
A Unified HW/SW Operating System for Partially Runtime Reconfigurable FPGA
based Computer Systems ∗

Qingxu Deng1, Yi Zhang1, Nan Guan1 and Zonghua Gu2

1 Northeastern University, Shenyang, China
2 Hong Kong University of Science and Technology, Hong Kong, China

Abstract

Partially Runtime-Reconfigurable (PRTR) FPGAs allow
hardware tasks to be placed and removed dynamically at run-
time. We present an OS for hybrid computing systems consist-
ing of both CPUs and PRTR FPGAs. The OS is based on Linux,
and provides unified interfaces for both HW and SW processes
to ease the design of such hybrid systems. The scheduler of HW
processes is implemented on the hardware, to alleviate the per-
formance penalty of the time-consuming HW task scheduling
algorithms.

1 Introduction

A Partially Runtime-Reconfigurable (PRTR) FPGA (re-
ferred to as FPGA for short), such as the Virtex family FP-
GAs from Xilinx [1], is composed of a rectangular grid of Con-
figurable Logic Blocks (CLBs) and the interconnects between
them. A FPGA allows part of the area to be reconfigured while
the remainder continues to operate without interruption and is
regarded as a 2D continuous processing area that can hold a lot
of HW tasks. In other words, HW tasks can be allocated and
deallocated dynamically at runtime.

Traditionally, designing HW/SW hybrid systems is a very
tough work. The HW and SW part were developed separately,
and later pieced together. Since standard interfaces and services
have not yet been established [9] [18], designers are forced to
literally build systems from scratch. A unified interface for both
HW and SW can provide clean separation of the system design
and implementation, which is the base of system design stan-
dardization.

Furthermore, a HW/SW interface that is familiar and easy to
understand will greatly facilitate the transition from past super-
computers or computer clusters based systems into HW/SW hy-
brid platforms [11].

∗This work is partially supported by the National High Technology Re-
search and Development Program of China (863 Program) under Grant No.
2007AA01Z181 and the National Natural Science Foundation of China under
Grant No. 60773220

In this paper we present our on-going work on a Linux-based
OS for hybrid systems consisting of both CPUs and FPGAs.
The OS provides unified interfaces for both HW processes and
SW processes. Since HW scheduling algorithms are usually
very time-consuming, we migrate this part of work of OS into
hardware in order to reduce the runtime overhead and improve
real-time performance of the system.

The remained part of the article is organized as follows. We
introduce the related work in Section 2, and then present our OS
prototype design in Section 3. Finally future work is discussed
in Section 4.

2 Related Work

The concept of OS for reconfigurable computing systems
was firstly proposed by Brebner et al. [3]. Wigley et al. [17]
discussed several issues in OS for reconfigurable computing
systems, including HW tasks downloading, FPGA area man-
agement, HW tasks scheduling, storage management and pro-
tection, I/O communications, HW tasks communication and
fragmentation metrics.

Walder and Platzner described a OS prototype for reconfig-
urable computing systems in [15] [12]. They discussed the on-
line scheduling of HW tasks and implemented HW task sched-
uler and placer in their OS prototype. Their work shows a good
paradigm of the runtime system for HW multitasking. How-
ever, they didn’t consider the unified management of HW tasks
and SW tasks.

Rissa and Niittylahti [10] introduced a HW/SW hybrid sys-
tem, where FPGAs on a PCI-broad are connected to general
computers via the PCI bus. Wiangtong presented the Ultra-
SONIC system based on a similar architecture in [16], where
they mainly focused on the system HW/SW co-design, and in-
troduced a HW/SW co-design environment DAG.

