C to VHDL Converter in a Codesign Environment

Matthew F. Parkinson, Paul M. Taylor and Sri Parameswaran

Department of Electrical and Computer Engineering
University of Queensland, St. Lucia 4072
Brisbane, Queensland, Australia
email : parkinso@sl.elec.uq.oz.au

Abstract

Automation of the Hardware/Software Codesign
methodology brings with it the need to develop
sophisticated high-level synthesis tools. This paper
presents a tool which is the result of such development.
This tool converts standard C code into an equivalent
VHDL behavioural description. This description is used to
generate a chip-level hardware interconnect of identical
functionality to the original C code.

1 Introduction

Automated design methodologies in digital systems
have until recently been limited entirely to the design of
hardware. Automated Hardware/Software Codesign (HSC)
offers a design methodology for a total system (ie. both
hardware and software).

For a totally hardware oriented design (eg. ASICs) the
development time is prohibitive in bringing fresh and
affordable products to the market. Equally restrictive is a
totally software based solution which will perform slowly
due to the use of a generalised computing architecture (ie. a
RISC based microprocessor). This is where designing for
a hybrid between a hardware and software based
implementation can be of particular advantage.

A codesign methodology enables the specification of an
algorithm totally in software. Through an automated
design process the algorithm is optimally partitioned into
both hardware and software, thus allowing the designer to
be distanced from the hardware specific techniques of
improving an algorithm's performance. This in turn
allows the designer to concentrate on the algorithm's
design.

Algorithm bottlenecks are usually limited to a small
portion of the actual code. By converting these critical
code segments into hardware, an ideal partitioning of the
algorithm's execution into both hardware and software is
achieved. An overview of the automated
Hardware/Software Codesign methodology is briefly
outlined in Figure 1. This automated partitioning process

0-8186-6215-8/94 $03.00 © 1994 IEEE

100

initially identifies the critical code segments within the
software. These code segments are then used to provide a
near optimal partition between hardware and software
implementations. By next applying the process of
synthesis to the partitioned code it is possible to achieve
significant acceleration of the algorithm.

The automation of this partitioning process also
permits the design to be independent of the final hardware
required for execution. The actual hardware
implementation is determined through cost and resource
constraints. This easily allows the designer to take
advantage of emerging technologies without the requisite
redesign of the system from the ground up. An example
of a proposed hybrid architecture is outlined in Figure 2.

Acceleration of the algorithm is achieved by converting
the high-level language description of the hardware
partition into VHDL [2] code. By then passing the
VHDL code through the package SYNT [3], we have
both a hardware description of the partition, as well as
feedback on the cost in terms of chip area, and execution
time. This cost is related to implementing the algorithm
on a XILINX FPGA.

As our system is specified in C, a tool was constructed
to turn sections of C code into behavioural VHDL [2],
From VHDL we construct hardware using the behavioural
level synthesis tool SYNT [3]. The tool described here is
the C to VHDL converter.

Section 3 details the C to VHDL synthesis tool, while
Section 4 details a large example.

For a complete description of the HSC process as it is
applied above, please refer to [1] and [41,

2 C to VHDL converter

The process of converting C code to VHDL isn't
restricted to the area of Hardware/Software Codesign. As a
general synthesis tool, C2VHDL provides the means of
transferring C algorithms to FPGA interconnect. For
custom-chip solutions it provides a good front-end tool to
the SYNT package.

Algorithm
(High Level Language
e.g. C)

Automatic CA D Tools

Critical Code
Segments

Less Critical
Code Segments

Synthesis
Process

Tag Insertion
Process

Software Partition
of Algorithm

Hardware Partition
of Algorithm

Figure 1 - Automated Hardware/Software Codesign Methodology

Future Extensions j
(Other Microprocessors,
floating point units,
L transputers, etc.) J

r)
Timing
Circuitry
.
Microprocessor [Controlier
to switch

between
processors

.'——— Address bus

—

i

Data bus

Control bus

Figure 2 - Hybrid Architecture Configuration

101

The consistent use of a familiar language such as C
means design time for products is greatly reduced. In turn,
time to market for profit oriented products is minimised.
By employing testability and simulation in the design
process, off-the-shelf algorithms may be used in future
products. It is important to reduce design effort through
the reuse of standard algorithms.

