
Application Acceleration with the Explicitly
Parallel Operations System - the EPOS Processor

Alexandros Papakonstantinou, Deming Chen, Wen-Mei Hwu
Department of Electrical and Computer Engineering, University of Illinois, Urbana-Champaign

{apapako2, dchen, w-hwu} !uiuc.edu
Abstract- Different approaches have been proposed over the
years for automatically transforming High-Level-Languages
(HLL) descriptions of applications into custom hardware
implementations. Most of these approaches however are confined
by basic block level parallelism described within the CDFGs
(Control-Data Flow Graphs). In this work we propose a new
high-level synthesis flow which can leverage instruction-level
parallelism (ILP) beyond the boundary of the basic blocks. We
extract statistical parallelism from the applications through the
use of Superblocks and Hyperblocks formed by advanced front-
end compilation techniques. The output of the front-end
compilation is then used in our high-level synthesis in order to
map the application onto a new domain-specific architecture
named EPOS (Explicitly Parallel Operations System). EPOS is a
stylized micro-code driven processor equipped with novel
architectural features that help take advantage of the
instruction-level parallelism generated in the front-end
compilation. A novel forwarding-path optimization engine is also
employed during the high-level synthesis flow in order to
minimize the long interconnection wires and the multiplexers in
the processor. To evaluate the EPOS processor, we compare its
performance with a previous domain-specific processor NISC on
a common set of benchmarks. Experimental results show that
significant performance gain (3.45X on average) is obtained
compared to NISC.

I. INTRODUCTION

As the deep sub-micron technologies continue to increase
the per-die transistor count, High Level Synthesis (HLS) has
regained a lot of attention during the last decade in the
engineering community. One of its main advantages is the
higher productivity through the use of higher level
abstractions. This helps to bridge the growing gap between
chip capacity and its efficient utilization by design engineers.
There have been extensive research efforts on this topic
[4,17,18]. Most of these efforts endeavor to transform the
sequential high-level description into a system of parallel
computing elements based on the CDFG (Control-Data-Flow-
Graph) abstraction, where people work with basic blocks
within the CDFG. In this work, we explore a new high level
synthesis flow which can leverage instruction-level
parallelism (ILP) beyond the boundary of basic blocks. Our
experiments show that applications can be synthesized with
significantly improved performance results over basic-block
level HLS tools.
In our synthesis flow, statistical parallelism is extracted

from the applications through the use of superblocks [14] and

hyperblocks [11] that are formed by advance front-end
compilation techniques within the IMPACT compiler [15].
The output of the compiler is then used in our HLS flow in
order to map the extracted parallelism in a highly efficient
way onto a domain-specific processor, named EPOS
(Explicitly Parallel Operations System). EPOS is a stylized,
microcode-driven processor equipped with novel architectural
features that can take advantage of the maximum instruction-
level parallelism extracted in the front-end compilation. Apart
from optimizing the execution latency through instruction-
level parallelism handling, our HLS tool also focuses on the
clock frequency optimization by using a forwarding-path
optimization engine. The goal of this engine is to bind
operation onto the allocated resources so as to minimize the
number of the forwarding (FW) paths and the multiplexers
involved in the forwarding network of EPOS.
Fig. 1 gives an outline of our synthesis flow. Initially, we

leverage the advanced compiler optimizations available in
IMPACT to transform the original C code into Lcode, a three-
address intermediate representation. Lcode is optimized
through traditional compilation techniques and advance ILP
extraction techniques that use profiling to generate
superblocks and hyperblocks. Lcode is then fed to our
scheduler together with the user-specified resource
constraints, in order to produce scheduled Lcode. This Lcode
is not yet bound to the functional units of the processor.
Binding is done during the last step of the flow, during which
the data forwardings entailed in the scheduled Lcode are
considered. A min-cost flow algorithm is used to bind the
operations on the FUs, while minimizing the FW paths and
the corresponding operand multiplexing.
The development of the EPOS architecture offers several

advantages. First of all, the control of the datapath through the
micro-code words stored in a micro-code memory (more
details in section 3) allows a flexible and simple alternative
compared to i) memory-stored instructions, which require
complex decoding logic and ii) complicated Finite State

