
PipeRench: A Virtualized Programmable Datapath in 0.18 Micron Technology

Herman Schmit, David Whelihan, Andrew Tsai, Matthew Moe, Benjamin Levine, R. Reed Taylor
Department of Electrical and Computer Engineering

Carnegie Mellon University
Pittsburgh, PA 15213, USA

{herman,whelihan,tsai,moe,blevine,rt2i}@ece.cmu.edu

Abstract - PipeRench is a programmable datapath that can be
used to accelerate numerically intensive applications. The
unique aspect of PipeRench is its ability to virtualize hardware
through self-managed dynamic reconfiguration. This capability
provides application portability and scalability without redesign
or recompilation. This paper describes the implementation of
PipeRench in a 0.18 micron process. The implementation has
3.65 million transistors and runs at 120MHz. Performance is
competitive with high-end commercial DSP architectures and
more than five times faster than a commercial microprocessor.
Executing at 33MHz, a FIR filter without virtualization con-
sumes 519mW. When virtualization is required, the implementa-
tion consumes approximately 675mW.

I. Introduction

A customized data path, with appropriate levels of parallel-
ism and pipelining, is intrinsically more efficient than tradi-
tional software execution for many applications [1]. The
primary impediment to the use of reconfigurable computing
technologies, however, is the cost of developing and re-using
such hardware pipelines. The PipeRench architecture
addresses these problems by introducing a virtual hardware
abstraction. Applications expressed in this hardware abstrac-
tion can be run on a family of compatible devices at different
cost and performance points. This virtualization of hardware
in PipeRench is accomplished by run-time reconfiguration of
the programmable hardware fabric. Unlike other run-time
reconfigurable devices, PipeRench manages its own reconfig-
uration without any host or user interaction.

This paper presents the results from an implementation of
the PipeRench architecture in a 0.l8 micron process. In partic-
ular, we focus on the additional power and silicon area
required to implement this dynamic reconfiguration.

II. Architecture and Virtualization

PipeRench supports virtualization of hardware pipelines
with limited feedback. Transformations such as FFT, DCT,
and many encryption routines do not require any feedback.
The limited feedback supported by PipeRench is sufficient to
support operations such as FIR filtering and convolution. The
virtual hardware model, as well as the process of hardware
virtualization is shown in Figure 1. The top of this figure
shows a 6-stage (or stripe) virtual hardware pipeline. The bot-
tom of this figure illustrates the first five cycles of reconfigu-
ration of a four stage physical hardware pipeline executing

the six stage virtual design. Reconfiguration is performed by
storing the configuration bits of the entire virtual hardware on
chip and moving this information from the on-chip memory
into the physical fabric every cycle. This process is described
in more depth in [3]. 

In PipeRench, the functionality in each stripe consists of
sixteen processing elements (PEs), which contains logic and
registers. All PEs within a stripe are interconnected within
that stripe, which facilitates easier placement and routing of
operations. 

Figure 2 is the block diagram of PipeRench’s eight-bit PE.
All select inputs to multiplexors and shifters in this figure are
connected to configuration bits stored in that PE. Special pur-
pose interconnects are used to combine adjacent PEs to per-
form operations more than eight bits in width. The shifters are
also connected to the corresponding shifters in adjacent PEs
to allow for efficient multi-PE shift operations. 

Each PE contains a register file with eight registers. The
output from the functional unit can be written to any one reg-
ister in the register file in that PE. If the value from the func-
tional unit is not written to a register, the value from the
corresponding register in the previous stripe is clocked into
that register.

If a stripe is the first in the pipeline, the input of the R0 reg-
ister is connected to a global input bus. If a stripe is the last in
the pipeline, the output of R0 is connected to the global out-
put bus. The PE also connects to a dedicated horizontal inter-
connect line, which goes to other PEs in the stripe. This
output can be programmably connected to the outputs of the

Fig. 1. Virtual hardware and execution through dynamic reconfiguration.

