
A Hardware Resource Management System for Adaptive Computing on
Dynamically Reconfigurable Devices

Toshiyuki Ito, Kazuya Mishou, Yuichi Okuyama, and Kenichi Kuroda
The University of Aizu, Graduate School of Computer Science and Engineering

E-mail: {d8061202, m5101211, okuyama, kuroken}@u-aizu.ac.jp

Abstract

This paper proposes a realization method of the
computer system with dynamical hardware-resource
allocation on dynamically reconfigurable devices. The
system consists of two or more parts and they can
change the number of processing units according to
each processing load. In the system, there is a
competition problem between these parts. In order to
solve this problem, we investigate required functions of
resource management units on a simple processing
model. This model is an adapted load balancing
model consisting of an upper management unit, two
management units and processing units shared by them.

1. Introduction

Dynamic reconfigurable devices, DRP [4],
DAP/DNA [5], PCA [1], and self-reconfigurable FPGA
[6] have been used in the area of signal or image
processing. These devices can dynamically create and
delete logic circuits replying to requisition.

As these devices can construct the feature-based
architecture with application of processing during
operation, they have been used to improve
computational efficiency [7][8]. They have advantages
of the processing acceleration by parallel operation and
the device area reduction by multiple usages of
hardware resources. Autonomous distributed
processing has been proposed as the method of data
processing with their reconfigurability [2][3]. This
method can reduce loads by distributed the
management tasks.
 Implementation of an adapted load balancing process
has been proposed as a model using dynamic
reconfigurable devices. A load balancing process
makes whole loads equal by using hardware resources
effectively. This model executes parallel processing by
distributing the computation loads. Each computation
terminates its execution at the same time. Based on this
concept, there are two reports, a initiator - target model
and shared computation models [2][3].

Each model automatically estimates each situation of
computation-loads by itself, and determines the number

of using processing-units. Therefore the number of
using processing units can not be set by external factor
like user requests. If these models adopt functions
which reflect external requests to resource management,
we think that this model's advantage can increase.

In this paper, we investigate about functions required
for the hardware (processing units) resource
management of adaptive processing. When hardware
resources run short in these processing, they have a
resource competition problem. The competition
increases the number of reconfiguration on the
processing systems. Therefore, the influence of
competition decreases performance of the processing.
In order to solve this problem, we try to design
optimum hardware resource management system for
adaptive computing. We adopt a simple model like
these load-distribution models described above for the
investigation.

The simple model has two computation parts. Both
computations scramble for hardware resource
according to each state of computation loads. Each
computation tries to equalize processing time.
Moreover, this model has priority, limitation of the
number of processing units, defined by users. Users can
change their processing speeds. First, the features of
the proposed adaptive load balancing model are
explained, and Section 2, 3 show its architecture.
Section 4 discusses its verification. Finally, this paper’s
conclusion is explained.

2. Load balancing process on dynamically
reconfigurable devices

2.1. Recent Works

Generally, the hardware resources required by a
processor depend on the applications. In a system
where two or more applications are running in parallel,
the kinds and number of hardware resources required
for them are determined before the runtime of
applications. In the case of a conventional processing
system, they can be determined only by simulation at
the hardware design stage.

Proceedings of the Japan-China Joint Workshop on
Frontier of Computer Science and Technology (FCST'06)
0-7695-2721-3/06 $20.00 © 2006

Authorized licensed use limited to: Politechnika Lodzka. Downloaded on August 25, 2009 at 06:50 from IEEE Xplore. Restrictions apply.

However, since the required hardware resources
differ in each application, the required resources may
run short or be wasted compared to prepared ones. One
solution to this problem is to use dynamic
reconfigurable devices, which supply the required
hardware resources for each application with
reconfiguration. In our proposed method, the hardware
resources are managed by the waiting situation (state of
load) for processing. In this way, the system can use
hardware resources efficiently according to processing
demands. We have studied one of such load
distribution models [2]. However, this system can’t
manage multiple processes.

