An empirical comparison of ANSI-C to VHDL compilers:
SPARK, ROCCC and DWARV

Arcilio J. Virginia, Yana D. Yankova, Koen L.M. Bertels
Computer Engineering Laboratory
Delft University of Technology, The Netherlands
Email: avirginia@ce.et.tudelft.nl, {Y.D.Yankova, K.L.M. Bertels}@tudelft.nl

Abstract— Custom computing machines combine the
flexibility of the general purpose processor with the high
performance of the application tailored hardware. This
combination results in a computing platform that allows
for performance improvements to a wide range of appli-
cations. Nevertheless in order to develop applications for
such a platform, a software designer currently needs also
hardware design skills. In order to hide the hardware de-
tails from the designers and to assist in the non-trivial de-
velopment process sevreral tools that translate ANSI-C to
VHDL are proposed. In this paper we compare three such
tools, SPARK, ROCCC and DWARYV. The comparison is
based on the performance of designs generated by the com-
pilers and the experiences gained during the acquisition of
empirical data.

I. INTRODUCTION

Custom computing machines [1] are hybrid plat-
forms which combine the benefits of both general pur-
pose processors and reconfigurable components. The
general purpose processor adds the flexibility in sup-
porting a large class of applications and the reconfig-
urable components add application specific hardware
acceleration. In order for an application to be mapped
on such a hybrid platform it has to be partitioned to
software and hardware segments. The software seg-
ments have to be further compiled for the general
purpose processor. The hardware segments have to
be translated into a hardware description language,
such as VHDL. This translation is a non-trivial pro-
cess and requires hardware design skills, if preformed
manually. In order to relief the software designer from
the requirement to gain hardware knowledge, the au-
tomation of this process is proposed. Nevertheless
this automation presents other challenges. ANSI-C is
an inherently sequential whereas hardware is funda-
mentally concurrent. The challenges in generating
VHDL from ANSI-C lay in identifying and exploit-
ing concurrency through compiler passes. Addition-
ally ANSI-C contains code constructs not easily repre-
sentable in hardware. The lack of expressive support
for hardware design by ANSI-C has lead to compilers

based on one of the following approaches: The first
are hardware languages based on ANSI-C. One such
example is Handel-C [2]. The ANSI-C code constructs
make Handel-C easier to read as compared to VHDL.
However, Handel-C is a semantically a new language
and is geared towards hardware design. Streams-C
[3] is an example of the second approach in which
a subset of ANSI-C is extended with a library for
identifying and supporting concurrency and specifying
whether processes should run on the GPP or FPGA.
The disadvantage of this approach is that existing
ANSI-C applications would need to be rewritten. The
focus of this paper is on the compilers adhering to
the third approach. These compilers generate VHDL
from unmodified ANSI-C. The three VHDL genera-
tors discussed in this paper are SPARK, ROCCC and
DWARV. The aim of this paper is to compare these
generators from a reconfigurable computing co-design
environment context, as all three of them are intended
as to be a part of such a tool chain. The three VHDL
generators will be studied using qualitative and quan-
titative criteria. Through literature study and obser-
vations made during the acquisition of empirical data,
we will compare the VHDL generation strategies of
the tools. This includes documenting and comparing
the supported ANSI-C subset and the restrictions the
supported subset is subjected to. Hardware/software
co-design environments accept ANSI-C as input. To
make the C source compliant to the supported sub-
set, the code may have to be rewritten. The effort
required to do this, is investigated. The level of hard-
ware knowledge required to derive the designs is de-
termined. The generated designs are then synthesized
to evaluate their performance. The rest of the paper is
organized as follows. SPARK, ROCCC and DWARV
will be briefly introduced in Section II. The criteria
by which the VHDL generators will be compared is
described in Section III. Results of the comparison
are presented in Section IV. Section V the concludes
the paper.

388

II. TooLs DESCRIPTION

In this section we briefly introduce the ANSI-C to
VHDL compilers which will be studied.