Datapath
C code Lcode Spec Scheduled Bound

Lcode operations

Fig. 1 High-level synthesis flow

20

1-4244-2334-7/08/$20.00 (© 2008 IEEE

Machines (FSM) which limit the size of applications that can
be efficiently synthesized. Secondly, the instruction-level
parallelism can easily be exploited by mapping the scheduling
output onto micro-words. Finally, the use of the micro-code
memory allows the customization and use of the EPOS
processor for a domain of applications, rather than a single
application. Thus, it trades off flexibility and performance,
providing an ideal solution between a general purpose
processor and an application-specific processor.
In the next section we first review related research for

synthesizing applications described in high-level languages.
Then in section 3 we describe the EPOS architecture in more
detail. Section 4 contains information on the formulation and
implementation of our scheduling and binding techniques, and
section 5 provides experimental results. Section 6 concludes
the paper and lists directions for future work.

II. RELATED WORK

While many research results have been published in the HLS
area [4,17,18], we will concentrate on several major related
works. J. Babb et. al [7] focused on extracting parallelism by
splitting an application into tiles of computation and data
storage with inter-tile communications based on virtual wires.
Virtual wires comprise the pipelined connections between
endpoints of a wire connecting two tiles. Application data is
distributed into small tile memory blocks and computation is
then assigned to the different tiles. This work can produce
efficient parallel processing units for the class of applications
that can be efficiently distributed into equal data and
computation chunks. However, applications with control
intensive algorithms could result in contention on the
communication through the virtual wires, imposing many idle
cycles on the distributed datapaths.
In a different approach, S. Gupta et. al. [12,13] have focused

on extracting parallelism by performing different types of
code motions and compiler optimizations in the CDFG of the
program. In particular, they maintain a Hierarchical-Task-
Graph (HTG) besides the traditional CDFG. The nodes in an
HTG represent HLL constructs, such as loops and if-then-else
constructs. The authors show that their heuristics (named
SPARK) offer significant reductions both in the number of
controller states and also in the latency of the application.
However, SPARK flow imposes limitations on the C features
that it supports. Moreover, all the code motions are done on
the initial CDFG with basic blocks, which may limit the
amount of optimizations.
Another approach targeted an instruction-less architecture,

NISC, proposed by M. Reshadi et. al [8]. This custom
processor architecture removes the abstraction of the
instruction set and compiles HLL applications directly onto a
customizable datapath which is controlled by either a memory
of control words, or a traditional FSM circuit. The main
benefits of this approach are the reprogrammable and decode-
free features. The compilation of the NISC system is based on
a concurrent scheduling and binding scheme on basic blocks.
Our processor architecture, EPOS, builds on this instruction-

less architecture by adding new architectural elements and
employing novel scheduling and binding schemes for
exploiting instruction-level parallelism beyond basic blocks.
The increasingly significant effect of long interconnects on

power, timing and area has led to the development of
interconnect-driven HLS techniques. J. Cong et al. [19] have
looked into the interconnect-aware binding of a scheduled
DFG on a distributed register file microarchitecture (DRFM).
Based on the same DRFM architecture, K. Lim et al. [20]
have proposed a complete scheduling and binding solution
which considers minimization of interconnections between
register files and FUs. EPOS on the other hand, uses a unified
register-file (RF) and allows results to be forwarded directly
from the producing to the consuming FUs for reduced latency.

III. Epos

A. The EPOS Philosophy
Extracting instruction-level parallelism can be done either

statically [10] (at compile time) or dynamically [16] (at
execution time). Dynamic extraction of parallelism is based
on complex hardware, while static techniques [2,6] shift the
burden of identifying parallelism onto the compiler [1,5].
Thus, extracting ILP statically simplifies the hardware and
enables higher clock frequencies. This strategy is known as
the EPIC (Explicitly Parallel Instruction Computer) [9]
philosophy. EPOS is based on this philosophy. The custom
processor follows the execution plan created by the synergy of
the compiler and the scheduling and binding engine. Special
architectural elements are added to the main datapath
architecture to handle potential mis-predictions of the static
parallelism extraction. Since the custom processor is compiled
for a specific application or a domain of applications, static
parallelism extraction can offer significant performance
benefits with a minimal hardware cost.

