 

ASIP approach to achieve the above goal. In ASIP, after reading the 

binary of a custom instruction from memory, it is decoded into a set of 

control words (CWs) that control the corresponding custom datapath and 

executes the custom functionality. Instead of having too many custom 

instructions and then relying on a large instruction decoder to generate 

CWs in hardware; we generate the CWs in compiler by directly mapping 

each basic block onto the custom datapath. Therefore, the compiler can 

construct unlimited number of custom functionalities utilizing both 

horizontal and vertical parallelism of the input program.  

Since there are no predefined instructions in our architecture, we call 

it No-Instruction-Set-Computer (NISC). A NISC compiler compiles the 

application directly to the datapath. It can achieve better parallelism and 

resource utilization than conventional instruction-set based compilers. In 

fact in our experiments (Section 5), on a MIPS [3] datapath the NISC 

compiler achieved up to 70% speedup compared to an instruction-set-

based compiler. However, NISC compiler must solve a more complex 

problem because it must deal with all structural details of the datapath. It 

should combine traditional compiler techniques with high level synthesis 

(HLS) techniques. The core of this compiler is a scheduling and binding 

algorithm. Scheduling links the operations of the application to the clock 

cycles and datapath resources. Binding involves three subtasks: variable 

binding assigns a value to a storage; operation binding assigns an 

operation to an FU; and interconnect binding selects a path between two 

FUs, or a storage and a FU. In our algorithm, these three subtasks are 

done during schedule of each operation. The algorithm has to perform 

scheduling and binding simultaneously (see Section 3) and support 

features such as datapath/controller pipelining, data forwarding, operation 

chaining, multi-cycle and pipelined units. 

In Section 2 we describe the NISC architecture and then in Sections 

3 and 4 explain the basic idea and the details of the mapping algorithm. 

This algorithm processes the Control Data Flow Graph (CDFG) [1] of 

the program backward and generates a finite state machine (FSM). The 

results of various experiments are shown in Section 5. Section 6 reviews 

related works and Section 7 concludes the paper. 

Figure 1- A sample NISC architecture. 

2. NISC Architecture 

While the controller of NISC has a predefined structure, its datapath 

can be customized to accommodate any application behavior. The 

datapath of NISC can be simple or as complex as datapath of a processor. 

The controller drives the control signals of the datapath components in 

each clock cycle. The NISC compiler generates the control values for 

Proceedings of the 2005 International Conference on Computer Design (ICCD’05) 
0-7695-2451-6/05 $20.00 © 2005 IEEE 



each clock cycle. These values are either stored in a memory or generated 

via logic in the controller. Both the controller and the datapath can be 

pipelined. Figure 1 shows a sample NISC architecture with a memory 

based controller and a pipelined datapath that has partial data forwarding, 

multi-cycle and pipelined units, as well as data memory and register file. 

Note that few high level synthesis techniques can generate such complex 

datapaths directly from application. Such structural details are also 

invisible to the traditional compilers that rely on instruction abstraction. 

The compiler translates each basic block to a sequence of CWs that 

run sequentially without interruption and execute the basic block on the 

datapath. In other words, any pipeline stall or context switch (e.g. 

interrupt routing call) happens only between basic blocks. This is 

analogous to traditional processors in which pipeline stalls or context 

switches happen between instructions. 

In presence of controller pipeline (e.g. registers PC, CW and Status 

in Figure 1), the compiler should also make sure that the branch delay is 

considered correctly and is filled with other independent operations. In 

Sections 4.1 and 4.2 we describe the details of mapping CFG and DFG of 

a program to a given datapath. 

The datapath can be generated (allocated) using different techniques. 

For example, it can be an IP, reused form other designs, or generated by 

high level synthesis. The program, written in a high level language such 

as C, is first compiled and optimized by a front end and then mapped 

(scheduled and bound) on the given datapath. The result is translated to 

an RTL hardware description that is used for simulation (validation), 

synthesis (implementation), etc. At any point, after compilation down to 

the implementation, the results can be analyzed, and the design can be 

improved by refining the datapath and recompiling the program on the 

refined datapath. This kind of flow is possible only if we can compile an 

application directly to a given pre-synthesized datapath. Figure 2 shows 

the above flow. 

Figure 2- Generating a NISC architecture for an application. 

3. Overview of the Mapping Algorithm  

In this section we illustrate the basis of our scheduling and binding 

algorithm using an example. The input of algorithm is the CDFG of an 

application, netlist of datapath components and the clock period of the 

system. The output is an FSM in which each state represents a set of 

register transfers actions (RTAs) that execute in one clock cycle. An 

RTA can be either a data transfer through buses / multiplexers / registers, 

or an operation executed on a functional unit. The set of RTAs are later 

used to generate the control bits of components. 