SPARK [4] is a VHDL generator designed as a
research instrument, for investigating the effects of
scheduling heuristics and compiler passes on control
flow intensive ANSI-C functions. To this end the
compiler features an intermediate representation [4],
aimed at retaining the hierarchical structure of the
source code, thus allowing both global and local op-
timizations through compiler transformations named
code motions [5]. The aim is to generate quality
VHDL designs, by identifying and exploiting concur-
rency throughout the intermediate representation.

ROCCC [6] is an optimizing compiler with the ob-
jective to generate hardware operations for accelera-
tion on reconfigurable fabrics with onboard memory.
Applications targeted by the compiler are streaming
calculations involving loop and arrays. ROCCC aims
at generating VHDL with good performance exploit-
ing functional, loop and operation parallelism. In ad-
dition ROCCC aims at keeping the size of the gener-
ated designs to a minimum and employs a custom exe-
cution model to allow high computational throughput
and reduce memory access latency through data reuse.
The latter is accomplished through a windowing strat-
egy in which Smart Buffers [7] are placed prior and
after the data path.

DWARYV (8], the Delft Workbench Automated Re-
configurable VHDL generator is part of the Delft
Workbench tool chain [9]. The Delft Workbench is
a hardware/software co-design environment targeting
the MOLEN polymorphic processor [10] [11]. This
tool chain accepts unmodified ANSI-C as input and
compiles the application onto MOLEN. It identifies
and selects candidate kernels (computation intensive
functions) through profiling and resource estimation
[12] prior to generating VHDL using DWARV. Unlike
the SPARK and ROCCC, DWARYV does not apply any
optimizing transformations. Neither does the gener-
ator target a specific application domain. As a part
of the Delft Workbench tool chain, DWARV was de-
signed to support a large ANSI-C subset and generate
a direct translation of the ANSI-C input into VHDL
for execution on the MOLEN processor prototype [13].

III. EVALUATION METHODOLOGY

In this section the quantitative and qualitative eval-
uation criteria are presented. A large data set of ker-
nels was gathered to perform the comparison. In this

section this data set is also presented.[10], [11]

A. Comparison Criteria

There are five qualitative aspects of the generators,
which are considered. The first two are the supported
ANSI-C subset and restrictions posed on this sub-
set. The third aspect is the required rewriting ef-
fort exerted to make existing ANSI-C code compli-
ant to the generators subset. The knowledge of hard-
ware required to generate synthesizable VHDL using
SPARK, ROCCC and DWARV is the fourth qualita-
tive aspect. And the final qualitative criteria are the
testability and readability of the generated VHDL de-
signs. These qualitative measures are of importance
to the designer. They describe the level of (hardware)
knowledge and manual intervention is needed by the
designer to generate and validate designs. From the
perspective of a hardware/software co-design environ-
ment a VHDL generator should preferably be fully au-
tomated. By automation is meant the generation of
VHDL from an unmodified ANSI-C file without user
intervention. None of the three approaches discussed
here are fully automated. The qualitative criteria are
determined through literature study and during ex-
perimentation. The supported subset is expressed in
percentages, data types, operators and control flow
code constructs. Except for supported subset the
other qualitative criteria are not quantifiable by num-
bers.

Quantitative measures used in studying the gener-
ator approaches are acquired through synthesis and
simulation of the designs generated by the three tools.
From these measures the quality criterion through-
put/slice was calculated. It is a measure that relates
the speed of a design to the utilized area and can in-
dicate how efficient the performance of a design is.
To acquire the empirical data needed to calculate the
throughput/slice, the generated designs are synthe-
sized and simulated. The tools used are Xilinx ISE
8.2 and ModelSim. The synthesizer was set to target
a Xilinx Virtex II Pro FPGA.