2.2. Load balancing process

This paper shows a model that a number of
processes use the limited processor resources. This
paper clarifies the concept of existing load balancing
model as a method managing resources between
processes. This concept terminates all processes
simultaneously and aims the achievement of 100%
system efficiency. This method also implies a concept
of dynamic scheduling. When this concept applies, this
model will need a concept of priority depending on the
intended use of the system, so we apply the concept of
priority load balancing process with interprocess
priority.

This model needs the change of various points if this
model takes into the concept of priority. When a
process finished the data processing, the other process
doesn’t always finish the processing. Then it’s
preferable that working process uses the space that a
process that is finished used. This research implements
the termination detection, and sends an end signal after
data end. If a process gets the end signal, the process
minimizes the area of use after finished processing.

2.3. The composition of this model

Fig.1 shows the model of an adaptive load balancing
processor. This model adopts the centrally managed
master-slave model to unify management of one
process. A Management unit (MU) is the master, and a
processing unit (PU) is slave. PUs request a task to MU.

An upper management unit (UMU) manages two
MUs. The UMU controls the hardware resource for
PUs which to use the processes, and the UMU aims to
equalize the computation load between processes.
Using dynamically reconfigurable device, the number
of PU can increase or decrease during operations.
(1) Processing Unit (PU)
Each PU receives the task from the MU, and output the

task to a Re-ordering Unit (RU) after task processing.
When PU receives copy/elimination command from the
MU, and execute the commands: PU can copy itself to
the next free space if PU receives copy command, and
PU releases the using area if PU receives elimination
command. During PU duplication, other PUs can
operate. Therefore, this model can hide PU creation
time.

A PU has a line structure, as shown Fig. 2, and 3.
When a PU isn't having a task, the PU tries to get and
execute the task. If a PU gets a task during processing,
PU sends the task to the next the PU. If the PU finished
the task processing, the PU requests a task.

UMU

MU MU

PU PU PU PU PU PU PU

RU RU

Task In Task In

VariableOutput Output

Control

Figure 1. Proposed adapted load balancing model

(2) Management Unit (MU)
A MU realizes a load distribution. The MU receives
tasks from outside, and sends the tasks to waiting PUs
that for a processing. If the MU decreases the
frequency of getting tasks from PUs, the MU detects a
load. Then the MU issues an instruction that increases
the number of PUs. The MU knows the maximum
number of PUs that can create. If the MU detects the
load and PUs cannot increase, the MU requests the
permission for creating PUs from a UMU. In addition,
if the MU has a light load, it sends a message to the
UMU having to spare PUs. If the MU receives a
change signal of the number of PUs from UMU, it
changes the maximum number of PUs, thus it can lend
the space for a PU to the other MU. The MU measures
input interval of data, and calculates a task loads with a
processing time and the number of PUs. The MU sends
a result of the task loads to the UMU. If the MU

Proceedings of the Japan-China Joint Workshop on
Frontier of Computer Science and Technology (FCST'06)
0-7695-2721-3/06 $20.00 © 2006

Authorized licensed use limited to: Politechnika Lodzka. Downloaded on August 25, 2009 at 06:50 from IEEE Xplore. Restrictions apply.

receives an end signal, it gets rid of unwanted PUs for
another unfinished process

MU

PU PU PU

Task In

Figure 2. Master-slave load balancing model using line
structure

Pcomm

Ptask

If finished
request
task

If task
requests,
send task

If free,
make
request

Receive
task from
request

Task
Request

If task full,
send task

Figure 3. I/O relation with other functions of PU

(3) Upper Management Unit (UMU)
An UMU plays a coordinating role of two MUs. The
UMU changes the maximum number of PUs, and sends
a signal to MUs. It operates with the following three
parameters.