B. Front-End Compilation
For the extraction of the statistical ILP from the application,

we use the IMPACT compiler, which transforms the HLL into
Lcode. Lcode goes through various classic compiler
optimizations and also gets profiled. Then the profile
information is used to create superblocks and hyperblocks.
Superblocks are formed by selecting frequently executed
control paths in the program that span many basic blocks and
grouping them into a single superblock that may have multiple
side exits but only one entry point at the head of the block.
Hyperblocks on the other hand, differ from superblocks in the
way they select which basic blocks to merge in a single block.
In particular, hyperblocks may group basic blocks that are
executed in exclusive paths in the original program flow by
predicating the instructions. Instruction predicates are stored
in a predicate register-file. Hyperblocks, like superblocks,
may have multiple side exits and a single entry point.

C. EPOS Architecture
The main elements of the EPOS architecture are the micro-

code memory banks, which store the plan of execution as

2008 Symposium on Application Specific Processors (SASP 2008) 21

determined by the compiler and the scheduler. Each micro-
code word contains control bits that determine the flow of
data in the processor datapath for a single cycle. Each micro-
word can be split into multiple memory banks that are
potentially placed close to the datapath elements they control,
thus facilitating better routing. There is also a micro-word
address (MWA) register that holds the current micro-word to
be executed, while micro-word address generation logic
chooses the next micro-word address. The functional units can
have different characteristics in terms of their latency, pipeline
and functionality characteristics.
As shown in fig. 2 there are two RFs, one for program

values and one for predicate values (PRF), and each FU may
store its results into a small shifting register file (SRF). Each
FU result is stored in the top register of its respective SRF
while previous values are shifted one position lower in the
SRF. This allows for predicated operations to be speculated or
in other words promoted over the predicate definition
operation by a few cycles. Thus, promotion can be achieved
without the need of a unified shadow RF. Simple circuitry is
used to squash the false predicated operations while allowing
the correct operations to store their results in the RF.
Forwarding paths from the outputs to the inputs of FUs and
register-file bypassing (RFB) are used to optimize the
performance of data-intensive applications. For a result
produced in cycle n, forwarding allows its use in cycle n+],
while RFB allows its use in cycles n+2 and n+3 (assuming 2-
cycle RF writes). In this architecture we use the SRFs for both
register-file bypassing and predicated operation speculation.

IV. SCHEDULING & BINDING

The scheduling engine of our synthesis flow tries to extract
the maximum parallelism possible out of the speculated and
predicated Lcode, so as to reduce latency under resource
constraints. Binding, on the other hand, has the capability to
reduce the clock period of the design through the reduction of
interconnections and multiplexers.

A. Scheduling Engine
The algorithm used for scheduling the Lcode operations is a

variation of the original list scheduling algorithm [4]. This
algorithm is designed to handle FUs of different latency and
pipeline characteristics as well as the intricacies of predicated

_Fferaister l ~~Datar _ File l hRle ~~~~~~Mdnbry

Fig. 2. EPOS architecture overview

and speculated operations.
Initially, a direct acyclic graph (DAG), Gd = (V, A), is built

based on the dependence relations of the Lcode operations.
Set V corresponds to Lcode operations and set A corresponds
to 3 different types of dependence relations between the
operations: data dependences (Read-after-write), predicate
dependences and flow dependences
The data dependence arcs represent real dependences

between producer and consumer operations. The dependences
of predicated operations on predicate defining instructions are
represented with the predicate dependence arcs. This
differentiation between predicate and data dependences is
done in order to handle speculation of predicated operations
with the hardware support of the Shift-Register-Files. Finally,
the flow dependence arcs are used to ensure that branch and
store operations are executed in their original order within
Lcode, i.e. avoid speculation of such operations. Mis-
speculation of these types of operations may lead to incorrect
execution and requires complex hardware to fix.
After the data dependence graph construction, global and

local slack values are computed for each node of the graph.
Global slacks represent an operation's criticality in the
dataflow of an entire function, while local slacks represent the
operation's criticality within its block. Local and Global
Slacks are used in a weighted function to determine the total
Slack. For example, assume the following operation sequence
within a superblock: opltbr-op2, where a side branch (br)
is between two operations. If both operations have high local
slacks then the global slack will determine which one has
priority to be scheduled. If opl has a relatively low global
slack due to the control path that goes along the branch, then
it will be given priority to optimize the schedule for the less
likely case (i.e. the side exit off the hyperblock/superblock).
On the other hand, local slack is computed within the
boundaries of a superblock/hyperblock and thus promotes the
operations with low slack in the most likely case (i.e. the path
through the superblock/hyperblock).
Subsequently, list-scheduling is performed on a per-block