Legend

Stripe 1

Stripe 2

Stripe 6

Stripe 1

Registers

Logic

...

1

2

1

2

1

3 2

1

3

4

2

4

3

5

Virtual Hardware Design

Physical Hardware Execution (on ring-connected structure)

Cycle 1 Cycle 2 Cycle 3 Cycle 4 Cycle 5

unconfigured

configuring

configured

configuring

1

2 3

4 5



previous stripe's register file, the output of that stripe's R0, or
the output of the functional unit.

The functional unit in each PE consists of eight 3-input
look-up tables (3-LUTs) that are identically configured (Fig-
ure 3). The single-bit X input connects to all eight LUTs,
which is useful for implementing multiplexors or multiplier
stages. To implement subtraction and addition functions, the
functional unit includes a carry chain. The evaluation of out-
put conditions is facilitated by the zero detector. All three sig-
nals, carry, zero, and X, can be programmably connected to
form wider functional units. It is also possible to route the
zero and carry outputs of one PE to the X input of the adja-
cent PE. This is useful for implementing selection logic after
a comparison operation. The functionality of the PE is speci-
fied by 42 configuration bits, which means that each stripe

has 672 bits of configuration. The configuration for an entire
application is compiled by our tools from a dataflow graph
and stored in the on-chip configuration store [8].

As illustrated in Figure 4, the stripes are connected,
through their register files, in an interleaved ring. The register
file connections in this wire correspond to the register file
wires entering the PE at the top of Figure 2 and exiting at the
bottom of that figure. This layout implied by this figure is
extended to 16 stripes in the current silicon implementation.

A stripe is configured by reading the configuration infor-
mation from the on-chip configuration store in Figure 4 and

Fig. 2. PE block diagram

Register File

shiftA

shiftB

R0

7

6

5

4

3

2

1

Functional Unit

constconst

7

77

7

33

From Register File
of Previous Stripe Global Busses

T
o 

&
 F

ro
m

ot
he

r 
P

E
s

T
o 

P
E

n+
1

T
o 

P
E

n+
1

F
ro

m
 P

E
n-

1
T

o 
P

E
n+

1

A B

All wires are 8-bits unless otherwise noted

This vertical bus connects to one horizontal
wire, depending on which PE it is.

G
lo

ba
l I

np
ut

 B
us

S
ta

te
 R

es
to

re
 B

us

G
lo

ba
l O

ut
pu

t B
us

S
ta

te
 S

to
re

 B
us

To Register File of
Next Stripe

Fig. 3. Functional unit block diagram including LUTs, carry chain logic and
zero detect circuitry.

F
ro

m
 P

E
n-

1

Carry chain

3-LUT

carry
enable

3-LUT

carry
enable

...

A B

Z
er

o 
/ C

ar
ry

 / 
X

In
te

rc
on

ne
ct

T
o 

P
E

n+
1

Xout

Cout

Zout

Functional Unit Output (8-bts)

8

Bit 7 Bit 0Bit 6-1

Xin

Cin

Zin

Fig. 4. Architecture and abstract layout of PipeRench with four stripes.

Stripe 1

Stripe 3

Stripe 2

Stripe 0PE PE PEPE

Register File Connections

PE PE PEPE

PE PE PEPE

PE PE PEPE

Configuration Store

R0 State Store

Input Queue

Output Queue

762128 128

128



writing it into the configuration latch of any physical stripe.
The process of configuring a stripe takes one cycle, so the
pipeline can be configured one cycle before the first data of
the pipeline arrives at that stage. 

If the virtual hardware is larger than the real hardware,
physical stripes will eventually be reconfigured with new vir-
tual stripes. The state of the over-written virtual stripes are
preserved by writing the value in R0 into the R0 state store
memory, which is illustrated in Figure 4. The state will be
restored when that virtual stripe is returned to the fabric. The
process of reconfiguration continues until the last stripe in the
virtual design is configured. After that, reconfiguration of a
physical stripe starting with the first virtual stripe will occur
and the computation proceeds with new inputs. Virtualization
is efficient using this process. Only one stripe in the fabric is
ever being reconfigured, while all other stripes are executing
concurrently.