(A) Load detection by the task estimation
(B) Load detection by processing
(C) Priority

First, the UMU allocates the number of PUs between
processes by (C). If each process detects the load in
processing, each process increases enough to the
number of PUs by MUs. However each MU cannot
exceed the limit allocated by the UMU. If the UMU
receive the state of (A) and (B), it send the
restructuring instruction on demand to each MU.

(4) Reordering Unit (RU)

The tasks that are outputs from PUs are out of order.
An RU reassembles the tasks back into their proper
sequence, and outputs the ordered tasks.

3. The structure of proposed system

This section describes about the detail of PU, MU,
UMU, and RU.

3.1. The detail of processing unit

The configuration of a PU is shown in Fig.4.

End-Judging
Module

Copy/
Elimination

Management
Module

Task-
Distribution

Module

Task
Request to
MU /
previous PUInformation of

the Terminal

Finish
Processing
Task

Output Results
to RU

Output
Task

Input Task
from MU

Task-
Request
Module

Request Task

Task-
Processing

Module

Output
Task
to Next
PU

Copy/Elimination
Signal from MU

Task Request
from Next PU

Copy/
Elimination
Demand

Figure 4. Block diagram of PU

(A) Task-processing module
This module processes a task inputted from an MU.
This module consists of a SIMD-type processing
module. The module is specific to each application.
After this module processes a task, it informs a task
request signal to a task-determination module in order
to communicate that a PU can get another task.
(B) Task-distribution module
This module distributes the tasks that receive from MU.
When this module receives the task and relevant task-
processing module is free, this module sends the task to
task-processing module. If task-processing module is
busy, the task is sent to the next PU. When this module
receives the task request signal from task-processing
module, this module sends a task request signal to a
task-request module.
(C) Task-request module

Proceedings of the Japan-China Joint Workshop on
Frontier of Computer Science and Technology (FCST'06)
0-7695-2721-3/06 $20.00 © 2006

Authorized licensed use limited to: Politechnika Lodzka. Downloaded on August 25, 2009 at 06:50 from IEEE Xplore. Restrictions apply.

This module requests a task from MU. This module
operates by input from task-distribution module. This
module is plugged into another PU in the form of a line.
This module add a request of each PU, end sends the
result to MU.
(D) End-judging module
This module determines if this PU is terminal, and
divides the copy/elimination signal that receives from
the MU. The end-judging module is realized using a
counter. When the PU is created, the counter set 0:
when the counter is set in 0, this PU shows the
termination. When this module receives a copy signal
and the counter is increased. If the elimination signal is
sent, the counter decreases. If this module receives a
signal from and counter is 0, this module sends a signal
to copy/elimination module. Otherwise this module
sends the instruction signal to the next PU.
(E) Copy/Elimination management module
This module outputs an instruction stream for copy or
elimination itself on the basis of instruction from end-
judging module.

3.2. The detail of Management Unit

The configuration of an MU is shown in Figure 5.
(A) Task-judging module
When the module receives the task, the existence of the
task is notified to a scheduler module, and the task is
transmitted to a task-issue module. If this module
receives an end signal, this module transmits the
information to the scheduler module.
(B) Scheduler module
A scheduler module manages and permits the
copy/elimination of PUs. The module looks at a state of
PU, and transmits the copy/elimination instruction to
task-issue module depending on the situation. If PU is
lack the resources for it when this module detects an
overload, this module requests to UMU in order to lent
the resource of other process. When this module
receives the end signal, this module transmits the
termination of processes to the task-issue module.
(C) Task-issue module
A task-issue module manages and permits the task
issue. This module receives the task request from PU,
checks the unit waiting for process, and transmits the
task to the PU. When this module transmits the task,
this module gets an address from an address-issue
module. The address adds at the head of task. When
this process copies or deletes of PU, this module stops
outputting the task to PUs. When this module receives
the elimination or end signal, this module transmits the
instructions after waiting the end of processing.
(D) Address-issue module

This module issues an address. The address uses the
task ordering in RU. The address assigns a number.
(E) Task-estimation module
This module observes an input interval, calculates by
the number of PUs and a time of one task processing,
and transmits the result to UMU.