basis taking into consideration the different types of
dependences. For example data dependent operations can not
enter the ready list until their data producer is scheduled and
finished executing. On the other hand predicate dependent
operation in a system with SRFs can be scheduled a number
of cycles, equal to the SRF depth, ahead of their predicate
producer. Flow dependences are also not as strict dependences
as data dependences. That is, a flow dependent operation can
be scheduled before the operation it is dependent to has
finished execution. For example a store operation can be
scheduled in the same cycle with a branch that it is flow-
dependent to. If the branch turns out to be taken, the
squashing logic (used for false predicated instructions) can
terminate the store operation before it updates the memory

B. Binding Engine
First let us define forwarding path (FWP) to signify the

physical forwarding bus from the output of a FU to the input

2008 Symposium on Application Specific Processors (SASP 2008)22

of another. Then we can define data forwarding (DFW) as the
data value forwarded from one operation that ends in cycle n
to another operation that starts in cycle n+1. Our objective in
this phase is to bind the data forwardings to forwarding paths
(through binding operations to FUs), so as to minimize the
number of FWPs. Thus, we can reduce the number of long
wires and the degree of multiplexing required while still
honoring the schedule generated in the previous step. This
will help reduce the critical path delays, which are often
linked to the FWPs and will enable faster clocking of the
processor. In order to achieve this goal we transform our
binding problem into a clique partitioning one and then use a
network flow formulation to solve the clique partitioning. A
post-processing phase may be required to make the network
solution feasible for our schedule.

B.] Compatibility Graph
We use a modified version, Gd2 = (V, A2), of the DAG

constructed in the scheduling step, where set A2 corresponds
to the data dependences only. A new DAG, Gd3=(V3, A3) is
formed as shown in fig. 3b by pruning away the nodes that do
not have any data flowing from/to operations in the
preceding/next cycle of the schedule. The edges attached to
the pruned nodes are also pruned away. Graph Gd3 represents
the forwardings entailed in the schedule, i.e. an edge c = (vi,
vj) corresponds to a forwarded value from operation vi to vj. A
compatibility graph Gc = (Vc, Ac) for these forwardings (FWs)
can then be constructed, as shown in Fig. 3c. Vc does not
represent the operation nodes in Gd3 but corresponds to all
FWs (edges of Gd3) and a directed edge Uc = (Vm, vn) is drawn
between two vertices if the source operation of FW vm is
scheduled in an earlier cycle than the source operation ofFW
vn. Each edge ocx is assigned a weight w., which represents
the cost of binding vm and vnto the same FWP.
Given a forwarding network represented by compatibility

graph Gc, our goal is to find an edge subset in Gc that covers
all the vertices in Vc in such a way that the sum of the edge
weights is minimum with the constraint that all the vertices
can be bound to no more than k FWPs, where k is the
minimum number of FWPs required to fulfill the schedule.
This can be translated into a clique partitioning problem,
where each clique corresponds to the DFWs that can be bound
into a single FWP.

B.2 Network Flow
We define complex forwarding structure (CFS) to represent

the set of data forwardings that share the same source
Cycle

1 f"2 f~) J1 f2 13 ifl2f3)X
2 f

f6f5 6
3

fzl (It fI (tf88 8 f4

5 t) X t (

operation. CFS is needed to avoid infeasible forwarding
bindings. For example in Fig. 3c, binding DFWs fi and p7 to
one FWP and DFWs 12 and f8 to a different FWP would be
incorrect, since fi and 2 have a common source and f7 and f8
don't. Combining them together into a CFS and treating it as a
single forwarding pattern have effectively solved this problem.
A new vertex c is added for each CFS in the graph. Vertex c is
connected in such a way that the previous outgoing edges are
unlinked and connected as outgoing edges to vertex c (Fig.
3d). The transformed compatibility graph is the basis for
building network NG = (S, t, Vn, An, C, K), where a source
vertex s and a sink vertex t are added with edges linking them
to all other vertices (dashed edges in Fig. 3d). NG has the cost
function C and the capacity K defined for each edge in An.
The cost, C, of the network edges tries to capture, among