Kwok-Hay et al. [11] introduced a Linux-based system
BORPH, which provides unified interfaces for both SW and
HW at the OS kernel level. BORPH provides HW processes
with Unix-standard access interfaces and BOF (a ELF based
file format) in order to unify the operations of both SW and
HW tasks. BORPH is implemented on the BEE2 module hard-
ware platform. Every BEE2 module contains five FPGAs (one

P P C

IP
Cor e

IP Cor e
IP

Cor e

IC AP

Reconfigur able F abr ic

Figure 1. Hardware Platform

PPC

PLB-OPB
Brige

PLB

OPB

DDR
RAM

IP Core

IP Core

I/O Device

IP Core

BRAM
ICAP

BRAM

Figure 2. Hardware Platform

control FPGA and four User FPGAs). They defined a bus ar-
chitecture for inter-FPGA communication. The BORPH sys-
tem didn’t consider the partially reconfiguration and HW tasks
scheduling problem.

Agron et al. [2] proposed a CPU/FPGA hybrid system
Hthread on CSoC (Configurable SoC), where some run-time
system components like Thread Manager, Scheduler, Mutex
Manager, and a new CPU Bypass Interrupt Scheduler (CBIS)
are migrated into the reconfigurable fabric on an FPGA. Migrat-
ing these services into hardware brings significant performance
benefits to software threads through more efficient invocation
and processing mechanisms as well as helps in eliminating the
hidden overhead of context switch times associated with enter-
ing and exiting the RTOS. The Hthread system is not based on
Linux, but built around their own-developed APIs that are com-
patible with the POSIX thread standard.

3 System Design

3.1 Overview

The system is implemented on a Virtex-II Pro XC2VP30
FPGA, which contains a PowerPC405 hardcore and partially
runtime reconfigurable fabrics, as shown in Fig. 2. Multiple
HW tasks can simultaneously execute on the reconfigurable
fabrics, be allocated and deallocated dynamically at runtime
without interrupting other HW tasks. The off-chip DDR mem-

Dedicated
P r ogr am

IP Cor e

SW
P r ocess

HW P r ocess

Reconfigur able
F abi r c

SW
P r ocess

Dedicated
P r ogr am

IP Cor e

HW P r ocess

CP U

Inter face
Reges iter

Inter face
Reges iter

Figure 3. Hardware Platform

ory is used as the system main memory, and on-chip BRAMs
(Block RAM) are used by IPCores as their own storage re-
source. IPCores are connected to the PLB (Processor Local
Bus) or OPB (On-chip Peripheral Bus), depending on their
communication bandwidth demand. The PowerPC hardcore ac-
cesses ICAP (Internal Configuration Access Port) via the high-
speed PLB to configure the reconfigurable fabrics.

Our goal is to develop an OS in order to:

• Provide a unified process model for both SW tasks and
HW tasks;

• Enable on-line placement and scheduling of HW processes
at OS level.

We choose Linux 2.6 as the foundation of our OS prototype.
In contrast to Linux 2.4, Linux 2.6 supports preemptions in the
kernel mode, which benefits the on-line management of HW
processes (will be discussed in Section 3.3).

3.2 The HW Process Model

Both the HW tasks and SW tasks are implemented as pro-
cesses in our system. A HW process consists of two parts: the
IPCore (hardware part) and the Dedicated Program (software
part), as shown in Fig. 3. IPCores take charge of the computa-
tion work, while the Dedicated Program encapsulates the com-
munication operations between the IPCore and the system. The
Dedicated Programs are instantiated from the same template,
and access IPCores by the same device driver, so HW process
designers do not need to write any software program, but only
need to implement their IPCore conforming to the pre-defined
interface standard.

3.2.1 Communication

The Dedicated Program accesses the IPCore via some specific
registers in the IPCore , which is named as Interface Register.
The Interface Register consists of two parts: (1) State Regis-
ters, which show the current state of the IPCore and (2) Data
Registers, which store the communication data.