III. Hardware Interface

As illustrated in Figure 5, input and output interfaces
include a 32-bit data bus and a valid and full bit. This inter-
face is compatible with most FIFO memory devices. The pre-
ferred system implementation includes input and output
FIFOs to deal with the burstiness of IO traffic caused by the
virtualization of hardware. All control is facilitated by struc-
tures in the 32-bit data stream. The data stream is separated
into packets, each consisting of a header that describes the
destination and function of the packet, a marker that describes
the length of the packet, and a payload. The payload can con-
tain configuration data that specifies the virtual hardware
design, user data to be executed on an already uploaded hard-
ware design, or state information (the initial or final state of
R0 in each stripe of the hardware design). The packet struc-
ture is described in depth in [4].

IV. Implementation

Students and faculty at CMU designed PipeRench, and ST
Microelectronics fabricated it in a six-metal layer 0.18 micron
CMOS process. The total die area is 7.3 x 7.6 mm2. Transistor
count is 3.65 million. The chip has 132 pins, which includes a
72-pin data interface, 5-bit test interface and 53 pins for
power and ground. There are 3.3V and 1.8V supplies for the
I/Os and core, respectively. The core area is divided into two

areas: (1) the fabric, and (2) the virtualization and interface
logic. The fabric consists of sixteen stripes.

The virtualization and interface logic is implemented using
standard cells. The configuration data is stored in 22 SRAMs,
each with 256 32-bit words. Four 256 word by 32-bit dual-
port SRAMs are used for storage of state information in the
fabric. Sixteen dual-port SRAMs, (32 x 16 bits), are used to
queue data between the interface and fabric. The virtualiza-
tion storage and logic consumes less area than the 16 stripe
fabric and stores 256 virtual stripes. This implementation can
virtualize a hardware design that is sixteen times its own size.

The chip has two clock inputs: one clock controls the oper-
ation of the fabric and virtualization; the second clock con-
trols the off-chip interface. These clocks are fully decoupled;
all data transactions across the clock domains go through the
memory queues between the interface and fabric and all con-
trol signals pass through a synchronizer. The fabric clock is
designed to operate at 120 MHz under worst-case voltage and
temperature conditions. The interface clock is designed to
operate at 60 MHz.

The layout of a PE is shown in Figure 7 with the top four
layers of metal transparent and with some basic components
labeled. The dimensions of this cell are 325 µm by 225 µm.
Sixteen of these PEs compose a stripe, and the fabric in Fig-
ure 6 contains 256 of these PEs. The PE area is dominated by
interconnect resources such as multiplexors and bus drivers.
The transistor density of this layout is not dense. The dimen-
sions of the PE layout are dictated by the interconnect to other
PEs in the stripe, and by the global busses, which run verti-
cally over the PE cell.

Fig. 5. FIFO interface for PipeRench

PipeRench

In FIFO
Data

Full

Valid Out FIFO
Data

Full

Valid

Fig. 6. Chip Micrograph of PipeRench



V. Performance

At 120 MHz, PipeRench executes a 40 tap 16-bit FIR filter
at 41.8 MSPS, which means that its performance on main-
stream DSP applications is in the same range as high end
DSPs such as the Texas Instruments C64x family [7]. It does
this at a much lower clock frequency than the high-end DSPs
and without an actual multiplier within its fabric.

The comparative performance of PipeRench is even better
on applications that are less multiplication intensive. On the
IDEA encryption algorithm [6], PipeRench performs encryp-
tion or decryption at 450 Mbps. The encryption key is com-
piled directly into the hardware [5]. By comparison, a
800 MHz Pentium III processor executes this encryption
algorithm at a rate of 75.4 Mbps.

