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ABSTRACT 

We describe architectural enhancements to Xilinx FPGAs 
that provide better support for the creation of dynamically 
reconfigurable designs.  These are augmented by a new 
design methodology that uses pre-routed IP cores for 
communication between static and dynamic modules and 
permits static designs to route through regions otherwise 
reserved for dynamic modules.  A new CAD tool flow to 
automate the methodology is also presented.  The new tools 
initially target the Virtex-II, Virtex-II Pro and Virtex-4 
families and are derived from Xilinx’s commercial CAD 
tools. 

1. INTRODUCTION 
An FPGA that is dynamically reconfigurable is capable of 
being partially reconfigured while operational without 
compromising the integrity of the applications running on 
those parts of the FPGA that are not being reconfigured.  
Researchers have reported many reasons why the ability to 
time multiplex hardware dynamically on a single FPGA is 
advantageous.  These include applications as diverse as: 

 Reducing the size of FPGA required for implementing 
a given function with consequent reductions in cost 
and/or power consumption [1, 2, 3] 

 Improving FPGA fault tolerance [4, 5] 
 Accelerating configurable computing [6, 7] 
 Thermal monitoring of the FPGA die [8] 

The research community has responded to the challenges of 
realizing these types of systems by proposing a variety of 
design flows and CAD tools for the creation of dynamically 
reconfigurable systems.  Perhaps the most influential of 
these efforts is JBits [9] which is essentially a structural 
design flow based on the Java programming language.  
Most of the reported work describes experimental systems 
that have never been commercialized.  A recent attempt at a 
design environment for commercial FPGAs and CAD tools 
was reported by Nasi et al [10] but the capabilities of the 
FPGAs targeted are very modest. 
 The contribution of this paper is to report new 
architectural enhancements to Xilinx FPGAs that better 
support the creation of dynamically reconfigurable designs.  

In addition, a new design methodology is presented that 
uses pre-routed IP cores for communication between static 
and dynamic modules.  It introduces a new capability that 
permits nets associated with the static portion of a design to 
be routed through regions in which the logic is reserved 
exclusively for implementing dynamic modules.  The CAD 
tool flow to automate this methodology is based on Xilinx’s 
commercial tools for FPGA design.  The combination of 
new architectural features, new IP cores, an improved 
design methodology and supporting CAD tools makes the 
process of designing dynamically reconfigurable systems 
with industrial quality devices and tools much more 
accessible. 

1.1. Note on terminology 

In this paper we use the terms active partial reconfiguration 
and dynamic reconfiguration synonymously.  Other authors 
have preferred the term run-time reconfiguration (or 
permutations of the above) to describe essentially the same 
capability.  We also use the terms static design and base 
design interchangeably so that during dynamic 
reconfiguration the static or base design is not reconfigured 
and hence its operation is not compromised in any way.  
For historical reasons the new CAD tool flow introduced 
here is referred to as the early access partial 
reconfiguration flow or PR flow for short.  In this context, 
support for dynamic reconfiguration is implicit. 

1.2. Organization 

In the next section we review the most important new 
developments in support of dynamic reconfiguration from 
an architectural perspective.  Three main topics are 
addressed.  The first is the replacement of hard-wired tri-
state buffers (TBUFs) with pre-routed bus macros as the 
preferred mechanism for implementing the communication 
ports to interface static and dynamic regions of a design.  
The second is the reduction in the granularity of the unit of 
reconfiguration from a full device column in a Virtex-II or 
Virtex-II Pro FPGA to a smaller unit of sixteen CLBs in the 
Virtex-4 architecture.  Finally, we describe enhancements 



 

Fig.1  Basic 8-input, 8-output left-to-right bus macro

 

Fig. 2  V-4 LX25 with 4 partially reconfigurable regions

to the internal configuration access port (ICAP) that 
improve the bandwidth of that interface.  In section 3 we 
present the new design methodology for dynamically 
reconfigurable circuits on Virtex-II, Virtex-II Pro and 
Virtex-4 FPGAs.  Section 4 concludes the paper and 
identifies some opportunities for future work. 