B. Data Set

To compare the generators using the through-
put/slice, a large data set consisting of ANSI-C
functions was gathered. These functions stem from
seven separate application domains and are comple-
mented with several synthetic functions. The first
two columns of Table I present the domain and the
number of functions considered for the study. These
functions consist of data, control, and data and con-

389

trol intensive kernels. Data intensive functions heav-
ily read and write to memory. Whereas in control
intensive functions conditional evaluations are clearly
dominant; and in case of data and control intensive,
such functions constitutes the load of the data transfer
and the conditional control flow. In order to compare

TABLE I
NUMBER AND DOMAIN OF THE DATA SET FUNCTIONS.

Application Considered | Made compatible | Synthesized
Domain

Compression 2 0 0
Cryptography | 66 5 3
DSP 4 5 5
ECC 6 2 2
Mathematics 15 6 6
Multimedia 34 11 10
Miscellaneous | 15 2 2
Synthetic 16 14 5
Total 158 45 33

SPARK, ROCCC and DWARYV, the input functions
had to be rewritten. Initially the functions were to
be rewritten conform to the combined requirements
of all three generators. Each approach supports its
own subset of ANSI-C. However, the requirements of
ROCCC are too stringent and its unavailability at the
time of experimentation led to the functions being
rewritten to be compliant to SPARK and DWARV.

In the following section we will discuss the results
of the qualitative and quantitative analysis.

IV. RESULTS

Here we present the qualitative and quantitative re-
sults of our study into the VHDL generators SPARK,
ROCCC and DWARV. The first set of results pre-
sented are the qualitative. These results stem from
the experiences gained during the acquisition of the
empirical results for the quantitative comparison.

A. Qualitative Analysis

Supported ANSI-C Subset: The subset of ANSI-
C supported by the VHDL generators is expressed in
percentages and presented in Table II. The data types
consist of integer, floating point, pointer and aggre-
gate types such as arrays, structures, unions and enu-
meration. All three generator approaches support in-
teger types. None of the tools support floating point,
structures and unions. DWARYV supports the largest
percentage of types, due to enumeration and point-
ers. These two data types are not fully supported by
SPARK, where pointers are treated as arrays. Of the

TABLE II
PERCENTAGE OF SUPPORT FOR MAIN ANSI-C
FEATURES.

| DWARV | ROCCC | SPARK

Data types(13) 69% 54% 54%
Operators(17) 85% 62% 62%
Flow of control(9) 22% 33% 56%
Total 63% 51% 54%

operators none of the tools support field selection and
address of object operators. DWARV includes indi-
rection via pointers, modulus and conditional expres-
sions, which are operators not supported by SPARK
and ROCCC. Therefore DWARV supports the largest
set of operators. In case of both data types and oper-
ators ROCCC and SPARK support the same types.

None of the generator approaches, support break,
continue and goto control flow constructs. The ANSI-
C subset of SPARK includes, in addition to for-
and if-statements, while-, do- and switch-statements.
Whereas, DWARV and ROCCC support only for- and
if-statements. In case of the latter approach, labels are
additionally supported. These are required to identify
loops in functions for generating designs.

Code Restrictions: Restrictions are posed by the
generators on the supported subsets. These restric-
tions stem from the design strategy of the compilers.
ROCCC poses the most restrictions due to its stream-
ing application strategy. It requires for-loops to be
perfectly nested and there must be an input and out-
put array part of the loop body. The indices of these
arrays must be equal to the loop counter and the num-
ber of loop iterations has to be equal to the number
of output array elements.

SPARK stores data locally on chip. One conse-
quence of this strategy is no support for pointers arith-
metic. Additionally all arrays must be global, have a
fixed size and the index may not be negative.

DWARYV is the least restrictive of the generators.
SPARK and ROCCC are designed to target con-
trol intensive and data intensive kernels respectively,
whereas DWARYV design is not focused on one type of
kernel. Therefore it poses the lightest set of restric-
tions.