We perform the following calculation to compare the
heaviness of load. Tnum is the number of tasks waiting
for processing. PUnum is the number of PUs created in
current. T is the amount of time to process a task.

PUnum

TTnum*
 (1)

This formula shows a processing time that is spent to
execute the entered tasks using the number of current
operating units. This value is equalizing these loads to
compare.

Task-
Estimation

Module

Task-
Judging
module

Scheduler
Module

Task-
Issue

Module
Address

Issue
Module

Input a
processing
time

Input Task

Copy/
Elimination
Demand to
PUOutput

Task to PU

Task
Rquest
from PU

Input the
number of
PUs

Input
from
UMU

Request
to UMU

Figure 5. Block diagram of MU

3.3. The detail of upper managing
management unit

The configuration of a UMU is shown in Figure 6.
(A) Task-estimation module
This module compares two values that are calculated
on the task-estimation module of MUs. The result is
transmitted to a field-managing module.
(B) Load-comparison module
This module receives loads of PUs from scheduler
module of the MU, and compares two values. The
result is also transmitted to a field-managing module.
(C) Field-management module

Proceedings of the Japan-China Joint Workshop on
Frontier of Computer Science and Technology (FCST'06)
0-7695-2721-3/06 $20.00 © 2006

Authorized licensed use limited to: Politechnika Lodzka. Downloaded on August 25, 2009 at 06:50 from IEEE Xplore. Restrictions apply.

This module reconstructs the field of a PU by some
parameters. This module issues the command which
reconstructs the number of PUs. When timing of this
command-issue is blunted, the number of vibration
produced by competition can be reduced. Therefore, in
order to restrict the number of times of the vibration,
this module has function of setting threshold value.

Moreover, this module has a function of giving a
restriction of the number of PUs. Restrictions of the
number of usable PU are given to two MUs.
Fundamentally, these MUs must protect the given
restriction. In special case, when one processing part
has some PUs not to use, the another processing part
can borrow these PUs. According to priorities between
MUs, this restriction's strength can be changed.

Field
Managing
Module

Input Priority

Task
Comparison

Module

Load
Comparison

Module

Change the
number of PUs
(Process B)

Change the
number of PUs
(Process A)

Input from
Task-Estimation
Module (MU)

Input from
Scheduler
Module (MU)

Figure 6. Block diagram of UMU

3.4. Details of a reordering unit

A data put into the RU adds an address. RU reorders
the data according to the address, and output the data.
RU also has the function of increment the port of input
when a PU is copied.

4. Verification

We clarify the property of the UMU in the proposed

model. This model performs two different calculation
processes. In this section, we determine that each
process is called A-process and B-process and these
processes are executed by two processing parts (A
processing part and B processing part). Each
processing part consists of a MU and some PUs, and it
is managed by an UMU. We implemented a simulator,

which can measure processing time when the model
executes tasks. The simulator consists of an UMU and
two MUs and PUs. This simulator’s time concept is
“step”. 1 step is a time which spends to fetch 1 task into
the model's each MU. PUs of this simulator don't
adopt concrete applications, but adopt delay modules.
We set the time needed for 1 task processing into the
delay module, and can clarify the property of the model
in various operation processing. Moreover this
simulator doesn't have concept of reconfiguration's
overhead, but only counts the number of
reconfiguration's emergence. The environment of an
experiment is shown below.

(1) Task input interval range: 2 ~ 6 steps
(2) Number of PUs: 10
(3) Total tasks: 1000(each processing parts)

In Fig.7,8, we show the experiment results. The
explanation about the component of each bar graph in
these figures is shown below.

I : The case of fixed processing unit. This case doesn't

change the number of processing units. A and B
process has each 5 PU in advance.