2. NEW FPGA CAPABILITIES 

2.1. Bus macros replace TBUFs 

Earlier design flows had recommended the use of tri-state 
buffers that were hard-wired into the architecture of the 
Xilinx FPGA architectures [11].  However, this practice is 
discouraged with newer architectures for two reasons.  The 
effectiveness of TBUFs was compromised by their pre-
determined locations and the fact that they were dispersed 
across the architecture.  Practical design experience 
highlighted the need for greater concentrations of 
connections between static and dynamic regions and more 
flexibility in where they could be located. 
 The removal of TBUFs from newer architectures also 
made the search for an alternative more urgent.  The 
solution is a family of pre-routed macros generically 
referred to as bus macros [12].  These are implemented as 
relationally placed macros (RPMs) in the Xilinx design 
flow terminology.   An example of a simple bus macro for a 
Virtex-II device is shown in Fig. 2.  It consists of two 
configurable logic blocks (CLBs), one on either side of the 
module boundary between a static region and a 
reconfigurable region or vice versa.  Within each Virtex-II 
CLB there are four logic slices and one slice can implement 
two unidirectional connections, from left-to right in the case 
of Fig. 1. 

 Each of the four slices on the left has two outputs (X, Y) 
and these are routed across the module boundary to two of 
the inputs on each of the corresponding slices on the right 
hand side.  Thus two CLBs can efficiently implement 8 
interface ports.  Note that the connections to the nets of the 

static and dynamic regions are not shown in Fig. 2.  The 
nets would be connected to the unused terminals shown on 
each of the slices.  Since CLBs are the basic primitives of 
all Xilinx FPGA architectures, they are both abundant and 
ubiquitous, allowing us to create bus macros for any 
architecture and place them with maximum freedom.  
Separate bus macros are created for connections in the 
right-to-left direction.  Many other permutations are 
possible, including the following, which are available with 
the early access tool release: 

 Bus macros that are expanded “horizontally” so that 
the input and output CLBs are separated by an even 
number of columns.  These are useful to permit 
“nesting” of macros of successive widths to form 
denser concentrations for high bandwidth interfaces 

 Synchronous bus macros with registered inputs and 
outputs with optional clock enables 

 Vertically oriented bus macros 

2.2. Unit of reconfiguration granularity 

FPGAs are configured by loading application specific data 
into their configuration memories. The configuration file 
consists of a number of packets that typically contain 
configuration control information as well as the 
configuration data itself.  Virtex-II and Virtex-II Pro 
devices are dynamically reconfigurable and a single frame 
is the smallest unit of reconfiguration. The precise number 
of frames and the number of bits per frame are device-
dependent for the different devices in the family. The 
number of bits per frame is proportional to the height of the 
device, measured in CLBs.  For example the smallest 
family member, the XC2V40, consists of an array of 8 by 8 
CLBs while the largest XC2V8000 has 112 by 104 CLBs.  
Consequently, the unit of reconfiguration, as measured in 
bits, scales adversely with increasing device size, from 832 
bits in the best case to 9,152 bits in the worst case. 
 In Virtex-4 devices, the unit of reconfiguration 
granularity is a smaller, bit-wide column corresponding to 
16 CLBs (or integer multiples thereof) and is independent 
of device size or family (LX, SX or FX).  All Virtex-4 
configuration frames consist of forty-one 32-bit words 
resulting in a total of 1,312 bits per frame.   



Fig. 3 Virtex-II Pro versus Virtex-4 reconfiguration speeds

It is now feasible to dynamically reconfigure regions as 
small as 16 CLBs high and to have more than one of these 
regions arranged vertically for the first time as shown in 
Fig. 2.  Note that the floorplan of the Virtex-4 LX25 is 
shown rotated through 90 degrees in the diagram. 