The passive communication of the HW process is quite sim-
ple. When some process P wants to send data to a HW process
H , the procedure is:

1. P sends data to H’s Dedicated Program;

2. H’s Dedicated Program write data to the Data Registers of
the IPCore.

When some process P wants to get data from the HW process
H , the procedure is:

1. P sends a message to H’s Dedicated Program to denote
which data are required;

2. H’s Dedicated Program reads data from the assigned Data
Registers of the IPCore.

3. H’s Dedicated Program sends data to P .

The active communication of the HW process is a little more
complicated. To enable IPCores to initiate communications, we
bind a unique interrupt source to each HW process. When the
HW process H wants to send data to some other process P , the
procedure is:

1. H’s IPCore updates the State Registers.

2. H’s IPCore generates an interrupt requirement.

3. H’s Dedicated Program answers this interrupt: looks up
the State Registers and get data from the IPCore.

4. H’s Dedicated Program send these data to P .

When the HW process H wants to get data from some other
process P , the procedure is:

1. H’s IPCore updates the State Registers.

2. H’s IPCore generates an interrupt requirement.

3. H’s Dedicated Program answers this interrupt: look up the
State Registers and get data from P .

4. H’s Dedicated Program sends Data to the IPCore.

The Interfaces Registers are mapped to the system address,
and Dedicated Programs access the Interfaces Registers by di-
rect reading/writing operation to the corresponding address.
The address range of each IPCore is 4K, which equals to the
size of a page. This is for future extension of mapping IPCore’s
internal BRAM to the system address, in order to facilitate the
data-stream style communication.

Since all HW processes share the same Dedicated Program
template, the communication operation supported by the Dedi-
cated Program should be simple and application-independent.
Currently only three simple communication mechanisms are
supported for HW processes: (1) pipeline, (2) signal and (3)
message.

HELF Header

ELF File Section

Hardware Section

IPC ore Info.
Interrupt N o.

etc.

ELF file of the
D edicated
Program

Bitstream of
the IPC ore

Figure 4. Hardware Platform

3.2.2 File Format

We design a new file format HELF for HW processes by extend-
ing the ELF file format. A HELF file consists of three parts, as
shown in Fig. 4:

• HELF Header: HW process’s basic information, like the
width/height of the IPCore, the interrupt source no. etc.

• ELF Section: The ELF file of the Dedicated Program.

• Hardware Section: The bitstream of the IPCore.

Since all HW processes’ Dedicated Programs are exactly the
same, the ELF section could be compiled into a executable code
in prior, and directly linked into each HW process’s HELF file.

3.3 On-line Scheduling of HW Process

The on-line scheduling1 of HW tasks on PRTR FPGA is
much more complicated than SW scheduling. SW tasks only
share computing resources in the time dimension, while HW
tasks share computing resources in not only the time but also
the space dimension. The on-line HW task scheduling algo-
rithms are usually very time-consuming.

If the HW task scheduling algorithm is implemented in the
software, its execution time could be quite long and it will heav-
ily degrade the real-time performance of the system. So we
implemented the HW task scheduling algorithm on hardware.

We add functions to the original ”exec()”, to recognize
HELF files and extract the information of the HW process from
the HELF Header, e.g., its width, height, WCET, deadline etc.
These information are sent to the hardware-implemented sched-
uler as the input of the scheduling algorithms.

We have two choices to in ”exec()” after sending information
to the hardware scheduler:

1. ”exec()” yields immediately and the OS scheduler starts to
execute and selects other processes to execute. When the
scheduler produces the result, it sends interrupt signals to
”exec()” to finish the scheduling operations.

1Including task placement.

Table 1. The complexity of on-line HW task scheduling algorithms in literatures.
Author Literatures Free Area Management Method Complexity

Handa et al. [8] [7] Maximal Empty Rectangles O(N2 ∗ W ∗ H)
Cui et al. [4] [5] Maximal Empty Rectangles O(N2 ∗ W ∗ H)

Tabreo et al. [13] [14] Virtex List O(N2)
Deng et al. [6] Reject Region O(N ∗ (W + H))

2. ”exec()” does not yield execution, but waits for the result
of the hardware-scheduler, and then continues to execute.
Since Linux 2.6 is preemptable in kernel mode, ”exec()”
can be preempted if there is other more ungent processes.