As opposed to traditional HSL, we can not schedule operations 

merely based on the delay of the functional units. The number of control 

steps between the schedule of an operation and its successor depends on 

both the binding of operations to functional units (FU) and the delay of 

the path between corresponding FUs. For example, suppose we want to 

map DFG of Figure 4 on datapath of Figure 5. Operation shift-left (>>) 

can read the result of operation + in two ways. If we schedule operation + 

on U2 and store the result in register file RF, then operation >> must be 

scheduled on U3 in next cycle to read the result from RF through bus B2

and multiplexer M2. Operation >> can also be scheduled in the same 

cycle with operation + and read the result directly from U2 through 

multiplexer M2. Therefore, selection of the path between U2 and U3 can 

directly affect the schedule. Since knowing the path delay between 

operations requires knowing the operation binding, the scheduling and 

binding must be performed simultaneously. 

The basic idea in the algorithm is to schedule an operation and all of 

its predecessors together. An output operation in the DFG of a basic 

block is an operation that does not have a successor in that basic block. 

We start from output operations and traverse the DFG backward. Each 

operation is scheduled after all its successors are scheduled. The 

scheduling and binding of successors of an operation determine when 

and where the result of that operation is needed. This information can be 

used for: utilizing available paths between FUs efficiently, avoiding 

unnecessary register file read/writes, chaining operations, etc. 

Figure 3- Partitioning a DFG into output sub-trees. 

We partition the DFG of the basic block into sub-trees. The root of a 

sub-tree is an output operation. The leaves are input variables, constants, 

or output operations from other basic blocks. If the successors of an 

operation belong to different sub-trees, then that operation is considered 

as an internal output and will have its own sub-tree. Such nodes are 

detected during scheduling. Figure 3 shows an example DFG that is 

partitioned into three sub-trees. The roots of the sub-trees (shown with 

shaded nodes) are the output operations. The algorithm schedules each 

sub-tree separately. If during scheduling of the operations of a sub-tree, 

the schedule of an operation fails, then that operation is considered an 

internal output and becomes the root of a new sub-tree. A sub-tree is 

available for schedule as soon as all successor of its root (output 

operation) are scheduled. Available sub-trees are ordered by the mobility 

of their root. The algorithm starts from output nodes and schedules 

backward toward their inputs, therefore more critical outputs tend to be 

generated towards the end of the basic block (similar to ALAP schedule). 

Consider the example DFG of Figure 4 to be mapped on the datapath 

of Figure 5. Assume that the clock period is 20 units and delays of U1,

U2, U3, multiplexers and busses are 17, 7, 5, 1 and 3 units, respectively. 

We schedule the operations of basic block so that all results are available 

before last cycle, i.e. 0; therefore, the RTAs are scheduled in negative 

cycle numbers. In each step, we try to schedule the sub-trees that can 

generate their results before a given cycle clk. The clk starts from 0 and is 

decremented in each step until all sub-trees of a basic block are 

scheduled.  

Figure 4- A sample DFG. Figure 5- A sample datapath. 

During scheduling, different types of values may be bound to 

different types of storages (variable binding). For example, global 

variables may be bound to memory, local variables to stack or register 

file, and so on. A constant is bound to memory or control word (CW) 

register, depending on its size. A control word may have limited number 

of constant fields that are generated in each cycle along with the rest of 

control bits. These constant fields are loaded into the CW register and 

then transferred to a proper location in datapath. The NISC compiler 

determines the values of constant(s) in each cycle. It also schedules 

proper set of RTAs to transfer the value(s) to where it is needed.  

When scheduling an output sub-tree, first step is to know where the 

output is stored. In our example, assume h is bound to register file RF.

We must schedule operation >> so that its result can be stored in 

destination RF in cycle -1 and be available for reading in cycle 0. We first 

select a FU that implements >> (operation binding). Then we make sure 

that a path exists between selected FU and destination RF and all 

elements of the path are available (not reserved by other operations) in 

cycle -1 (interconnect binding). In this example we select U3 for >> and 

bus B4 for transferring the results to RF. Resource reservation will be 

finalized if the schedule of operands also succeeds. The next step is to 

× ×

+

>>

a b c d

e f

g

h

2

e=a×b; 

f=c×d; 

g=e+f; 

h=g >> 2;
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schedule proper RTAs in order to transfer the value of g to the left input 

port of U3 and constant 2 to the right input port of U3. Figure 6 shows the 

status of schedule after scheduling the >> operation. The figure shows the 

set of RTAs that are scheduled in each cycle to read or generated a value. 