2.3. Upgraded internal configuration access port 

The Virtex-II and Virtex-II Pro were the first Xilinx 
architectures to have internal reconfiguration access ports 
(ICAP).  These ports provide an 8-bit input data bus and an 
8-bit output data bus which can be used by an internal 
controller to reconfigure and read back configuration 
memory. When combined with an internal soft or hard 
microprocessor the ICAP has been used to build self-
controlling, dynamically reconfigurable systems [13]. 
 SelectMap and ICAP are the external and internal 
reconfiguration ports for Xilinx FPGAs respectively.  The 
three Virtex-4 families all feature an updated 
reconfiguration interface. The base functionality and the 
intended use models of the new ICAP are identical to its 
predecessor but the new port now has 32-bit wide input and 
output data buses and is specified to run at the same speed 
as the external SelectMap interface (100 MHz). When 
combined with the 16-CLB reconfiguration granularity, the 
speed of reconfiguration can be increased by as much as an 
order of magnitude for smaller modules. 
 Fig. 3 shows the reconfiguration latency in milliseconds 
(x-axis, top) and reconfiguration frequency in 
reconfigurations per second (x-axis, bottom) for partial 
reconfiguration of a range of Virtex-II Pro and Virtex-4 LX 
devices.   

The impact of the greater bandwidth of the ICAP interface 
in the Virtex-4 devices is clear.  (Note that nothing about 
the use of the term dynamic reconfiguration implies a 
particular speed of reconfiguration, though faster 
reconfiguration is generally more desirable).   

3. DESIGN METHODOLOGY 
Implementing a dynamically reconfigurable system on an 
FPGA introduces several additional steps in the design 
process.  The complete partial reconfiguration design flow 
is shown in Fig. 4.  In this section we have decomposed the 
flow into seven key steps and we consider each in turn.  
The design process is enabled by two key enhancements to 
the mainstream design tools. 
 The first is the removal of the restriction that Virtex-II 
and Virtex-II Pro devices can only be partially reconfigured 
in whole columns.  As a result, the region being 
reconfigured can now be of any rectangular size.  There is 
one proviso but this is automatically taken care of by the 
new tools.  For Virtex-II and Virtex-II Pro devices, look-up 
tables used as distributed RAMs (LUTRAMs) or shift 
registers (SRL16s) must not appear in the static regions 
directly above or below the rectangular region being 
dynamically reconfigured.    
 The second major change in the new PR software flow 
permits signals in the static (or base) design to cross 
through partially reconfigurable regions without the use of a 
bus macro. This enhancement dramatically improves timing 
performance and simplifies the process of building a PR 
design.  Virtex devices have glitchless reconfiguration and 
it is this feature that enables static routes to cross PR 
regions.  Glitchless reconfiguration guarantees that if a 
configuration bit has the same value before and after 
reconfiguration no glitch will occur on that bit during 
configuration.  As long as the static routes are implemented 
identically in every PRM no glitches will occur on them. 

3.1. Design phase 1: Planning & synthesis 

The designer begins by identifying the opportunity to 
deploy dynamic reconfiguration.  He partitions the design 
into a static subset and one or more dynamic subsets.  The 
static subset is characterized by a one-to-one mapping 
between its logical functions and the resources used to 
implement that functionality.   This part of the design maps 
most closely to the conventional FPGA design flow but as 
we shall see, some changes will be introduced here also.
 The designer may identify one or more dynamically 
reconfigurable subsets.  Each of these dynamic subsets is 
associated with a set of functions or tasks whose operation 
is mutually exclusive with respect to each other in time.  If 
the cardinality of a particular mutually exclusive (mutex) 
set is n, then there will be an n-to-1 mapping between the 
tasks in that mutex set and the dynamically reconfigurable 
subset of the FPGA that will be used to implement those 