II : The case of adaptive load balancing model
according to load situation. This case doesn't adopt
some functions to suppress the vibration produced
by competition.

III : The case of adaptive load balancing model
adopting a function to suppress the vibration
produced by competition. This function is threshold
value, and blunts judgment of load.

IV : The case of adaptive load balancing model
adopting two functions to suppress the vibration
produced by competition. This case is our proposed
model. These functions adopt a threshold value and a
restriction of the number of PUs. The latter is the
function to restrict PU number to be used. At first,
restrictions of the number of usable PU are given to
A and B processing parts. Fundamentally, these
processing parts must protect the given restriction. In
special case, when one processing part has some PUs
not to use, the another processing part can borrow
these PUs.

Proceedings of the Japan-China Joint Workshop on
Frontier of Computer Science and Technology (FCST'06)
0-7695-2721-3/06 $20.00 © 2006

Authorized licensed use limited to: Politechnika Lodzka. Downloaded on August 25, 2009 at 06:50 from IEEE Xplore. Restrictions apply.

0

1000

2000

3000

4000

5000

6000

7000

20,20 30,20 20,30

one task's processing time (A,B)

th
e

nu
m

be
r

of
 s

te
ps

I : fix

II: competition

III: competition
(threshold)

IV: competition
(threshold + limit of the
number of PUs)

Figure 7. 1000 tasks processing steps

0

50

100

150

200

250

20,20 30,20 20,30

one task's processing time (A,B)

th
e

nu
m

be
r o

f r
ec

on
fig

ur
at

io

I : fix

II: competition

III: competition (threshold)

IV: competition (threshold
+ limit of the number of
PUs)

Figure 8. Reconfiguration times when 1000 tasks are

processed

In Fig. 7, the result of load balancing model (II) is
better than the result of fixed processing unit case (I).
But Fig.8 shows that the case of (II) has many times of
reconfiguration. If we will implement a proposed
model on a reconfigurable device having the high
overhead of reconfiguration, the merit of using the
adaptive load distribution model could not be found.
Concretely, when the reconfiguration overhead of (II)
is larger than the task processing advantage steps (the
difference of task processing steps of (I) and that of
(II)), the cost of realizing adaptive model is wasted.

Therefore we try to reduce steps of task processing
and to reduce times of reconfiguration. To fill these
reduction demands, we proposed method of (III) and
(IV) in this proposed model. When we compare data
of (II) with data of (IV) in the case of task processing
step (A, B =20, 30), we confirm that the 1000 tasks
processing step of (II) is ended 60 steps earlier than
that of (IV). However we confirm that the
reconfigurable times of (IV) is 192 times (201times –
9times) better than that of (II).

Next, we clarify the property of the proposed model
when we change the input interval of a task. The
environment of an experiment is shown below.

(1) Fixed task processing time(step): A = 20steps, B =
30steps

(2) Task input interval range: 2 ~ 6 steps, every 50 ~
500 tasks

(3) Number of PUs: 10
(4) Total tasks: 1000

0

1000

2000

3000

4000

5000

6000

7000

50 100 200 400 500

the timing of changing task input interval
(tasks)

th
e

nu
m

be
r

of
 s

te
ps

I : fix

II: competition

III: competition
(threshold)

IV: competition
(threshold + limit of the
number of PUs)

Figure 9. 1000 tasks processing steps

0

50

100

150

200

250

300

50 100 200 400 500

the timing of changing task input interval
(tasks)

th
e

nu
m

be
r

of
 r

ec
on

fi
gu

ra
tio I : fix

II: competition

III: competition
(threshold)

IV: competition (threshold
+ limit of the number of
PUs)

Figure 10. Reconfiguration times when 1000 tasks are

processed

In Fig. 9 and 10, the task processing step of (III) and
(IV) are fewer than (II), and the number of
reconfiguration of (III) and (IV) are better than (II). In
this example, after the UMU changes the number of
PUs according to the result of load calculation, the
UMU does not make it change during a certain period.
Based on this result, we confirm that operation
efficiency is improved. In other words, this example
shows that to use the calculation result of global
processing load is better than to use the calculation
result of local processing load. However, when a
processing situation changes dynamically, it is difficult
to judge a load correctly. This example shows one
possibility that these methods ((III) and (IV)) can
perform effectively under the situation which cannot be
predicted.