At this point, B3 and M2 are considered the destinations to which values 

of 2 and g must be transferred in clock cycle -1, respectively. 
clock→

operation↓
-3 -2 -1 

g   M2=?; 

2   B3=?; 

h   B4=U3(M2, B3); RF(h)=B4; 

Figure 6- Schedule of RTAs after scheduling >> operation. 

In order to read constant 2, we need to put the value of CW register 

on bus B3. As for variable g, we schedule the + operation on U2 to 

perform the addition and pass the result to U3 though multiplexer M2.

Note that delay of reading operands of + operation and executing it on 

U2, plus the delay of reading operands of >> operation and executing it 

on U3 and writing the results to RF is less than one clock cycle. 

Therefore, all of the corresponding RTAs are scheduled together in clock 

cycle -1. The algorithm chains the operations in this way, whenever 

possible. The new status of scheduled RTAs is shown in Figure 7. In the 

next step, we should schedule the × operations to deliver their results to 

the input ports of U2.
clock→

operation↓
-3 -2 -1 

e   M1=?; 

f   B2=?; 

g   M2=U2(M1, B2);

2   B3=CW; 

h   B4=U3(M2, B3); RF(h)=B4; 

Figure 7- Schedule of RTAs after scheduling + operation. 

The left operand (e) can be scheduled on U1 to deliver its result 

through register R1 in cycle -2 and multiplexer M1 in cycle -1. At this 

point, no other multiplier is left to generate the right operand (f) and 

directly transfer it to the right input port of U2. Therefore, we assume that 

f is stored in the register file and try to read it from there. If the read is 

successful, the corresponding × operation (f) is considered as an internal 

output and will be scheduled later. Figure 8 shows the status of schedule 

at this time. The sub-tree of output h is now completely scheduled and the 

resource reservations can be finalized. 
clock→

operation↓
-3 -2 -1 

c B1=RF(c);  

d B2=RF(d);  

e R1=U1(B1, B2); M1=R1;

f   B2=RF(f); 

g   M2=U2(M1, B2);

2   B3=CW; 

h   B4=U3(M2, B3); RF(h)=B4; 

Figure 8- Schedule of RTAs after scheduling h sub-tree. 

The sub-tree of internal output f must generate its result before cycle   

-1 where it is read and used by operation +. Therefore, the corresponding 

RTAs must be scheduled in or before clock cycle -2 and write the result 

in register file RF. The path from U1 to RF goes through register R1 and 

hence takes more than one cycle. The second part of the path (after R1) is 

scheduled in cycle -2 and the first part (before R1) as well as the 

execution of operation × on U1 is scheduled in cycle -3. The complete 

schedule is shown in Figure 9. 
clock→

operation↓
-3 -2 -1 

a B1=RF(a);   

b B2=RF(b);   

c B1=RF(c);  

d B2=RF(d);  

e R1=U1(B1, B2); M1=R1;

f R1=U1(B1, B2); B4=R1; RF(f)=B4; B2=RF(f); 

g   M2=U2(M1, B2);

2   B3=CW; 

h   B4=U3(M2, B3); RF(h)=B4; 

Figure 9- Schedule of RTAs after scheduling all sub-trees. 

In the above example, we showed how the DFG is partitioned into 

sub-trees during scheduling. We also showed how pipelining, operation 

chaining, and data forwarding are supported during scheduling. 

4. Compiling an application to a custom datapath 

In this section we describe our algorithm for compiling the 

application to a custom datapath. When compiling the CDFG of each 

function of a program, we must consider the structure of the controller for 

compiling the control flow graph (CFG) and consider the structure of 

datapath for compiling the DFG. This process is described in the next two 

subsections. Description of the algorithm uses the following definitions: 

• Each basic block has a schedule status ss, where ss.RTAs(clk) stores 

the set of scheduled RTAs in clock cycle clk, and ss.resTable(clk)

stores the reservation status of resources in clock cycle clk, and 

ss.length shows the number of scheduled states for that block. 

• For an operation op, op.result is the value generated by op and 

op.operands is the list of results of predecessors of op.

• For a functional unit FU, FU.output is the output port of FU and 

FU.inputs is the set of input ports of FU. A functional unit may 

implement multiple operations. For each operation, FU.timing

represents the delay of the unit (or its stages if it is pipelined) as 

well as the duration of applying the control signals to the unit. 

• A path p is the list of resources that can transfer a value from one 

point to another. These resources include busses, multiplexers and 

registers. The timing of resources of p is stored in p.timings and is 

calculated base on delay of buses or multiplexers, or setup time and 

read delay of registers or register-files. 

• A destination dst is a storage or an input port of a functional unit. 