functions.  In the methodology described here, the term 
partially reconfigurable region (PRR) is used to describe the 
area of the FPGA that will be reserved for implementing all 
of the tasks in one dynamically reconfigurable subset.  The 
term partially reconfigurable module (PRM) is used to 
describe the implementation of a single dynamic task that 
will be mapped into a PRR.  Each task in the subset will be 
implemented as a partially reconfigurable module (PRM) 
that will be swapped in and out of its corresponding PRR at 
run-time. 
 The designer must establish precisely the nature of the 
communication between the modules in a given region and 
the static logic.  For each input or output, an appropriate 
bus macro of the correct orientation must be allocated.  
Note that all communication from dynamic regions to or 
from device I/O must be routed through the static logic. 
 At the end of the first stage, the design must be 
organized into a series of HDL files with a pre-determined 
file structure.  The first of these is the top-level file, which 
we will call TOP for simplicity.  TOP contains all global 
logic such as clock primitives (e.g. digital clock managers 
(DCMs) and BUFG global clock buffers); IO port 
instantiations; bus macro instantiations; signal declarations; 
base design instantiations; and PR module instantiations. A 
user constraint file (.UCF) is also created for TOP. 
 Next come all the HDL files for the static portion of the 
design.  Then, finally, the HDL files for each of the PRMs 
associated with each of the PRRs must be included.  In 
synthesizing the design files, the synthesis parameter 

IOBUF (in XST, the Xilinx synthesis tool set) must be 
enabled for TOP and disabled for all other files.  

3.2. Design phase 2: Budgeting with PlanAhead 

The goal of the budgeting phase is to determine the size and 
location of the PRRs and to lock down the placement of the 
bus macros.  The budgeting phase can be done manually. 
The process, however, is laborious and instead many of the 
steps have been automated with a tool called PlanAhead.  
 PlanAhead is a Xilinx software tool for the design and 
analysis of circuits on Xilinx FPGAs, and is based on the 
principles of hierarchical floorplanning.  It is deployed 
between synthesis and place-and-route and enables the 
designer to more rapidly analyze, modify, constrain and 
implement their designs.  PlanAhead is an optional tool that 
complements the mainstream ISE tool chain.  It is typically 
deployed for designs requiring the highest performance and 
consistently leads to faster and more compact solutions. It 
also promotes design reuse through the creation of reusable 
intellectual property blocks. 
 PlanAhead allows us to import the logical design 
hierarchy in the form of EDIF files.  We can then create a 
corresponding physical hierarchy and map it to an initial 
floorplan.  This step is remarkably straightforward due to 
the tool’s highly intuitive interface and allows us to begin 
the budgeting phase.  PlanAhead uses the concept of a 
physical block (PBlock) as the basic unit of physical 
hierarchy.  PBlocks partition a design physically and can be 
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composed hierarchically for block nesting.  Once created, 
the PBlocks can be placed and sized on a floorplan of the 
target FPGA.  Various estimates of performance are 
immediately available (prior to place and route) to guide the 
designer in permuting the floorplan and iteratively 
improving the design. 
 The partial flow is based on rectangular PRRs.  In the 
budgeting phase we determine the size and location of the 
PRRs by allocating them to a PBlock.  For any PBlock, 
PlanAhead can interactively provide estimates of the 
resources used by the PRR as it is moved or re-sized on the 
floorplan.  This makes it very easy to test that each PRM 
associated with a given PRR will indeed fit in that rectangle 
and to determine the best shape and location for the PRR.  
Once the size and location of the PRRs are optimized, the 
bus macros must be placed in a CLB column inside the 
PBlock that is close to the PRR boundary so that it can 
physically straddle the dynamic and static regions.  
 PlanAhead generates a customized constraints file 
(.UCF) for each module.  The static design components are 
mapped to a single PBlock and are required to have an 
AREA_GROUP constraint but do not need a RANGE 
constraint.  All PRMs must have both AREA_GROUP and 
RANGE constraints.  The RANGE constraints enumerate  
the resources (slices, BRAMs, etc) required by the PRMs. 

3.3. Design phase 3: Top level context 

After the top level HDL file and UCF have been created 
and synthesized it is necessary to translate this information 
into a native Xilinx format.  This is done by running the 
tool NGDBuild with the ‘-modular initial’ option on the 
synthesized netlist.  This creates a file which contains the 
top level context.  The top level context includes IO 
placement, clock resources, bus macros, static and PRM 
module placement.  This file is used to pass context 
information to the later static implementation and PRM 
implementation phases. 