The ability to perform automated design of hardware is
essential to the HSC process. The code is initially
described using the C language. VHDL is derived from the
language ADA. Consequently it is similar to C as far as
standard high-level constructs are concerned. The process
we use in C2VHDL is based around this fact. The design
of the system is based on GNU CC 5], and its GCC
compiler (version 2.4.3.1). The GCC code is centred
around a YACC [6] description of the C language.

The YACC parser (c-parse.y) is composed of
productions. When these productions are triggered, the C
code associated with them is executed. By strategically
placing C code on the productions which parse variable
declarations, the identifiers and their types are recorded.
Once the declaration section is finished this information is
written to the VHDL output file, with the appropriate
change in style to suit the VHDL code. The same
procedure is applied to all of the C constructs to produce a
complete VHDL description of the original C code.

The VHDL code produced from this parsing process is
consequently passed through the synthesis package SYNT.
The form of VHDL implemented by SYNT is called
SynVHDL. It is a proper subset of VHDL, in that there
have been no additions made to the VHDL language. It
does however fail to embrace all of the constructs found in
standard VHDL. This in turn limits the ability for
C2VHDL to convert all constructs found in the C
language successfully to VHDL. As SynVHDL improves
on its subset of VHDL, so too will C2VHDL improve on
its ability to support the full constructs of the C language.
The limitations aren't seen to be of great significance
however, with most major C constructs being supported.

The structure of the code produced by C2VHDL is
influenced by the nature of the HSC process, as well as the
limitations imposed by SYNT, in the form of SynVHDL.
A section of C code is converted to VHDL with a single
ENTITY ... PORT description, and a single
ARCHITECTURE body. SYNT can only synthesize for a
single VHDL process, and requires a totally behavioural
VHDL description. The ARCHITECTURE is therefore
composed in a behavioural fashion, consisting of only one
process.

The PORT description details the transfer of
information across the hardware/software boundary. In the
case of HSC, the software partition must transfer data
across this PORT interface. The current implementation
of SYNT doesn't allow the use of PROCEDURES or
FUNCTIONS in VHDL. This will not present a great
problem as far as the HSC process is concerned. Its
interest is in converting compound code sections to
hardware. As chip area is at a premium, it isn't necessary
to convert larger sections of code. This is in keeping with
the concept that critical bottlenecks will consist of several
compound code sections.

The conversion to VHDL of assignment constructs
involving various combinations of operators is performed
by firstly breaking the statement into the individual
calculations. This is achieved by creating temporary
variables for each term in the calculation. This not only
maintains the precedence of operators, but also prevents
calculations being placed in the conditional clause of IF ...
THEN statements and the like.

The size of data types and variables is maintained
throughout the conversion. By using pointers when
passing information across the chip boundary, the data
transfer interface is minimised. This is also reflected in
chip-area utilisation. Usually, the smaller the data
interface, the fewer the on-chip registers that are required.

The conversion to VHDL of conditional statements is
reasonably straight-forward. The use of temporary
variables can be seen in the example of Figure 3.

if(g>3)1{
g=4;'
p=6;
Jelse {
g=3
P=2

as_ 10:=g;
as 11:=3;
IF as_ 10> as_11 THEN
g:=4;

p<=6;
ELSE
g:=5
p<=24;

ENDIF;

Figure 3 - IF .. ELSE conversion

102

The temporary variables are optimized out in the
synthesis package SYNT.