4.1 Mapping the CFG of the program 

The result of NISC compiler is an FSM that can be implemented in 

logic or using a memory. In a memory-based implementation the state 

register is a program counter register (PC). Therefore, a state change in 

the FSM corresponds to incrementing the PC or loading it with a new 

value using a jump operation. While incrementing PC always takes one 

cycle, loading it with a new value may take more than one cycle. The 

result of scheduling a basic block is always a sequence of states (marked 

by value of clk). We may only need a jump at the end of a basic block, if 

the last state of the block is not before the first state of the next basic 

block. In the algorithm, we assume that the order of basic blocks is given, 

and that there may be jump operation at the end of some basic blocks.  

Since we perform the scheduling backward, the result will be a set of 

states numbered from –N to +bd. The return address of a function is 

loaded into PC at state 0. Constant bd is the branch delay of the 

architecture, i.e. in a basic block, after loading the target address of a 

jump operation into PC, bd more control words will be executed from 

that basic block. Value of bd depends on the distance between PC and 

control word register, which is fixed and unique. Usually, this delay is 0 

or 1 cycle in NISC. 
00

01

02

03

04

05

06

07

08

ScheduleFunction(FSM fsm, ordered list of basic blocks blkList)

clk = 0; 

bd = branch delay; 

 foreach (blk ∈ reverse of blkList)

  if (blk has a jump operation) 

ScheduleOperation(blk.jump, clk, blk.ss, PC); 

ScheduleBasicBlock(blk, clk+bd);

  add blk.ss states to fsm;

clk = clk – blk.ss.length;

Figure 10- The ScheduleFunction procedure. 

In procedure ScheduleFunction (Figure 10), the blkList contains the 

topologically ordered list of basic blocks where the last element of the list 

is the return block. The blocks of blkList are processed in reverse order, 

starting from return block and after scheduling each block, the results are 

added to the fsm. In the main loop of ScheduleFunction (lines 3-8), before 

scheduling the body of a basic block, the jump operation at the end of 

block is scheduled. The same way that a + operation is mapped to an 

adder or ALU and writes its results to a register or register file, the jump 

is considered an operation that is mapped to address generator and writes 

its result to the PC register in cycle clk. In this way, we can schedule 

jump the same way that we schedule other operations (line 5). In order to 
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make sure that the branch delay of the jump operation is filled by other 

operations in the basic block, we try to schedule the DFG of the basic 

block from cycle clk+bd (line 6). After scheduling each basic block, the 

new value of clk is calculated by decrementing the number of states in the 

block (line 7). The ScheduleBasicBlock and ScheduleOpertion functions 

are described in Section 4.2. After scheduling all functions of a program, 

fsm will contain the final FSM of the design.  

4.2 Mapping the DFG of the program 

The variable, operation, and interconnect bindings are performed 

during the schedule of each operation. We also allow pre-binding of 

variables and operations so that the designer or other algorithms can 

control the results. For example, a partitioning algorithm may partition 

the variables and pre-bind them to two memory units. 
00

01

02

03

04

05

06

07

08

09

10

11

12

13

14

15

16

ScheduleBasicBlock(block blk, clock lastClock)

Roots = {output operations in blk.DAG}; 

clk = lastClock;

 while(Roots ≠ ∅)

AvailableOutputs = ∅;

  foreach (operation op ∈ Root)

   if (all successor of op are scheduled after clock clk)

AvailableOutputs = AvailableOutputs + {op};

  Sort AvailableOutputs by OperationPriorities; 

  foreach (operation op ∈ AvailableOutputs)

internalOutputs=∅;

   if (op.result is not pre-bound to a storage) 

    bind op.result 

   destination dst = storage of op.result

   if ( ScheduleOperation(op, clock ,blk.ss, dst))

Roots = Roots – {op} + internalOutputs;

clk=clk-1; 

Figure 11- The ScheduleBasicBlock procedure. 

Figure 11 shows the ScheduleBasicBlock procedure that performs 

the scheduling and binding for each basic block of a CDFG. In the main 

loop of this function (lines 3-16) the available output operations, i.e. sub-

tree roots that can generate their results at clock cycle clk, are collected 

and sorted based on a priority function, such as operation mobility. 

During scheduling of each of these output operations, some internal 

outputs may be generated. If the schedule of the operation is successful, 

then the operation is removed from the set of sub-tree roots (Roots) and 

the newly generated internal outputs are added to the list in order to be 

processed later (lines 14-15). In each iteration of the loop, the clk is 

decremented and available output operations are collected and scheduled 

until all sub-trees in the block are processed. 
00

01

02

03

04

05

06

07

08

09

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

bool ScheduleOperation(operation op, clock clk, schedule status ss, destination dst)

 if (op is pre-bound to a functional unit) 

F = {functional unit to which op is pre-bound}; 

 else 

F = {functional units that implement op sorted by UnitPriorities}; 

 foreach(FU ∈ F)