Based on results of these experiments, we confirmed
a possibility that the proposed resource management
system, which can change circuit arrangement
according to various processing situations dynamically,
works effectively.

Proceedings of the Japan-China Joint Workshop on
Frontier of Computer Science and Technology (FCST'06)
0-7695-2721-3/06 $20.00 © 2006

Authorized licensed use limited to: Politechnika Lodzka. Downloaded on August 25, 2009 at 06:50 from IEEE Xplore. Restrictions apply.

5. Summary

This paper proposes and verifies the load balancing
architecture on dynamically reconfigurable devices.
The proposed resource management system can change
circuit arrangement according to various processing
situations dynamically. Based on the system, we
implemented a simulator which can measure time of
task-processing and number of competition. We clarify
the property of this system using the simulator, and we
confirm that the system works effectively. Based on
this verification, when we design the adaptive system
like this proposal, we confirm that the hardware-
resource management functions should optimize the
improvement of processing-efficiency and the
reduction of number of times of reconstruction.

References

[1] H. Ito, R. Konishi, H. Nakada, K. Oguri, M, Inamori,

and A. Nagoya, “Dynamically Reconfigurable Logic LSI-
PCA-1, The First Realization of the Plastic Cell
Architecture,” IEICE TRANS. INF. & SYST., Vol. E86-
D, No. 5, pp. 859-867, MAY 2003.

[2] T. Ito, O. Yuichi, J. Kitamichi, and K. Kuroda, “A
Master-Slave Adaptive Load-Distribution Processor
Model on PCA,” The 12th Reconfigurable Architectures
Workshop (RAW 2005), April 2005.

[3] K. Tada, S. Kouyama, T. Yuasa, T. Izumi, T. Onoye, and
Y. Nakamura, “Adaptive load distribution model on self
reconfigurable logic device,” The 16th Workshop on
Circuits and Systems in Karuizawa, pp. 171-176, April
2003. (in japanese)

[4] T. Sunagawa, K. Ide, and T. Sato, “Dynamically
reconfigurable processor implemented with ipflex’s
dapdna technology,” IEICE Transactions on Information
and Systems, Vol. E97-D, no. 8, pp. 1997-2003, 2004.

[5] H. Nakano, T. Shindo, T. Kazami, and M. Motomura,
“Development of dynamically reconfigurable processor
lsi,” NEC Technical Journal, Vol. 56, no. 4, pp. 99-102,
2003.(in japanese)

[6] B. Blodget, P. J. Roxby, and E. Keller, “A self-
reconfiguring platform,“ FPL 2003, pp. 565-574, 2003.

[7] M. J. Wirthlin, and B. L. Hutchings, “A Dynamic
Instruction Set Computer”, Field Programmable Gate
Arrays (FPGAs) for Fast Board Development and
Reconfigurable Computing, John Schewel, Editor,” Proc.
SPIE 2607, pp. 92-103, 1995.

[8] S. C. Goldstain, H. Schmit, M. Moe, M. Budiu, S.
Cadambi, R. R. Taylor, and R. Laufer,"PipeRench: A
Coprocessor for Streaming Multimedia Acceleration,"
Proc. ISCA'99, pp.28-39, May 2-4, 1999.

Proceedings of the Japan-China Joint Workshop on
Frontier of Computer Science and Technology (FCST'06)
0-7695-2721-3/06 $20.00 © 2006

Authorized licensed use limited to: Politechnika Lodzka. Downloaded on August 25, 2009 at 06:50 from IEEE Xplore. Restrictions apply.