Another example is the switch on case statements
which are converted to CASE on WHEN statements. Each
case must end in a break at this stage. This is to prevent
flow on to the next case statement, as this isn't directly
supported in VHDL. The default is converted to a WHEN
OTHERS construct. It isn't necessary to include the
default statement, as WHEN OTHERS will be included
regardless. It isn't necessary to have any statements after
the default if so desired. If multiple case options are placed
at the same statement in the code, this is handled by
ORing the options together in the equivalent WHEN
statement, as can be seen in the example of Figure 4.

The handling of for loops is through conversion to a
WHILE loop, with ST1 going before the loop, ST2 is the
conditional of the loop itself and ST3 going as the last
statement of the loop. This works even for multiple
statements in any of ST1 or ST3, as can be seen in the
examples in Figure §.

The other types of loops are handled similarly. The
handling of pre and post incrementing is handled with
temporary variables. If the post operation occurs within
other expressions, it is handled by updating the variable
itself. The temporary variable, which holds the value

before the update, is used in the actual expression. In
general, all of the standard operators may be applied.

3 An example

The Appendix in section 7 at the end of this paper,
includes two separate descriptions. The first is a C
program listing. The second is the VHDL description
which our C2VHDL converter has produced. C2VHDL
does not produce code for alil C.

As we are limited by the VHDL subset that SYNT
takes, only those constructs which SYNT can handle have
been implemented. For instance SYNT cannot handle
floating point numbers, therefore we have not allowed
floating point numbers in C. The VHDL description
which results from this program also does not have an
“entity” section. This is because the program can be
tailored for differing types of input output (such as serial
input output or parallel input output) using the same
architecture. Finally, there are a large number of
temporary values. These are removed by SYNT when it
does register allocation. These temporary values also help
SYNT achieve a more efficient hardware synthesis.

switch (g) {
case 1:
a=a+b;
. break;
case 2 =
a=a+c;
break;
case 3::
case 6!
case 9
a=a+d;
' break;
case8: -
a=a+¢;
break;
’ default':
}

CASE g IS
WHEN 1=>

WHEN 31619 =>

as li=a;
, as 2:=b;
w=as_ 1 +as:2;
WHEN 2 =>
as .3 :=a; : I
as:4:=c;
‘am=as 3+as 4

as 5 :=a;
as.6:=d;
a=as . S+as 6;
‘WHEN 8 =>
as.7i=a;
as 8 =¢;
a=as T+as 8;
WHEN OTHERS =>
NULL;

END CASE;

Figure 4 - SWITCH .. CASE conversion

for (ST1; ST2; ST3) { STI;

. 'WHILE ST2 LOOP
} -

ST3;
END LOOP;

b= 2346; . b= 2346;
for(a=1;a<10;b=b+4, a++) { ai=1;

b=b/3; as. 62 :=a;
} as_ 63 :=10;

WHILE as_62 < as_63 LOOP
as_67:=b:
as_68:=3;
b:=as.67 /as_68;
as_64:=b;
as_65 :=4;

b :=as_64 + as_65;
as_66:=a;
a:=a+l;

END LOOP;

Figure 5 - FOR conversion

4 Future research

We are presently experimenting with another synthesis
tool, AMICAL, which has the capability to synthesize
VHDL procedures and functions. At this preliminary stage
it would appear that AMICAL [11] removes a number of
other limitations imposed on us by SYNT. Hence any
limitations imposed are a direct result of the synthesis tool
used.

We are in the process of building working systems
using the C2ZVHDL tool at present. This is incorporated
in the overall hardware software codesign project. It is
here that problems such as referencing variables which
exist in main memory will need to be resolved.

5 Conclusions

We have presented a tool which converts C programs to
VHDL. This tool was developed as part of the hardware
software codesign project at the University of Queensland.
Since the tool is used for synthesis, only those constructs
which the VHDL synthesis tool allows are included in this
system. As the synthesis tools become more
sophisticated, a larger subset of C can be converted to
VHDL.

6 References

[1] Matthew F. Parkinson, Paul M. Taylor, and Sri
Parameswaran, "An Automated Hardware/Software
Codesign (HSC) using VHDL," Proceedings of the First
Asia Pacific Conference on Hardware Description
Languages and their Applications (APCHDLSA '93),
December 1993.