P = {paths from FU.output to dst sorted by PathPriorities}; 

  foreach(p ∈ P)

p.timings.end = clock;

   calculate p.timings.start; 

   if (resources of p are not reserved in ss.resTable)

FU.timing.end = p.timings.start; 

    calculate FU.timing.start; 

    if (FU is not reserved in ss.resTable)

copyStatus = ss;

     if (ScheduleOperands(op, FU.timing.start, copyStatus, FU))

ss = copyStatus;

      reserve FU and p in ss.resTable;

      add corresponding RTAs to ss.RTAs; 

      return TRUE; 

 bind op.result;

 if (ScheduleRead(op.result, clk, ss, dst))

internalOutputs = internalOutputs + {op};

  return TRUE; 

 return FALSE; 

Figure 12- The ScheduleOperation function. 

The ScheduleOperation function (Figure 12) tries to schedule an 

operation op so that its result is available at dst at clock cycle clk. If op is 

not pre-bound to a specific functional unit, then the list of functional units 

that can execute op is stored in F and sorted by the UnitPriorities (lines 1-

4). This priority function depends on the delay of the unit as well as the 

paths from output of the unit to the destination dst. After selecting a 

functional unit FU, all paths from FU to dst are stored in P and sorted by 

a PathPriority. The timings of FU and a selected path p are calculated so 

that the output of FU is available at dst at clock cycle clk (lines 7-12). If 

FU and all of the resources on the path p are not reserved in the 

ss.resTable at the corresponding calculated times, then algorithm tries to 

schedule the operands of op by calling the ScheduleOperands function. If 

the schedule of operands succeeds, then selected functional unit FU and 

path p are reserved (operation and interconnect binding) (lines 15-19). 

We pass a copy of scheduling status (copyStatus) to function 

ScheduleOperands to make sure that original status changes only if all 

operands are successfully scheduled. If scheduling failed after trying all 

functional units, the ScheduleOperation function tries to bind the result of 

operation to a storage and schedule a read from that storage. If the read 

succeeds, the operation is added to the internalOutputs for later 

processing. 
00

01

02

03

04

05

06

07

08

09

10

11

bool ScheduleOperands(operation op, clock clk, schedule status ss, functional 

unit FU)

 foreach(operand o ∈ op.operands)

  destination dst = FU.inputs corresponding to o;

  if (o is a variable or a constant) 

   if (o is not pre-bound to a storage) 

    bind o to a storage; 

   if (! ScheduleRead(o, clk, ss, dst))

    return FALSE; 

  else if (! ScheduleOperation(o, clk, ss, dst))

    return FALSE; 

 return TRUE; 

Figure 13- The ScheduleOperands function. 

The ScheduleOperands function (Figure 13) schedules the operands 

of an operation op on a selected functional unit FU so that their values are 

available on corresponding input ports of FU at clock cycle clk. If an 

operand is a variable or a constant, then this function tries to schedule a 

read from the corresponding storage. Otherwise, it calls the 

ScheduleOperation function. The function succeeds only if all operands 

can be scheduled. 
00

01
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08
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bool ScheduleRead(value v, clock clk, schedule status ss, destination dst)

P = {paths from storage of v to dst sorted by PathPriorities}; 

 foreach(p ∈ P)

p.timings.end = clk;

  calculate p.timings.start; 

  if (resources of p not reserved in ss.resTable)

   reserve p in ss.resTable;

   add corresponding RTAs to ss.RTAs 

   return TRUE; 

 return FALSE; 

Figure 14- The ScheduleRead function. 

In the ScheduleRead function (Figure 14), the best available path that 

can transfer a value from its storage to the specified destination at clock 

cycle clk is selected and scheduled.  

5. Experiments 

In this section we report preliminary results of implementing our 

algorithm in a NISC compiler that is being developed as part of the NISC 

based design tool set. The input to the compiler is the netlist of datapath 

components as well as the application written in ANSI C. To evaluate our 

algorithm we compiled a set of benchmarks on a set of architectures and 

evaluated the schedules. We reused the same datapath to compile and 

implement different benchmarks. We also started from a simple 

architecture and iteratively refined it to improve the result performances. 

For each experiment, we simulated and synthesized the generated RTL 

description in order to extract the timing information. 

For benchmarks, we used the bdist2 function (from MPEG2 

encoder), DCT 8x8, FFT, and a sort function (implementing the bubble 

sort algorithm). The FFT and DCT benchmarks have data independent 

control graphs. The bdist2 benchmark works on a 16×h block and we 

used h=10 in our experiments. For the sort benchmark, we calculated the 

best case and worst case results for sorting 100 elements. Among these 

benchmarks, FFT has the most parallelism and sort is a fully sequential 
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code. A demo of the tool and the details of benchmarks and architectures 

are available at [2]. 