Rewriting Effort: The rewriting effort is depen-
dent on the style in which the data set functions are
written, the supported subset and severity of the re-
strictions. Here we do not consider the effort exerted
for rewriting functions using structures, floating point
and unions. This effort is equal for all three tools.

390

ROCCC requires the most effort in rewriting code.
The generator has strict requirements concerning for-
loop header and body. The effort required by SPARK
is moderate due to its lack of support for pointers
and requirements surrounding arrays. DWARV sup-
ports both pointer and pointer arithmetic and does
not pose severe restrictions; therefore rewriting code
for this generator requires the least amount of effort.

Readability and Testability of Designs: The read-
ability and testability of the designs generated by
DWARYV and SPARK are important during functional
verification. DWARV and SPARK both generate
a finite state machine (FSM) and staged execution
model. SPARK designs resemble the C source. This
is achieved by reusing the original C source variable
names and through the use of a proprietary SPARK
VHDL type, WiredOriInt, to allow integer arithmetic.
Thus allowing e.g. arrays to be used as in ANSI-C.
This makes the SPARK FSM easier to read. How-
ever, SPARK uses if-statements in its designs, whereas
DWARYV uses case-statements. The advantage of this
is that as the design grows in size, the FSM written in
case-statements is easier to read. To verify the valid-
ity of the generated designs they need to be simulated.
In comparison to SPARK, DWARYV offers better sup-
port for designs simulation. The former requires a
new test bench for each design. This is again a conse-
quence of storing data locally on chip. The input and
output ports vary per design. DWARV generated de-
signs have a custom input/output interface compliant
with the MOLEN CCU [13]. As a result only one test
bench is required which can read and write input and
results to files.

Required Hardware Knowledge: The required
hardware knowledge is dependent on the level of con-
trol offered by the compiler to the designer, over the
generation of the VHDL designs. This influence is
exerted by the designer through choosing optimiz-
ing compiler passes such as loop unrolling, which in-
fluences the size of the design. ROCCC focuses on
generating optimized VHDL from ANSI-C for-loops.
The compiler offers its designer 4 choices in compiler
transformations aimed at for-loops. These transfor-
mations affect the speed and size of the final design.
SPARK offers designers the most control over their
designs. Through 14 compiler transformations, com-
pilation options and by specifying which resources
are available to be scheduled. These options make
SPARK a powerful tool for creating an efficient de-
sign. However, this level of control over the final de-
sign in combination with having to write a test bench

for each new design, makes SPARK the compiler re-
quiring the most hardware knowledge. DWARV cur-
rently requires the least hardware knowledge. It does
not have optimizing transformations to offer design-
ers and similar to ROCCC, no resources have to be
specified. In Table III a short summary is presented
on the above discussed comparison results.

TABLE III
SUMMARY QUALITATIVE COMPARISON.

| DWARV | ROCCC | SPARK

Largest supported ANSI-C subset 1 3 2
Most restricted ANSI-C subset
Highest rewriting effort required
Best readable designs
Testability of designs

Most hardware knowledge required 3 2 1

1
1

[l SN
N = NN

Explanation : In this table the number represent the rank of the com-
piler given the criteria. When made bold, this number indicates the
best performing compiler. In two instances ROCCC could not be tested
which is indicated by —.

B. Quantitative Analysis

Our study continues with the quantitative analy-
sis in which we report the reduction of the data set,
the simulation results and performance comparison of
SPARK and DWARV generated designs.

Reduced data set: The data set of functions was re-
duced by the combined restrictions of both tools. Here
the generator with the most stringent requirements
dominated. For each application domain the num-
ber of kernels made compliant and kernels synthesized
are presented in Table I. Ultimately only 33 kernels
could be synthesized. Both DWARV and SPARK are
research tools. However, unlike DWARV, SPARK is
not being actively developed. DWARV does not per-
form optimizing transformations and has less strin-
gent requirements as compared to SPARK. This in
combination with testing DWARV with a large data
set has lead to the tool generating more synthesiz-
able VHDL code. For generating designs SPARK was
configured using the default resource file and compila-
tion options. Nevertheless, it does not always generate
synthesizable VHDL or synthesizable VHDL that can
be simulated.