other things, the similarity of the neighboring forwarding
patterns of two compatible FWs, so as to avoid infeasible
solutions. The Fschema parameter is used to represent this
factor and it is calculated based on Gd3. For example, let us
consider the DAG shown in fig. 4a. The minimum number of
FWPs required to satisfy this schedule is two. However, in
order to produce a feasible binding with two FWPs, fl, f3 and
f5 need to be bound to the same FWP while f2, f4 and f6 are
bound to a second FWP. Otherwise, 3 FWPs will be required.
This can be fulfilled with the help of the Fschema value.
Fschema is calculated by trying to find the maximum match in
the neighboring FW patterns. In fig. 4b, the bigger values
produced for pairs f2-f4 and f3-f5 show that these pairs of
forwardings have more similarities in their FW neighboring
patterns. These values would help bias the network flow to
find better solutions by binding similar pairs together.
The network graph is further modified by the split-node

technique which ensures that each node is traversed by a
single flow. This is achieved by splitting each node into two
nodes connected with a directed edge of a single capacity (a
similar technique is used in [3]). The problem of minimizing
FWPs has been transformed into finding the min-cost flow in
the network. When the min-cost flow is computed, k flows
from the node s to the node t are produced. The nodes
traversed by each flow should be bound to the same FWP.

B.3 Binding Solution Check and Post-Processing
By using the CFS concept and the Fschema values in the

cost function we manage to avoid almost all the infeasibilities
in the solution generated by the min-cost flow. However,
some information regarding the relationship between the FWs
is not visible in the compatibility graph, which may lead to

Cycle 1 f r(!2

2 f2S Irfq

3 'Aq

4

5)

f2 f3 f4 f5 f6

fl 10 20 10 i10 0

f2 10 30 010o
f3 20 30 101
.f4 !10120.
f5 :i100

a) Gd2 b) Gd3 c) Gc d) NG

Fig. 3. Compatibility graph creation

a) DAG b) Fschema values

Fig. 4. Using Fschema values

2008 Symposium on Application Specific Processors (SASP 2008) 23

infeasible bindings. For example, in fig. 5a two cliques have
been formed: clq= {fl,f4,f5} and clq2= {f2,f3}. This binding,
however, is infeasible and can not be implemented with 2
FWPs. This becomes evident if we notice in fig 5a that the
source FU of f5 is the same as destination FU of f4. However,
according to the generated solution in fig. 5b clique clql that
f4 and f5 belong to, has different destination and source FUs.
In order to handle such inconsistencies, min-cost flow is

followed by a post-fix phase. During this phase the min-cost
solution is translated into a set of rules that describe the
relations between the FWPs. This set of rules is built by
referencing the relation of the FWs in the initial DAG. For
example, from FWs f2 and f3 in the DAG of fig. 5a and the
min-cost solution described we can infer the rule:
"Destination of clq2 is the same as Source of clq2". Thus, the
FWP corresponding to clq2 in fig 5b forwards values to itself.
The full set of rules that are inferred for our example is as
follows:

(1) Src(clql) = Src(clq2); (2) Snk(clql) i Snk(clq2);
(3) Src(clq2) = Snk(clq2) (4) Src(clql) i Snk(clql);
(5) Src(clql) = Snk(clq2) (6) Src(clql) = Snk(clql);

where Src(and Snk(represent the source and the sink FUs
of the FWP that the clique corresponds to. The infeasibility
described before can now be formally discovered by searching
for rules that contradict each other. In our example, rules 4
and 6 are incompatible. When two rules conflict, the rule with
the least number of associated FWs is marked as conflicting
and its associated FWs are un-bound. Subsequently the FWs
associated with conflicting rules are either bound on
alternative allocated FWPs (if feasible) or bound to newly
allocated FWPs. In our example f5 is bound to a new FWP as
shown in fig. 5c and a feasible solution with 3 FWPs is found.

V. EXPERIMENTAL R:ESULTS

A. Performance Comparison to NISC
To evaluate our HLS flow and EPOS architecture, we use a

set of benchmarks and compare the performance results of
EPOS with NISC.

A.] Execution Cycles
First we focus on the number of cycles required for the

execution of the application when synthesized by EPOS and
NISC. Since NISC does not have register file bypassing and
operation predication features, we turned these two features
off in EPOS as well for this comparison, so as to measure the
effect of our ILP-extracting synthesis flow. The datapath
configuration used for all the experiments consists of 4 ALUs

Cycle cIq1:(f1,f4,f5j fl, f

1 fk2
2 °f"4
3 0~i)

4 0

a) DAG

N Lo
clq2:ff2,f3j

b) Network flow solution

FU1l FU2II

P I
fs f2, f3

c) Post-fix solution

Fig. 5. Binding post-fix example

that execute arithmetic, logic and shifting operations, 1
Multiplier, and 1 LD/ST unit.
In table I we can see that there is a significant decrease in

execution cycles for almost all benchmarks when they are
synthesized on EPOS. The speedup gained in EPOS ranges
from 1.07 to 6.85, with an average speedup of 3.13.