These performance levels are similar to those that can be
achieved by commercial FPGAs. Unlike FPGAs, however,
these virtual pipelines, without modification, would run
nearly twice as fast on a device with twice the number of
physical stripes. In fact, even most commercial DSP cannot
exploit additional parallelism without re-compilation of the
application.

The power consumption of PipeRench has been measured
using a 33.3MHz fabric clock and a 16.7MHz IO clock for a
variety of FIR filter sizes1. These power results are shown in
Figure 8. Power consumption is fairly level within certain
regions. The power consumption significantly increases when
the number of taps increases from 13 to 14. This is because
the 14 taps filter requires 17 virtual stripes, which means that
PipeRench must virtualize the hardware. The increase in
power consumption is due to the operation of configuration
and state memories that must now be accessed. Power con-
sumption of small filters is not lower because the pass register
file is not disabled in un-configured stripes. As a result, there
is significant false switching in stripes that are not configured.
This problem could be addressed by gating the clocks of these
stripes. These results demonstrate that dynamic reconfigura-

tion is possible with only a 30% increase in power dissipa-
tion. 

VI. Conclusions

This paper has discussed the implementation and charac-
terization of the PipeRench architecture in a 0.18 micron pro-
cess. The performance of the design is in the range of high-
end DSPs and FPGAs for filtering, and exceeds the perfor-
mance of a microprocessor on IDEA encryption by a factor of
5.96. Power dissipation is reasonable, even when dynamic
reconfiguration is required by a large virtual hardware design.

Acknowledgments

This work was funded by DARPA ITO/TTO under contract
DABT63-96-C-0083, the Pittsburgh Digital Greenhouse,
MARCO/GSRC and ST Microelectronics. Herman Schmit is
partially supported by an NSF CAREER grant.

References

[1] A. DeHon. “The Density Advantage of Configurable Computing.” IEEE
Computer, 33(4):41-49, April 2000.

[2] S. Cadambi, J. Weener, S. C. Goldstein, H. Schmit, D. E. Thomas,
“Managing Pipeline-Reconfigurable FPGAs,” Proceedings ACM/SIGDA
Sixth International Symposium on Field Programmable Gate Arrays, p.
55-64, Feb. 1998.

[3] H. Schmit, “Incremental Reconfiguration for Pipelined Applications,”
Proceedings of the IEEE Symposium on FPGAs for Custom Computing
Machines (FCCM), p. 47-55, 1997

[4] R. Laufer, R. R. Taylor, H. Schmit, “PCI-PipeRench and the SwordAPI:
A System for Stream-based Reconfigurable Computing”, in FCCM 99,
1999.

[5] R. R. Taylor, S. C. Goldstein, “A High-Performance Flexible Architec-
ture for Cryptography”, CHES 1999, published in the Springer Verlag
Lecture Notes in Computer Science (LNCS #1717).

[6] B. Schneier, Applied Cryptography, Wiley, New York, 1996.

[7] Texas Instruments, TMS320C64x Technical Overview, Literature
Number: SPRU395, January 2001.

[8] M. Budiu, S. C. Goldstein, “Fast Compilation for Pipelined Reconfig-
urable Fabrics”, Proceedings of the 1999 ACM/SIGDA Seventh Interna-
tional Symposium on Field Programmable Gate Arrays, Feb. 1999.

Fig. 7. PE floorplan

1. The apparatus we used to measure power could only generate a
33.3MHz fabric clock and test vectors at 16.7MHz.

Register
File

Bus Drivers

MUXes
&

Shifters
ALU

Register
File

Bus Drivers

MUXes
&

Shifters
ALU

Fig. 8. Power versus filter size.

0

100

200

300

400

500

600

700

800

0 5 10 15 20 25

Filter Taps

P
o

w
er

 (
m

W
)