[2] P. Ashenden, "VHDL Cookbook," - Internet

[3] Mats Fredriksson, Ahmed Hemani, Kurt Nordgvist,
"SYNT 1.0 USER'S GUIDE," - Internet

[4] Matthew F. Parkinson, Paul M. Taylor, and Sri
Parameswaran, "A Profiler for Automated Translation of
Signal Processing Algorithms into High Speed
Hardware/Software Hybrid Architectures,” Proceedings of
Microelectronics '93, October 1993.

[51 GNU CC, Reference Manual - Internet

[6] YACC, Reference Manual - Internet

{71 B. Bose, M. E. Tuna, and S. D. Johnson, "System
Factorisation in Codesign," Proceedings of the 1993
IEEE International Conference on Computer Design
(ICCD '93), October 1993.

[8] P. M. Athanas, and H. F. Silverman, "Processor

Reconfiguration Through Instruction-Set
Metamorphosis," Computer IEEE, pp. 11-18, March
1993.

[9] R. Emst, J. Henkel, "Hardware-Software Codesign of
Embedded Controllers Based on Hardware Extraction,"

104

Handout from First Int'l Workshop on Hardware-Software

Codesign, Estes Park, Colo., 1992.

[10] R. Gupta, CC. Coelho, and G. De Micheli, "Synthesis
and Simulation of Digital Systems Containing
Interacting Hardware and Software Components,” Proc.
DAC, IEEE CS Press, Los Alamitos, Calif., Order No.

2822, 1992, pp. 225-230.

7 Appendix

#include <stdio.h>
int i;

int A{char *h, short j, char r} {
unsigned char matt;
char s{23};
int g;
long a;
int b = 46;
char 4;
unsigned char *e;
char £[{157];

long t;
matt = ‘'a’ + 3;
b=1i+4;
i=1;
b=1i;
i=14 b;
j=3i*5;
j=5*3
g = 0;
switch (g) {
case 1l: a += 1;
break;
case 2: a += 2;
break;
case 3:
case 9: a += 3;
break;
case 4:
case 8: a += 4;
break;

}
switch (@) {
case 5: b /= 3;
break;
}
switch {(g) {
case S:
for {t = 0; t < 10; t++) {
a*= 4y .
" break;
}
break;
default:
a¥+;
}
do (

[11] K. O’Brien, M. Rahmouni, P. Kission, M. Aichouchi, A.
Jemai, H. Ding, A. A. Jerraya, "AMICAL - Interactive
Architectural Synthesis Based on VHDL - User’s
Manual," System-Level Synthesis Group, Laboratoire
TIMA/INPG, 46, Avenue Felix Viallet, 38031, Grenoble

CEDEX, FRANCE
(email: obrien@rhone.imag.fr).

t-=;
continue;
g =g+ 1;
} while (t > OL};
while (t > OL) {
Pt
2 2 ¥}
break;
g =g+ 1
}
if (g > 10)
g = &;
else
g = §;
(g >10) 7 {g = 4)
10 + sizeof{int);
15 - sizeof(long);
24 +sizeof(char);
24/ sizeof{float);
56 % sizeof(typeof(f)};
sizeof (£); :
12 * (-3¢ && sizeof (typeof (char))) + 52;
12 * (+34 1 sizeof{typeof (char))) + 52;
(34 & 23) /7 45;
{341 23) /:45;
~34 * 3;
35~ 4y
a+ 1j
a«+ (b* 62);
a << 3;
a »>» 23
/= {7 + by;
a*T;
4 + =T % 1a + ~a;
4 + 17 4 10 ¥ ta;
-=b;
2346;
{a =1y &< 107 b=b+ 4, are){
b =b/ 3;
§ ‘ :
for {a'=1; a < 10;'b
b.sb / 3;
if (a < by
a=3;
T
} else {
b =4;

a++;

1 (@ = 5);

[Y (A N [

LR I T A [

O RN

[
O
1

W

b+ &, a&+¥)

Figure 6 - Original C code

105

ARCHITECTURE behaviour OF C2VHDL IS
BRGIN
PROCESS
VARIARLE ftell : long;
VARIABLE i : int;
VARIABLE h: varpointer;
VARIABLE § : ghort;
VARIABLE r : char; .