TABLE I
CLOCK - CYCLES COMPARISON

Benchmark NISC EPOS | Speedup
mdct 146 61 2.39
bdist2 2110 1966 1.07
startup 2838 1464 1.94
bubble 31247 4563 6.85
dct 4920 2333 2.11
dijkstra 104610 23640 4.43
Average 3.13

TABLE II
FREQUENCY COMPARISON (MHZ)

UnOpt. NISC Optimized EPOS
EPOS V.S. V.S.

UnOpt. NISC
mdct 110.00 103.37 +28% -6%
bdist2 81.52 104.98 +30% +29%
startup 118.20 113.58 +41% -4%
bubble 80.76 103.33 113.68 +41% +10%
dct 85.60 97.79 +21% +14%
dijkstra 96.79 114.85 +34% +19%
Average +33% +10%

TABLE III
MUX COMPARISON (TOTALMUX INPUTS)
UnOpt NISC Optimized EPOS
EPOS V.S. V.S.

UnOpt. NISC
mdct 54 60 -56% +11%
bdist2 82 56 -59% -32%
startup 46 52 -62% +13%
bubble-sort 136 48 52 -62% +8%
dct 76 64 -53% -16%
dijkstra 54 64 -53% +19%
Average -58% +1%

A.2 Clock Frequency
In order to evaluate our forwarding path binding technique

we compare the critical paths of the synthesized processors.
The data and control memories are stripped off in both NISC
and EPOS and only the datapath, the register file and the
FWPs with the multiplexers are synthesized. Synthesis and
timing analysis were done in Altera's Quartus II environment.
First, we built EPOS with all the possible FWPs (i.e. without
any FWP optimization). Then, we performed the binding
optimization to optimize FWPs. The results are listed in tables
II and III. The second column "UnOpt EPOS" shows the
results for the unoptimized EPOS, i.e the EPOS with a full set
of FWPs. Table II lists the reported frequencies and table III
shows the total size of the multiplexers (i.e. the total number
of mux inputs). We can see that there is a correlation between
the frequency and the MUX size. The binding optimization of
EPOS minimizes the number of FWPs which has a large
impact on the total required size of multiplexing and

2008 Symposium on Application Specific Processors (SASP 2008)24

consequently on the critical path delays. We can observe that
compared to unoptimized EPOS, the optimized EPOS reports
up to 41% improvement on frequency and up to 62%
reduction on total MUX size. Compared to NISC, EPOS
achieves higher clock frequencies in most cases, while the
MUX size is on average the same. By combining the
execution cycles with the achieved frequency for both
processors we can compare the benchmark execution latencies.
These results are shown in fig. 6 and an average speedup of
3.45X over NISC is observed.

B. Boosting Performance Further on EPOS
The number of execution cycles on EPOS can be further

improved by either turning RFB on or activating predicated
operation speculation (POS). Table IV shows the speedup that
can be achieved. The 2nd column lists the cycle numbers
without RFB and POS. Columns 3 and 4 show the cycle
number and speedup correspondingly when RFB is enabled,
and columns 5 and 6 show the cycle number and speedup
(over the lst column figures) when both RFB and POS are
enabled. With these architectural features we can further
reduce the cycle numbers by up to 40% compared with the
simple EPOS.