First, we evaluated the schedule of benchmarks on two processor-

like NISC architectures. The datapath of NM1 architecture is the same as 

a MIPS M4K Core [3]. The NM2 architecture extends the datapath of 

NM1 by adding one more ALU and 2 more register-file read ports. 

Because of their similar datapath, the clock periods of these architectures 

are similar. For MIPS, NM1, and NM2, Table 1 shows the execution 

cycle counts of benchmarks and their corresponding speedups vs. MIPS. 

We used a gcc-based cross compiler to compile and optimize the 

benchmarks for MIPS. Note that although NM1 and MIPS have the same 

datapath, the benchmarks run up to 70% faster on NM1. The parallelism 

in NM1 (and MIPS) is limited by the number of register-file read/write 

ports. However, our algorithm has well utilized the pipelining and data 

forwarding paths between components and achieved the speedup by 

avoiding unnecessary accesses to the register file and controlling the flow 

of information in the pipeline. By utilizing the vertical and horizontal 

parallelism in NM2, the benchmarks run up to 100% faster than MIPS. 

These results show that by having more control over datapath, the NISC 

compiler generates better results than an instruction-set-based compiler. 

Table 1- Cycle counts and speedups on MIPS and MIPS-like NISCs. 

Cycle count Speedup vs. MIPS 

MIPS NM1 NM2 MIPS NM1 NM2 

bdist2: block 16x10 6727 5204 4363 1.00 1.29 1.54

DCT 8x8 13058 10772 10644 1.00 1.21 1.23

FFT 277 162 133 1.00 1.71 2.08

Sort: Best case (N=100) 45642 40103 40004 1.00 1.14 1.14

Sort: Worst case (N=100) 50493 54656 54557 1.00 0.92 0.93

To evaluate the utilization of vertical parallelism, we used a set of 

architectures that had the same number and type of functional units and 

storages but had different pipeline structure. We started with an 

architecture with no pipelining (NP) similar to Figure 15(a). Then we 

added controller pipelining (CP) by adding CW and status registers in 

front of control memory (CMem) and address generator (AG), 

respectively. We then added datapath pipelining (CDP) by adding 

registers to the input/output ports of functional units and data memory. At 

the end, we added data forwarding (CDP+F) by adding interconnects 

from output of functional units to the input registers of other functional 

units. The final architecture is similar to what is shown in Figure 15(b). 

(a) Simple Datapath (NP) (b) Complex Datapath (CDP+F) 

Figure 15- Experimental NISC Datapaths 

After compiling the benchmarks on the above datapaths, we 

generated corresponding Verilog files. To get the number of execution 

cycles, we simulated the files; and to get the clock periods we synthesized 

them on a Xilinx Virtex-II Pro FPGA package using the Xilinx ISE tools. 

In Table 2 under each architecture column, the clock period; as well as 

number of cycles (first column); execution delay (cycles count × cycle 

period) in micro-seconds; and speedup vs. NP is shown. Note that while 

adding pipelining reduces the clock period, it may increase the cycle 

counts especially if there is not enough parallelism in the benchmark. 

Therefore, except for FFT, the cycle count of other benchmarks increases 

when we move from NP, to CP and CDP. The considerable decrease of 

execution cycle counts from CDP to CDP+F is because of utilizing the 

data forwarding paths. Nevertheless, the execution times of benchmarks 

have decreased due to improvements of cycle periods.  
NP CP CDP CDP+F NM1 NM2 

clock (ns) 12.4 9.8 5.4 6.7 8.6 8.7 

bdist2 6143 76.2 1.0 6326 62.0 1.2 7168 38.7 2.0 5226 35.0 2.2 5204 44.8 1.7 4363 38.0 2.0

DCT 10450 129.6 1.0 11764 115.2 1.1 14292 77.2 1.7 13140 88.0 1.5 10772 92.6 1.4 10644 92.6 1.4

FFT 219 2.7 1.0 220 2.2 1.3 218 1.2 2.3 166 1.1 2.4 162 1.4 1.9 133 1.2 2.3

Sort: Best  25447 315.5 1.0 35349 346.4 0.9 84161 454.5 0.7 74162 496.9 0.6 40103 344.9 0.9 40004 348.0 0.9

Sort: Worst 35149 435.8 1.0 49902 489.0 0.9 98714 533.1 0.8 88715 594.4 0.7 54656 470.0 0.9 54557 474.6 0.9

Table 2- Execution delay (us) of benchmarks and speedup vs. NP. 