VARIABLE ‘matt : unsignedchar;

VARIABLE g & int:
VARIABLE & 5 long:
VARIABLE b :-int 1= 467
VARIABLE d i char;
VARIABLE ‘e i varpointer;
VARIABLE t . : long;

VARIABLE ag.1 1 int4;
VARIAHLE ag. 2 :intd;
VARIABLE as._3 i3 intd4;
VARIABLE as_# i intd;
VARIABLE as.5 i int4;

VARIABLE ag.f i intd;
VARIABLE as_:T_ 1 im:2;
VARIABLE ag. B : intd;

VARIABLE -&8._9 t intd;
VARIABLE ag_lo 3 int2;

Ceew andiBsoon L.

¢ intd;
VARIABLE 'a8.143 :-intd;
VARIABLE as 144 : int4;
BEGIN
a8l = 97;
as.2 := 3;
matt = as_1 + as_2;
a3 1= i;
s 1= 45
b= as 3+ as.4;
foa=-1;
b= 1;
ag. 5. i;
ag_6 1= by
Yoo a5+ as 6;
“asll 1= 3
as.8 1= 55
3 iz a8 T * ap.8;
ag.9 1= 5y
26,10 = 3¢

§or=lag.9 A 30;

g = 0;
CABE g-18
WHEN 1 =2
a = a4 1;
WHEN 2 =5
a i=.a+.2;
WHEN 3 | 9 =

108

& r=iae3;

WHEN 4 1:8 =>»
A = aLd Ay

as.11 1= b;
a8 12 5= 3;
b= asill 7 as 13

WHEN QT'HERS =
NULL;

END CASE;

CASE g 18

WHEN 5 =>
toesi 0}

ag. 13 :=t;
46,14 3= 10;
WHILE ag. 13 < as. 14 LOOP
A=A vy :
EXITy
ag 15 1= t;
(RS S
END LOOP;
WHEN OTHERS: =»
NULL;]
ag_ 16 55 aj 1
A s a4l
END CASE;

AT 55 sy

WHILE {ag.17 = '1Y) LOOP
a8 18 s=ry
[e T
NEXT;
an. 19 1= g;
48.20 1= 1;
g i= as 19 ¥ 88.20;

aBL2) = kg
A6.22 120}
IF-{a8.21 > as 22) THEN
as. 17 1= M1,
asill = 10
END IF;
END TOOP;

ag.23 1=ty
an. 24 2= 0; I ey
WHILE as.23 > as. 24 LOOP
A8Z25 i=by o
TS e &
a8.26 =g
toas bl
EXIT)
a8 27 3= gt
A8.28 1201
gis a8 27+ an. 285

airx as 82 v agLsd:

END TLOOP; X
; 4854 1= - 34,
a8.29.:=g; a8 585 1= .1; ;
a8.30 3= .10; IF NOT(ae.54 = 0) OR NOT{as. 55 = 0) THEN
IF a8 29 > as. 30 THEN 45,56 3= 1¢
giss 4: ELSE
aH. 56 = 0
ELSE BND IF:
g = §; 657 3= 13;
as_58 := (a8 56);
END IP; 4559 1= a8 57 * an.58;
88.60 := 52;
48,31 1= -g; . i= a8 59 + as 60;
a8, 32 »= 10; :
IF {as_; 31 » #8.32) THEN as 61 2= 34;
HENE 7 aB 62 = 23;
IP ag 61 < 0-THEN
ELSE ag 61 i= 48 61 + 2147483647
g2 8y a6.61 1= ag 61 .1}
ENDTF;
END 1F; IF a5.62 < 0 THEN
an. 62 1= as 62 + 2147483647;
48,33 ;= 10; 8862 1= a6 62 + 1
ag_3d 3= 4; BND TP
a = 88,33+ a8 34; 48.63 5= 0
. an_64 =11
a8.35 = 15; . FOR as_j IN 0 70 31 LOOP .
as. 36 := 4; : IF - {(as 61 / 2) /= ((as .61 + 1)} ./ 2)) AND
i= ae 35 « ag 36; § ({88 62 /2y 7= ({a8.62 % 1) /:2}} THEN
a8.63 = an.63 + as 64;
a8 37 := 24; ERD IF;
as 38 3= 1; ' as 61 1= &8 .61 7 2;
ai= 2837 * 4838 2662 1= 26,62/ °2; :
. a8 64 1= ag 64 * 2;
as.39 2= 24; F BND LOOP;
a8 40 1= 4; an_65 1= (as. 63)
FOR ag. 3 IN. 0 70 :31 LOOP a8.66 = 45;
IF ((a8.39 / 2} /:((3339+1l/2))'1'm FOR as_j IN 0 TO 31 LOOP
ag dltag) = "1 IF ({8865 /7 2} /= ({as 65 + 1) / 2)) THEN
BLSE , : an_67(am 4y = t1¥
ag 41l(as §) o tO” ELSE
END - IF; . ag. 67lan. i) = 10V
IF {(a8.80°/ 2) /= ({2840 + 1)/ 2)) THEN B IF;
as 42(ag:) =00 : IF {las 66/ 2) /= (las. 66 # XY 2V Y THEN
ELSE . : : as 68(a8.) 1= "1
ag . 42¢a0) 1= 107 _ : ELSE
END IF; : - as_68{as._j) =0
BND LOOP g | END IP;
a 1= as_44; S B 100p
E : a 1= as_ 70;
an.ds = 56; e :
86.46 1= 157; b o i el 871 1= 34
1= 86,45 MOD an d6; ' v_ 8872 3= 23
e - G IF as. 71 < 0 THEN
a = 157 ; as 71 = as 71 + 2147483647;
. : - caBTY s AR L e 1
A 47 =~ 34y : . ERD IR
ag_48 := 1; . Has72<0m
IF NOT{asg. 47 =:0). AND NOT(as 48 = 0) THEN : a6_72 1= 8872 4 2147483“7;
ap 49 :x 1; : ag. 72 s= as...?z + 13
ELSE. : . 1) ~
4849 3=.0; : . as_73 1= .03
END-IP; : 8,74 3= %%
a5.50 3% 125 : -~ POR as.3 IN 0 TO 31 LOOP
ae.51 = (88.49); : IF (a8 71 /4 3) /= ({Re.71 % 1) 172¥) OR
85,52 = a5 50 % as 511’ s (a8 720 2y = (AR T2 % 1Y/ 2)) THEN
an 53 = 83; 48.73 1= aa 73 4 as 4;
: END TPy

ag 7 rsas 71 1Y,

107

48,72 := aB.72 /
as T4 1= ag 74 *
END LOOP;
ABTS = las 13);
ag. 76 :=. 453
FOR as.J IN 0-TC 31 LOOP
IF ((as.75 7 2) /= ({48 75+ 1) [2)) THEN
as F7{as 3) 3= F1
ELSE ‘ “
ag 77{as) 3= 00"
END IF;
IF ({88, 76 /£.2) /= ({as .76 + 1Y/ 2)) THEN
asg 78(ag. j)y 1= 1
ELSE
as.78(as. 3) 1= 0
END-IF;
END:LOOP
a iz as_80;

5 e

2
2

ag. 81 = - 34&;
as,.82 =3
a = a8l % as 82;

as. 83 = 35;

ag 84 =4

IF ag_83 <0 THEN
a8, 83 := as 83 + 2147483647;
as. 83 r=-38.83 + 1;

END..IF;

IF ag. 84 < 0 THEN
as. 84 1= as 84 '+ 2147483647;
as. 84 1= ag B¢+ 1;