TABLE IV
EPos SPEEDUP WITH RFB AND POS
EPOS EPOS-RFbp EPOS-RF-POS

Benchmark cycles cycles speedup cycles speedup
mdct 61 57 1.07 57 1.07
bdist2 1966 1454 1.35 1390 1.41
startup 1464 1268 1.15 1088 1.35
bubble 4563 3989 1.14 3655 1.25
dct 2333 2045 1.14 2045 1.14
dijkstra 23640 20685 1.14 18212 1.30
Average 1.17 1.25

VI. CONCLUSIONS

We have presented a new high level synthesis flow for
exploiting maximum instruction-level parallelism (ILP) out of
applications and mapping it onto a domain-specific custom
processor named EPOS. EPOS is a stylized, micro-code
driven architecture, supported by ILP-driven architectural
features. These enable the exploitation of the statistical
parallelism extracted by our synthesis tool. Our front-end
compilation in tandem with our scheduling engine generated
very efficient schedules for control and data intensive
applications. We also evaluated the effectiveness of our
forwarding path optimization during binding. We have
presented experimental results that show the effectiveness of
our synthesis flow in comparison to a previously published
work, NISC. EPOS has demonstrated 3.45X performance gain
on average compared to NISC. By activating register-file
bypassing and predicated operation speculation, we can
further improve performance by 25% on average. In our
future work we plan to extend our binding engine to optimize
RFB and RF access. By combining these optimizations with
forwarding minimization we will be able to build extra
efficient and low-cost processors.

mdct bdist2 startup bubble dct dijkstra Average

Fig. 6 Execution latency speedup

ACKNOWLEDGMENT

We would like to thank Shane Ryoo, Sain-Zee Ueng and
the IMPACT group at the University of Illinois at Urbana-
Champaign for their support in leveraging the impact compiler
and their invaluable feedback.
This project is partially supported through an NSF grant

CCF 07-02501. We used machines donated by Intel.

REFERENCES

[1] C. McNairy and D. Soltis, Itanium 2 Processor Microarchitecture. IEEE
Micro 23(2): 44-55, 2003.

[2] D. I. August et al., Integrated Predicated and Speculative Execution in
the IMPACT EPIC Architecture, ISCA, 1998.

[3] D. Chen, J. Cong, and J. Xu, Optimal Simultaneous Module and Multi-
voltage Assignment for Low Power. ACM Trans. On Design Automation
ofElectronic Systems, Vol. 11, No. 2, 362-386, 2006.

[4] G. D. Micheli, Synthesis and Optimization ofDigital Circuits, McGraw
Hill, Inc, 1994.

[5] H. Sharangpani and K. Arora, Itanium Processor Microarchitecture.
IEEE Micro 20(5): 24-43, 2000.

[6] J. W. Sias et al, Field-testing IMPACT EPIC research results in Itanium
2, ISCA, 2004.

[7] J. Babb et al, Parallelizing Applications into Silicon, FCCM, 1999.
[8] M. Reshadi, et al, Utilizing Horizontal and Vertical Parallelism with a

No-Instruction-Set Compiler for Custom Datapaths. ICCD, 2005.
[9] M. S. Schlansker and B. R. Rau, EPIC: Explicitly Parallel Instruction

Computing. IEEE Computer 33(2): 37-45, 2000.
[10] P. Chang et al, Three Architectural Models for Compiler-Controlled

Speculative Execution. IEEE Trans. Computers 44(4): 481-494, 1995.
[11] S. A. Mahlke et al, Effective compiler support for predicated execution

using the hyperblock. MICRO, 1992.
[12] S. Gupta, R. Gupta, and N. Dutt, Coordinated parallelizing compiler

optimizations and high-level synthesis. ACM Trans. Design Autom.
Electr. Syst. 9(4): 441-470, 2004.

[13] S. Gupta et. al., Using global code motions to improve the quality of
results for high-level synthesis. IEEE Trans. on CAD ofIntegrated
Circuits and Systems 23(2): 302-312, 2004.

[14] W. W. Hwu et. al., The Superblock: An Effective Technique for VLIW
and Superscalar Compilation. Journal ofSupercomputing, 1993.

[15]
[16] K. Yeager, The MIPS R10000 Superscalar Microprocessor, Micro, Vol

16, Issue 2, 28-40, 1996.
[17] R. Camposano and W. Wolf. High-level VLSI synthesis. Springer-Verlag

New York, LLC, 2001.
[18] D. Gajski, N. Dutt, and A. Wu. High-level synthesis: Introduction to

chip and system design. Kluwer Academic Publishers, 1992.
[19] J. Cong, Y. Fan, and W. Jiang. Platform-based resource binding using a

distributed register-file microarchitecture. ICCAD, 2006.
[20] K.-H. Lim, Y. Kim, and T. Kim. Interconnect and communication

synthesis for distributed register-file microarchitecture. DAC, 2007.

2008 Symposium on Application Specific Processors (SASP 2008) 25