3.4. Design phase 4: Static implementation 

The purpose of the static implementation phase is to place 
and route the static subset of the design.  This phase 
requires that the synthesized netlists that comprise the static 
subset of the design be copied into a reserved directory.  
The bus macros and user constraint file containing 
information about the context and static logic must also be 
copied to this directory.  NGDBuild is then run in this 
directory referencing the top level context file that was 
generated in phase 3.  Finally MAP and PAR are run 
resulting in a placed and routed file for the static part of the 
design. 
 The static design is prohibited from using logic 
resources in the PR regions.  However, the static design is 
allowed to use routing resources contained in PR regions.   

Allowing the static design to route through PR regions 
improves the routability and performance of the static 
design.   The routing resources in the PR regions that are 
used for static routes are stored in a file called “static.used”.  
This file is used in the PRM implementation phase 
(described next) and the static routes are copied into every 
PRM and these routing resources cannot be used by the 
PRM logic. 

3.5. Design phase 5: PRM implementation 

The PRM implementation phase builds the PR modules that 
will go into the PR regions.  Each PRM is implemented 
separately within its own directory.  The PRM directories 
contain the synthesized netlist for the PRM and the user 
constraints file containing information about the particular 
PRM and associated context logic.  The “static.used” file 
generated during the static implementation phase is copied 
into the PRM directories and renamed “arcs.exclude”.  
NGDBuild, MAP and PAR are run in each PRM directory.  
NGDBuild is run with the ‘-modular module_name’ option 
and references the top-level context file generated in phase 
3.  The MAP and PAR tools do not require any special 
options.  PAR automatically looks for and uses any 
“arcs.exclude” file that is present in the PRM 
implementation directory. 

3.6. Design phase 6: Merge 

The final implementation phase is the merge phase.  During 
the merge phase, a complete design is built from the static 
design and each PRM.  As many complete designs will be 
built as there are PRMs.  The merge function is performed 
by running the PR_verifydesign and PR_assemble scripts.  
These tools are unique to the EA PR software. 
 The PR_verifydesign script will generate a merged full 
bitstream and partial bitstream for each PRM.  The 
PR_assemble script is required to generate full bitstreams 
for designs that have multiple PR regions.  The 
PR_assemble script takes a list of PRMs, one for each PRR, 
and generates a full bitstream for the merged design.  The 
resulting bitstream can be used as the initial full bitstream 
with the desired PRMs already in place. The PR_assemble 
script also generates “blanking” bitstreams for the PR 
regions.  A “blanking” bitstream is a default configuration 
containing no PRM logic.  The “blanking” bitstreams do 
contain the static route-throughs.  Blanking bitstreams can 
be loaded when a PRM is not required which can reduce 
power consumption. 

3.7. Design phase 7: Bitstream download and test 

Once the full and partial bitstreams have been generated 
they need to be tested.  The early access PR version of the 



iMPACT (the Xilinx tool for downloading bitstreams to 
program devices) has been updated to support downloading 
partial bitstream via JTAG.  The general procedure is to 
first download a full bitstream using iMPACT and then to 
download the various partial bitstreams to verify that they 
work as well.  Once the full and partial bitstreams have 
been validated using iMPACT, they can be integrated into 
an embedded solution. 

4. CONCLUSIONS 
The current early access version of the PR tools are being 
offered to well-qualified partners who are willing to deploy 
them and contribute feedback for their improvement.  A 
number of reference designs are also included. For 
interested readers, more details are available at: 
  www.xilinx.com/support/prealounge/protected/index.htm.  
As one would expect with an early-access tool flow, there 
are opportunities for improvements and future work.  One 
immediate opportunity would be to extend device support 
to include Xilinx’s latest Virtex-5 FPGAs.   

There are also opportunities to better automate the 
sizing of PRRs in the PlanAhead tool.  At present, the 
designer must consider each PRM to identify the final 
requirements on PRR resources.  Finally, we have not 
discussed automating support for design simulation or 
reconfiguration scheduling in this paper and these would 
be important candidates for future work.  
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