In the previous experiments, we neither used any optimization (such 

as loop unrolling) nor modified the source code of benchmarks to 

increase the parallelism. As another set of experiments, we partially 

unrolled and combined the nested loops in the source code of DCT, and 

scheduled the new version on our architectures. We also designed a 

custom architecture for the modified DCT and collected the results after 

simulation and synthesis. Figure 16 shows the main loop of the new 

version. In the original version, there were three loops that iterate from 0 

to 7 for three variables i, j, and k. We unrolled the inner loop (k) and 

combined the loops of i and j into one loop. The commented codes in 

Figure 16 show how the conversion has been done. In this figure, *(x)

means that the memory content at address x is being loaded or stored.  
ij=0; 

do { 

 //Original: sum+= A[i][k] × B[k][j];  

 //Converted to: sum+= *(A+ (i×8+k) ) × *(B + (k×8+j) );  

 //Converted to: sum+= *(A+ ((ij&0xF8)|k) ) × *(B + (k|(ij&0x7)) ); 

 i8 = ij & 0xF8; //i × 8 => (i8|k) = (i×8+k) 

 j = ij & 0x7; 

 aL = *(A+ (i8|0) ); bL = *(B + (0|j) );  sum =  aL × bL;  

 aL = *(A+ (i8|1) ); bL = *(B + (8|j) );  sum += aL × bL;  

 aL = *(A+ (i8|2) ); bL = *(B + (16|j) ); sum += aL × bL;  

 aL = *(A+ (i8|3) ); bL = *(B + (24|j) ); sum += aL × bL;  

 aL = *(A+ (i8|4) ); bL = *(B + (32|j) ); sum += aL × bL;  

 aL = *(A+ (i8|5) ); bL = *(B + (40|j) ); sum += aL × bL;  

 aL = *(A+ (i8|6) ); bL = *(B + (48|j) ); sum += aL × bL;  

 aL = *(A+ (i8|7) ); bL = *(B + (56|j) ); *(C + ij) = sum + (aL × bL); 

 ++ij; 

} while(ij<64); 

Figure 16- The main loop of modified DCT. 

Figure 17 shows the custom NISC architectures that we designed for 

the modified DCT. The architecture has very irregular deep pipelines, 

and the compiler should perform operation chaining on the OR and ALU

components. The multiply and add (accumulate) operations are chained 

as well. We used the pre-binding feature of our algorithm and forced it to 

bind variables aL, bL and sum in Figure 16 to the registers aL, bL and 

Sum in datapaths of Figure 17. Table 3 shows cycle periods, cycle counts, 

execution delays and speedups vs. architecture NP for both the DCT and 

its modified version. Since the modified DCT has inherent horizontal and 

vertical parallelism, the added interconnects and resources to NP improve 

the performance significantly in other architectures (upto 15.5 times in 

the Custom architecture). The results also show that, although the 

modified DCT runs slower than the original DCT on previous 

architectures, it outperforms the others on the custom datapaths.  
Original DCT Modified DCT

arch. 
clock 

(ns)

#clo
ck

s 

delay(µ
s) 

sp
eed

up 

#clo
ck

s 

delay(µ
s) 

sp
eed

up 

NP 12.4 10450 129.6 1.0 33186 411.6 1.0

CP 9.8 11764 115.2 1.1 24604 241.2 1.7

CDP 5.4 14292 77.2 1.7 38850 209.8 2.0

CDPF 6.7 13140 88 1.5 17434 116.8 3.5

NM1 8.6 10772 92.6 1.4 13586 116.8 3.5

NM2 8.7 10644 92.6 1.4 11154 97 4.2

Custom 9 - - - 2952 26.6 15.5

Figure 17- Custom NISC for DCT. Table 3- Performances. 

Note that in these examples, we only customized the datapath and the 

compiler automatically utilized the custom pipeline structure. We did not 

need to generate any custom instruction and modify the compiler to use 

it. Although in its early experimental phases, our NISC compiler is 

generating encouraging results on different architecture ranging from 

simple to complex. The results indicate that different architectural 

features such as controller / datapath pipelining, data forwarding, and 

operation chaining, are very well utilized by our algorithm.  

6. Related works 

Because the architecture style of NISC is new, little research has 

been done on the mapping algorithms for NISC. However, some of 

techniques developed in the areas of ASIPs, high level synthesis, and 

retargetable compilers can be directly or indirectly related to NISC. The 

application analysis techniques in ASIP domain can be used to select or 

generate proper datapaths in NISC. A survey of different ASIP 
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techniques and approaches is presented in [4]. In this paper we presented 

a scheduling and binding algorithm for mapping the CDFG of the 

program on a given datapath in NISC. There has been an extensive body 

of work on scheduling and binding algorithms in the area of high level 

synthesis and retargetable compilers, which we review in this section. 