END- IF;
as.85% := 0;
as B = 1;

FOR as_j IN:0 TQ 31 LOOP

IF {((as_83 /7 2) /= ({as_83 .+ 1) /. 2)) XOR
C{{as B4 1 2) /= ({as 84w 1)/)} THEN

as,.85 := 48,85 .+ as_§6;

END “IF;

ag; 83 1= ag B3

as.84 i=

a8, 86 = as 86 H
END LOQOF;
a-t="ap_85;
an: 87 1=-a
ag.88 =1
1=-a9:87 + -as. 88;

"ok

LAGRR ot

- as 89 1= by .
ag. 90 2= 62}
as.9) i=a;
as.92 1= -(a8 .89 * as5.90);
Az as, 91'% a8 82;

A r=.as 93 % (2. %% a5 94);

as.95 = a;
ag, 96 1=12;
1=-as8.95 / (2. ** a5 .96);

as 97

as 98 :

as.99

a8, 100 := (as 97 + as_98);
= as 99 / 4s.100;

II Il (]

7
b;
F

108

THEN

l THEN

a8:10) - ¢= a;
as102 2 1y
a = a8 101 " a8.3102;

ae.103 =14; .

an_ 104 = (2147483647 =~)4

Ira=0T
48105 = 1

ELSE -

AR.105 = 0y
END IF;
ap. 106 2= 88103 % a8.104;
288,107 := an 105¢
as. 108 5= 28,106 + a8 107;
a8 108 = (2147483647 - a);
a = ag_108 + as_109;

TIF 7 20 THEN:
AR_T10 1w 1} .
ELSE :
a5 110 = 0;
END IF;
as 111 = 4;
HAR.112 s= a8.110;
IF 0 =0 THEN
as 133 5=
ELSE
a8_113 3207
END IF;
as.114 =88 11l v asll12;
as. 115 := a8 113;
IF a =0 THEN
agLlle = 1
ELSE
as.116 1= 0.
END: IF;
as.117 t=as 134 +oasi115¢
as_118 := ag 116;
a i=ras Il7 ¥ a8 118;

bl bi=L
& y=by
b= 2346;
a.i=.1;

36,119 1= a;

48120 =010

WHILE as. 119 < as 120 LOOP
as 128 5= by
26125 =03
FOR as.5 IN 070 31 LooPe

IF ({88124 /7 2) /= {t&s124 + 1Y 7 2y

as 126 (an 3) = 1
ELSE :

as. 126tas.J) = 0"
END IF;

IF . (88125 .24 .2) /= {tap 135 » 1} ./ 2))

as_ 1271885 =
ELSE
as. 127 (asd) =02
END 1P}
END LOOP
b= a8 129;

as 121 :
48,122 i !
+ as. 122

as; 123 = a;
sz dd 1
END LOOP;

a r=1;

ag. 130
as. 131 i
<.as_131 100P

a8, 135 i= b;
sz 33

POR as:j 'IN 07Q 31 LOOP
IF {((as_ 135 / 2) /= ({as 135 + 1}/ 2))

as_137(as_3) = *1'
ELSE. .

a8 137¢as.3) = 'O
ENDIF;

IF ((ae. 136/ 2) /= ({28,136 +:1) /. 2}

ag_138lag j} = 1"
ELSE
a8 138(as 3y
END- IF;
END- LOOP

10!

]

b= @s..140;

48,132 :='b;
a6. 133 1=-4;
bir=ras 132 ¥ as133;

ag. 134 y= 4y
R R
END LOOP;

as; 141 i=. a3 '
as.142 = b;
IF as_.141 < as 142 THEN

a = 3;
a8.:143 = b;
bbby
b = 4§

as; 144 1= a;
a.t=a + 1
END: IF;

WAIT ON ¢1k UNTIL {in.xdv = '1');
END ‘PROCESS;
END behaviour;

Figure 7 - Converted VHDL code

109