Simulation Results: In Table IV a summary is pre-
sented on SPARK simulation results. Sixteen de-
signs are successfully simulated and half of the de-
signs required minor modifications in order to simu-
late. In seven cases SPARK generated incorrect de-
signs. In these designs the array index would over-
flow. Whereas in the original ANSI-C source code
this was not the case. Seventeen SPARK generated

391

TABLE IV
NUMBER OF SIMULATED AND FAILED SPARK KERNELS.

‘ Simulated H Failed ‘ Error

Modified 8 7 Array indexing
Unmodified 8 17 1/0
Total 16 24

designs could not be simulated. These designs have
bidirectional ports of the SPARK proprietary type
WiredOrInt. Of which the resolution function does
not operate correctly. Prior to storing input values
on chip, a lower bound integer value specified in the
SPARK resource file, is added to the incoming value.
Attempts to remove the initial value or write to these
bidirectional ports was in vain. In case of DWARYV,
all designs were simulated. As explained earlier, at
the time of data acquisition the generator was under-
development and at any stage of the design VHDL
generation and validation errors could be corrected in
the compiler. The ANSI-C kernel inputs and outputs
were recorded and used in the simulation to verify the
correct operation of the generated designs. In case of
the seventeen SPARK designs, they were presumed to
be functioning correctly.

Performance Comparison: In order to calculate the
throughput/slice (1), the following measures are ac-
quired: number of slices, delay (period) and number
of cycles required by the design to produce a result.
The latter measure was required to calculate the la-
tency (2) and was computed by dividing the time it
had taken the design to produce results, by the simu-
lated clock period.

(numberofbytes)*10°
latencyx1024

throughputperslice(K B/sec/slice) = 7
slices

1

Latency(nanoseconds) = delay * cycles; g2;
For the seventeen SPARK designs, their latency was
estimated by calculating the loop iteration counts us-
ing the DWARV simulated latencies. By using the
previously calculated value and the number of states
in the FSM the latency for SPARK designs was esti-
mated.

The results of the comparison are illustrated by cat-
egory kernel in figures 1, 2 and 3. Each generated
design pair corresponding to one kernel has been nor-
malized to the highest of the two values. As expected
the majority of SPARK designs outperform DWARYV,
especially in case of control intensive designs. This
can be attributed to the number of cycles, data stor-
age strategy and optimizing compiler transformations

applied. Cycles are the total number of times the FSM
states are traversed. The more states used to perform
the functions of a loop, the larger the number of cy-
cles. DWARYV designs require more cycles, due to the
fact that DWARYV reads and writes data to and from
memory. When comparing the number of cycles of the
16 simulated SPARK designs to the DWARYV designs,
on average 56% more cycles are required by DWARV.

il

S & R N S)
< é\\e Q’é’ Qf (@z\ Qe,,o e@o Q\& &\é
g «&Q‘ £ & N

1,2

JLI

&

TDWARY
mSpark
<

Throughput/Slice
o °
3 3

o
S

o
~

o

&

o
L
& &

o ¢ &
& & &S
& & & &

IS
&
N &

Fig. 1. The throughput/slice of the data intense designs.

1 p—
.6
4
0 J
© @ & & @ & o
R S & & &
& & o & Cd S B
N © o N S

Fig. 2. The throughput/slice of the control intense designs.