List-based scheduling techniques [5] are used to solve resource 

constrained scheduling problem in which the number of resources of 

different types are limited. List scheduling processes each control step 

sequentially. At each control step, it tries to choose the best operation 

from the list of candidate operations, subject to resource constraints. List 

scheduling uses a ready-list, which keeps all nodes that their predecessors 

are already scheduled. The ready-list is always sorted with respect to a 

priority function. The priority function always resolves the resource 

contention among operations, i.e. operations with lower priority will be 

deferred to the next or later control steps. The quality of the results 

produced by a list-based scheduler depends predominantly on its priority 

function.  

Mobility of the operation, i.e. the difference between ASAP (as soon 

as possible) and ALAP (as late as possible) times, is commonly used as 

the priority function in many HLS systems. Different priority functions 

and heuristics have been proposed to improve the quality of list 

scheduling. The proposed list scheduling algorithms in [6] and [7] uses 

mobility as the primary priority functions. To break the tie among a set of 

available operations with similar mobility, they assign higher priority to 

those operations that contribute to the same output. Before scheduling 

begins, they analyze the outputs of operations in the DFG by constructing 

a set of trees (cones) that start from output nodes as roots. However, they 

use a conventional scheduler that starts from inputs and proceeds 

forward, and the output trees are only used to break the tie during 

schedule. A similar approach is used in [8] and [9] for scheduling on 

VLIW architectures. Output trees in DFG are also used for instruction 

selection using the maximal-munch algorithm. Processing the DFG 

backward, from outputs towards inputs, has proven to be very fruitful. 

However, this idea has been mainly used in priority functions but not the 

scheduling algorithm itself. 

Getting a fixed architecture model as input is a common assumption 

in retargetable compilers, mostly used for ASIPs. But usually in these 

compilers the architecture model is described in terms of instructions, 

which is a much higher level of abstraction than the structural details of 

the architecture. Even compilers such as RECORD [10] and CHESS [11] 

that use a structural description of architecture, extract the higher level 

instruction information for using in the compiler. The RECORD 

compiler extracts behavioral model of instructions from MIMOLA HDL 

[12]. They assume a horizontal microcode machine with single cycle 

operation. They process the structure of the datapath from destination 

storages towards source storages to extract valid register transfers (RTs). 

After analyzing the controller, they reject illegal RTs that do not 

correspond to an instruction, and use the remaining RTs in the compiler. 

The CHESS compiler uses the nML language [13] to extract the 

instruction set graph (ISG) that captures structural resources in the 

architecture that are used by each instruction.  

Regardless of the approaches, every compiler generates a stream of 

processor instructions and assumes that the processor itself deals with the 

control signals of its component. Since there is no instruction in NISC, 

the compiler directly maps the program to the datapath. In this way, 

compiler has complete fine-grain control over datapath and can achieve 

better parallelism and resource utilization. However, not only the 

compiler should generate the schedule, it should also generate the control 

values of architecture component in each cycle. Therefore, the NISC 

compiler must deal with much more structural details and solve a more 

complex problem than traditional processor compilers. 

In all HLS approaches scheduling is done mainly based on the delay 

of functional units, while all or part of binding (especially interconnect 

binding) is done afterwards. This is not possible in NISC and scheduling 

and binding must be done simultaneously (see Section 3).  

7. Conclusion 

In this paper, we introduced No-Instruction-Set-Computer (NISC) 

architecture and described an algorithm for compiling applications on this 

architecture. In NISC, there is no predefined instruction. The compiler 

maps the program directly on the datapath and generates the control 

signal values that execute the program. Since the compiler has complete 

control over datapath, it can construct any custom functionality and 

utilize horizontal and vertical parallelism in programs. The NISC 

approach also enables design reuse and refinement. We showed that a 

NISC with a datapath similar to that of a MIPS M4K can perform up to 

70% better. We predict the same applies when using datapath of other 

embedded processor cores. 

Our algorithm is different from HLS techniques because it assumes 

that the datapath is given and is fixed during scheduling and binding. It 

performs the scheduling and binding simultaneously while processing the 

CDFG backward. It is also different from conventional instruction-set 

based compiler techniques because it directly maps the program on a 

given datapath without using any high-level instruction abstraction. 

Consequently, it must deal with all structural details of the architecture 

and solve more complex problems.  

Our experiments indicate that the compiler efficiently supports 

features such as controller / datapath pipelining, data forwarding, multi-

cycle and pipeline units, and operation chaining. In one set of 

experiments, we partially unrolled and combined the nested loops in the 

source code of a DCT 8x8, and compiled it on a custom datapath. We 

achieved considerably better results in terms of cycle count and total 

execution delay (up to 15.5 times faster). The results of our experiments 

indicate that in presence of parallelism in the application and the datapath, 

our algorithm generates promising results on the NISC architecture. 
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