
INVITED PAPER: ENHANCED ARCHITECTURES, DESIGN METHODOLOGIES AND
CAD TOOLS FOR DYNAMIC RECONFIGURATION OF XILINX FPGAS

Patrick Lysaght, Brandon Blodget, Jeff Mason

Xilinx Research Labs
 San Jose, Ca. 95124, USA

 email: patrick.lysaght@xilinx.com,
brandon.blodget@xilinx.com,

jeff.mason@xilinx.com.

Jay Young, Brendan Bridgford

Xilinx
Longmont, Co. 80503, USA

 email: jay.young @xilinx.com,
brendan.bridgford@xilinx.com.

ABSTRACT

We describe architectural enhancements to Xilinx FPGAs
that provide better support for the creation of dynamically
reconfigurable designs. These are augmented by a new
design methodology that uses pre-routed IP cores for
communication between static and dynamic modules and
permits static designs to route through regions otherwise
reserved for dynamic modules. A new CAD tool flow to
automate the methodology is also presented. The new tools
initially target the Virtex-II, Virtex-II Pro and Virtex-4
families and are derived from Xilinx’s commercial CAD
tools.

1. INTRODUCTION
An FPGA that is dynamically reconfigurable is capable of
being partially reconfigured while operational without
compromising the integrity of the applications running on
those parts of the FPGA that are not being reconfigured.
Researchers have reported many reasons why the ability to
time multiplex hardware dynamically on a single FPGA is
advantageous. These include applications as diverse as:

 Reducing the size of FPGA required for implementing
a given function with consequent reductions in cost
and/or power consumption [1, 2, 3]

 Improving FPGA fault tolerance [4, 5]
 Accelerating configurable computing [6, 7]
 Thermal monitoring of the FPGA die [8]

The research community has responded to the challenges of
realizing these types of systems by proposing a variety of
design flows and CAD tools for the creation of dynamically
reconfigurable systems. Perhaps the most influential of
these efforts is JBits [9] which is essentially a structural
design flow based on the Java programming language.
Most of the reported work describes experimental systems
that have never been commercialized. A recent attempt at a
design environment for commercial FPGAs and CAD tools
was reported by Nasi et al [10] but the capabilities of the
FPGAs targeted are very modest.
 The contribution of this paper is to report new
architectural enhancements to Xilinx FPGAs that better
support the creation of dynamically reconfigurable designs.

In addition, a new design methodology is presented that
uses pre-routed IP cores for communication between static
and dynamic modules. It introduces a new capability that
permits nets associated with the static portion of a design to
be routed through regions in which the logic is reserved
exclusively for implementing dynamic modules. The CAD
tool flow to automate this methodology is based on Xilinx’s
commercial tools for FPGA design. The combination of
new architectural features, new IP cores, an improved
design methodology and supporting CAD tools makes the
process of designing dynamically reconfigurable systems
with industrial quality devices and tools much more
accessible.

1.1. Note on terminology

In this paper we use the terms active partial reconfiguration
and dynamic reconfiguration synonymously. Other authors
have preferred the term run-time reconfiguration (or
permutations of the above) to describe essentially the same
capability. We also use the terms static design and base
design interchangeably so that during dynamic
reconfiguration the static or base design is not reconfigured
and hence its operation is not compromised in any way.
For historical reasons the new CAD tool flow introduced
here is referred to as the early access partial
reconfiguration flow or PR flow for short. In this context,
support for dynamic reconfiguration is implicit.

1.2. Organization

In the next section we review the most important new
developments in support of dynamic reconfiguration from
an architectural perspective. Three main topics are
addressed. The first is the replacement of hard-wired tri-
state buffers (TBUFs) with pre-routed bus macros as the
preferred mechanism for implementing the communication
ports to interface static and dynamic regions of a design.
The second is the reduction in the granularity of the unit of
reconfiguration from a full device column in a Virtex-II or
Virtex-II Pro FPGA to a smaller unit of sixteen CLBs in the
Virtex-4 architecture. Finally, we describe enhancements

Fig.1 Basic 8-input, 8-output left-to-right bus macro

Fig. 2 V-4 LX25 with 4 partially reconfigurable regions

to the internal configuration access port (ICAP) that
improve the bandwidth of that interface. In section 3 we
present the new design methodology for dynamically
reconfigurable circuits on Virtex-II, Virtex-II Pro and
Virtex-4 FPGAs. Section 4 concludes the paper and
identifies some opportunities for future work.

2. NEW FPGA CAPABILITIES

2.1. Bus macros replace TBUFs

Earlier design flows had recommended the use of tri-state
buffers that were hard-wired into the architecture of the
Xilinx FPGA architectures [11]. However, this practice is
discouraged with newer architectures for two reasons. The
effectiveness of TBUFs was compromised by their pre-
determined locations and the fact that they were dispersed
across the architecture. Practical design experience
highlighted the need for greater concentrations of
connections between static and dynamic regions and more
flexibility in where they could be located.
 The removal of TBUFs from newer architectures also
made the search for an alternative more urgent. The
solution is a family of pre-routed macros generically
referred to as bus macros [12]. These are implemented as
relationally placed macros (RPMs) in the Xilinx design
flow terminology. An example of a simple bus macro for a
Virtex-II device is shown in Fig. 2. It consists of two
configurable logic blocks (CLBs), one on either side of the
module boundary between a static region and a
reconfigurable region or vice versa. Within each Virtex-II
CLB there are four logic slices and one slice can implement
two unidirectional connections, from left-to right in the case
of Fig. 1.