°

TDWARV
BSpark

oughput/Slice
°

Thr
°

°
~

3 o N
K & N $
& g & S ¢ &

&

S) &
R & © & & & o

Kemels

All data in SPARK designs are stored on chip. This
reduces the number of cycles required by the design
and translates into an advantage in lower latency and
higher throughput. Only 4 of the 33 kernels had a
higher latency as compared to DWARV designs and
of these 4 designs, the number of cycles are calculated
for 3 because they did not simulate and in case of
the fourth kernel the scheduler did not have enough
resources to fully exploit concurrency. The disadvan-
tage of storing data on chip is that the size of the
design grows dependent on not only the number of
scheduled resources but also on the size of the input.
This can diminish the advantage of having data stored
locally. In comparison to SPARK, DWARYV designs

392

BDWARV
mSpark

Throughput/Slice
°
>

R

bitreversalt

iquant_intra les mmul7

Fig. 3. The throughput/slice of the data and control in-
tense designs.

TABLE V
INFLUENCE OF DATA INCREASE ON SYNTHESIS RESULTS
SPARK.

Range | Slices | FlipFlops | LUTs | 10s
range 1: 257 | 195 296 209 547
range 2: 2% [127 207 129 202
range 3: 2° 83 134 85 156
unsigned 2% | 62 98 68 88

may not have the best performance, nevertheless they
require overall less area on the FPGA. In Table V a
numerical example is presented consisting of synthesis
results whereby the range of an integer in the SPARK
resource file is constantly increased after each synthe-
sis. The function used is an algorithm for multiplying
three 2 by 2 matrices concurrently. Four integer ar-
rays are used, one as output and three input. The
input of the function consisted of 4 integer arrays and
one argument. A reduction of 35% of the area can
be observed when the integer range is reduced from 1
to 2 and from the latter to range &; the last reduc-
tion is of approximately 25%. Out of the 33 kernels
all the DWARYV designs fit on the FPGA, in 6 cases
SPARK designs use more resources than available on
the FPGA.

SPARK designs outperform DWARYV due to in part
the latter lack of optimizing transformations. The op-
timizing transformations applied by SPARK are spec-
ulation, reverse speculation, early conditional execu-
tion and conditional speculation. These transforma-
tions exploit concurrency by moving operations across
control structures. The result of these moves are less
states in the execution model as the longest path is
reduced. DWARYV performs no transformations that
optimize the design. The optimizing transformations
of SPARK are specifically applicable to control inten-

sive kernels. This can explain why the largest group
of SPARK designs outperforming DWARV are control
intensive. Two of the three SPARK designs which are
outperformed by DWARV are due to the large area
they required. The third of the control intensive ker-
nels can be explained by the number of cycles being
calculated as worst case.

In this section the results have been presented of the
qualitative and quantitative comparison of SPARK,
ROCCC and DWARV. Of the three compilers only
SPARK and DWARYV generated synthesizable VHDL.

V. CONCLUSION

In this paper we presented our findings of the
qualitative and quantitative comparison of DWARV,
ROCCC and SPARK. Our goal was to asses these
generators from a reconfigurable computing co-design
environment context. In this context the designer is
assumed to be a software engineer with limited hard-
ware knowledge. The qualitative comparison reveals
DWARYV to support the largest subset of ANSI-C and
poses the least restrictions on this subset. Resulting
in lower required effort when rewriting functions as
compared to the other two generators. This generator
also demands the least hardware knowledge. DWARV
currently has no optimizing transformations that can
be applied by the designer and one test bench suf-
fices for all generated designs. ROCCC posses the
most stringent requirements on its supported subset
and therefore requires the most effort when rewrit-
ing code, due to its windowing strategy. Although
as compared to SPARK far less hardware knowledge
is required. SPARK demands the most designer in-
put and hardware knowledge. This generator offers
the designer the most control over the design and for
each generated design a separate test bench has to
be written for design verification. Through the quan-
titative analysis we have established that there is a
direct correlation between the severity of the restric-
tions on the ANSI-C subset, the rewriting effort, and
the number of supported kernels. Furthermore, the
successful generation of VHDL designs is by no means
a guarantee that the designs can be successfully sim-
ulated or that they are functionally correct. SPARK
outperformed DWARYV in the majority of the cases.
This is due to the fact that DWARV does not have
optimizing transformations and does not store data
on the FPGA. Regardless of the fact, not all designs
generated by SPARK could benefit from the optimiz-
ing transformations because these are specifically tar-
geted at control intensive kernels.