Due to the strong computation power of hardware, the ex-
ecution of the scheduling algorithm would be very fast, so in
most case the scheduling decision will be obtained immedi-
ately. So we choose the second method in our system, which
is much easier to implement.

4 Conclusion and Future Work

In this paper, we have reported the current progress of the
project on a Unified HW/SW Operating System for Partially
Runtime Reconfigurable FPGA based Computer Systems. In
the next step, we will provide multiple templates for Dedicated
Programs in order to support more complicated communica-
tion mechanisms for HW processes, like Semaphore and Mu-
tex. We also plan to design the HW process interface for data-
steam style applications by mapping IPCore’s internal BRAM
to the system address. Experiments with real applications will
be conducted to evaluate the performance of our system.

References

[1] Xilinx website. In Available: http://www.xilinx.com.

[2] Jason Agron, Wesley Peck, Erik Anderson, David An-
drews, Ed Komp, Ron Sass, Fabrice Baijot, and Jim
Stevens. Run-time services for hybrid cpu/fpga systems
on chip. In RTSS, 2006.

[3] G. Brebner. A virtual hardware operating system for
the xilinx xc6200. In The 6th International Workshop
on Field-Programmable Logic and Applications (FPL),
1996.

[4] J. Cui, Q. Deng, X. He, and Z. Gu. An efficient algorithm
for online management of 2d area of partially reconfig-
urable fpgas. In DATE, 2007.

[5] J. Cui, Q. Deng, X. He, and Z. Gu. An efficient algorithm
for online soft real-time task placement on reconfigurable
hardware devices. In ISORC, pages pp. 321 – 328, 2007.

[6] Qingxu Deng, Fanxin Kong, Nan Guan, and Yi Wang. On-
line placement of real-time tasks on 2d partially run-time

reconfigurable fpgas. In Technical Report, Northeastern
University, China, 2008.

[7] M. Handa and R. Vemuri. Area fragmentation in recon-
figurable operating systems. In ERSA, pages pp. 77–83,
2004.

[8] M. Handa and R. Vemuri. An efficient algorithm for find-
ing empty space for online fpga placement. In DAC, pages
pp. 960–965, 2004.

[9] A. A. Jerraya and W. Wolf. Hardware/software interface
co-design for embedded systems. 2005.

[10] T Rissa and J Niittylahti. A hybrid prototyping platform
for dynamically reconfigurable designs. In The interna-
tional conference on Field-Programmable Logic and its
Applications(FPL), 2000.

[11] Hayden Kwok-Hay So, Artem Tkachenko, and Robert
Brodersen. A unified hardware/software runtime envi-
ronment for fpga-based reconfigurable computers using
borph. In CODES, 2006.

[12] C Steiger, H Walder, and Platzner M. Operating systems
for reconfigurable embedded platforms online scheduling
of real-time tasks. In IEEE Transaction on Computers,
pages Vol. 53, NO. 11, 1393–1407, 2004.

[13] J. Tabero, J. Septien, H. Mecha, and D. Mozos. A low
fragmentation heuristic for task placement in 2d rtr hw
management. In FPL, pages pp. 241–250, 2004.

[14] J. Tabero, J. Septien, H. Mecha, and D. Mozos. Task
placement heuristic based on 3d-adjacency and look-
ahead in reconfigurable systems. In ASPDAC, pages pp.
396–401, 2006.

[15] H. Walder and M. Platzner. Reconfigurable hardware op-
erating systems: From design concepts to realizations. In
ERSA, 2003.

[16] T Wiangtong, Y.K. P. Cheung, and W. Luk. A unified
codesign run-time environment for the ultrasonic recon-
figurable compute. In FPL, 2003.

[17] Grant Wigley and David Kearney. Research issues in op-
erating systems for reconfigurable computing. In ERSAw,
2002.

[18] T.-Y. Yen and W. Wolf. Communication synthesis for dis-
tributed embedded systems. 1995.