393

REFERENCES

[1] M. Sima, S. Vassiliadis, S.D. Cotofana, J.T.J. van Eijnd-
hoven, and K.A. Vissers ”Field- Programmable Custom Com-
puting Machines - A Taxonomy”, Proceedings of the 12th
International Conference on Field-Programmable Logic and
Applications (FPL 2002) September, 2002.

[2] Handel-C language reference manual, Celoxica Limited,
2004.

[3] M. Gokhale, J.M. August 2001, J. Arnold, and M. Kali-
nowski, ”Stream-oriented FPGA computing in the Streams-
C high level language”, in Proceedings of the 8th IEEE Sym-
posium on Field-Programmable Custom Computing Ma-
chines (FCCM 2000), 2000, pp. 49-58.

[4] R.K. Gupta, A. Nicolau, S. Gupta and N.D. Dutt, "SPARK:
A high-level synthesis framework for applying parallelizing
compiler transformations.”, Int. Conference on VLSI Design
2003, January 2003

[5] S. Gupta, N. Savoiu, N.D. Dutt, R.K. Gupta and A. Nicolau,
?Using global code motions to improve the quality of results
for high-level synthesis.”, IEEE transactions on computer-
aided design of integrated circuits and systems, February,
2004

[6] W. Najjar, B.A. Buyukkurt and Z. Guo, ”Compiler opti-
mization for configurable accelerators”, Int. Workshop On
applied Reconfigurable Computing (ARC 2006), Dellft,
The Netherlands, 2006.

[7] B.A. Buyukkurt, Z. Guo and W. Najjar ”Input data reuse in
compiling window operations onto reconfigurable hardware.”,
Proc. ACM Symp. On Languages, Compilers and Tools for
Embedded Systems (LCTES 2004), Washington DC, June
2004.

[8] Y.D. Yankova, G.K. Kuzmanov, K.L.M. Bertels, G.N. Gay-
dadjiev, J. Lu and S. Vassiliadis, ”"DWARV: Delft Workbench
Automated Reconfigurable VHDL Generator”, In Proceed-
ings of the 17th International Conference on Field Pro-
grammable Logic and Applications (FPL07), Delft, The
Netherlands, 2007.

[9] K.L.M. Bertels, S. Vassiliadis, E. Moscu Panainte,
Y.D. Yankova, C.G. Galuzzi, R. Chaves and G.K. Kuz-
manov, “Developing applications for polymorphic proces-
sors: the delft workbench”, Delft, The Netherlands, 2006.

[10] S. Vassiliadis, S. Wong and S.D. Cotofana ”The
MOLEN pu -coded processor”, in the International Con-
ference on Field-Programmable Logic and Applications
(FPL), Springer-verslag Lecture Notes in Computer Science
(LNCS) vol.2147, pp 275-285, August 2001.

[11] S. Vassiliadis, S. Wong, G.N. Gaydadjiev, K. Bertels,
G. Kuzmanov and E.M. Panainte”The MOLEN Polymor-
phic processor”, IEEE transactions on Computers, pp-
1363-1375, November 2004.

[12] R.J. Meeuws, Y.D. Yankova, K.L.M. Bertels, G.N. Gay-
dadjiev and S. Vassiliadis A Quantitative Prediction Model
for Hardware/Software Partitioning”, Proceedings of 17th
International Conference on Field Programmable Logic and
Applications (FPLO7) August, 2007.

[13] G.K. Kuzmanov, G.N. Gaydadjiev and S. Vassiliadis”The
MOLEN Processor Prototype”, Proceedings of the IEEE
Symposium on Field-Programmable Custom Computing
Machines (FCCM 2004), pp. 296-299, April 2004.

394