 Each of the four slices on the left has two outputs (X, Y)
and these are routed across the module boundary to two of
the inputs on each of the corresponding slices on the right
hand side. Thus two CLBs can efficiently implement 8
interface ports. Note that the connections to the nets of the

static and dynamic regions are not shown in Fig. 2. The
nets would be connected to the unused terminals shown on
each of the slices. Since CLBs are the basic primitives of
all Xilinx FPGA architectures, they are both abundant and
ubiquitous, allowing us to create bus macros for any
architecture and place them with maximum freedom.
Separate bus macros are created for connections in the
right-to-left direction. Many other permutations are
possible, including the following, which are available with
the early access tool release:

 Bus macros that are expanded “horizontally” so that
the input and output CLBs are separated by an even
number of columns. These are useful to permit
“nesting” of macros of successive widths to form
denser concentrations for high bandwidth interfaces

 Synchronous bus macros with registered inputs and
outputs with optional clock enables

 Vertically oriented bus macros

2.2. Unit of reconfiguration granularity

FPGAs are configured by loading application specific data
into their configuration memories. The configuration file
consists of a number of packets that typically contain
configuration control information as well as the
configuration data itself. Virtex-II and Virtex-II Pro
devices are dynamically reconfigurable and a single frame
is the smallest unit of reconfiguration. The precise number
of frames and the number of bits per frame are device-
dependent for the different devices in the family. The
number of bits per frame is proportional to the height of the
device, measured in CLBs. For example the smallest
family member, the XC2V40, consists of an array of 8 by 8
CLBs while the largest XC2V8000 has 112 by 104 CLBs.
Consequently, the unit of reconfiguration, as measured in
bits, scales adversely with increasing device size, from 832
bits in the best case to 9,152 bits in the worst case.
 In Virtex-4 devices, the unit of reconfiguration
granularity is a smaller, bit-wide column corresponding to
16 CLBs (or integer multiples thereof) and is independent
of device size or family (LX, SX or FX). All Virtex-4
configuration frames consist of forty-one 32-bit words
resulting in a total of 1,312 bits per frame.

Fig. 3 Virtex-II Pro versus Virtex-4 reconfiguration speeds

It is now feasible to dynamically reconfigure regions as
small as 16 CLBs high and to have more than one of these
regions arranged vertically for the first time as shown in
Fig. 2. Note that the floorplan of the Virtex-4 LX25 is
shown rotated through 90 degrees in the diagram.

2.3. Upgraded internal configuration access port

The Virtex-II and Virtex-II Pro were the first Xilinx
architectures to have internal reconfiguration access ports
(ICAP). These ports provide an 8-bit input data bus and an
8-bit output data bus which can be used by an internal
controller to reconfigure and read back configuration
memory. When combined with an internal soft or hard
microprocessor the ICAP has been used to build self-
controlling, dynamically reconfigurable systems [13].
 SelectMap and ICAP are the external and internal
reconfiguration ports for Xilinx FPGAs respectively. The
three Virtex-4 families all feature an updated
reconfiguration interface. The base functionality and the
intended use models of the new ICAP are identical to its
predecessor but the new port now has 32-bit wide input and
output data buses and is specified to run at the same speed
as the external SelectMap interface (100 MHz). When
combined with the 16-CLB reconfiguration granularity, the
speed of reconfiguration can be increased by as much as an
order of magnitude for smaller modules.
 Fig. 3 shows the reconfiguration latency in milliseconds
(x-axis, top) and reconfiguration frequency in
reconfigurations per second (x-axis, bottom) for partial
reconfiguration of a range of Virtex-II Pro and Virtex-4 LX
devices.

The impact of the greater bandwidth of the ICAP interface
in the Virtex-4 devices is clear. (Note that nothing about
the use of the term dynamic reconfiguration implies a
particular speed of reconfiguration, though faster
reconfiguration is generally more desirable).

3. DESIGN METHODOLOGY
Implementing a dynamically reconfigurable system on an
FPGA introduces several additional steps in the design
process. The complete partial reconfiguration design flow
is shown in Fig. 4. In this section we have decomposed the
flow into seven key steps and we consider each in turn.
The design process is enabled by two key enhancements to
the mainstream design tools.
 The first is the removal of the restriction that Virtex-II
and Virtex-II Pro devices can only be partially reconfigured
in whole columns. As a result, the region being
reconfigured can now be of any rectangular size. There is
one proviso but this is automatically taken care of by the
new tools. For Virtex-II and Virtex-II Pro devices, look-up
tables used as distributed RAMs (LUTRAMs) or shift
registers (SRL16s) must not appear in the static regions
directly above or below the rectangular region being
dynamically reconfigured.
 The second major change in the new PR software flow
permits signals in the static (or base) design to cross
through partially reconfigurable regions without the use of a
bus macro. This enhancement dramatically improves timing
performance and simplifies the process of building a PR
design. Virtex devices have glitchless reconfiguration and
it is this feature that enables static routes to cross PR
regions. Glitchless reconfiguration guarantees that if a
configuration bit has the same value before and after
reconfiguration no glitch will occur on that bit during
configuration. As long as the static routes are implemented
identically in every PRM no glitches will occur on them.

3.1. Design phase 1: Planning & synthesis

The designer begins by identifying the opportunity to
deploy dynamic reconfiguration. He partitions the design
into a static subset and one or more dynamic subsets. The
static subset is characterized by a one-to-one mapping
between its logical functions and the resources used to
implement that functionality. This part of the design maps
most closely to the conventional FPGA design flow but as
we shall see, some changes will be introduced here also.
 The designer may identify one or more dynamically
reconfigurable subsets. Each of these dynamic subsets is
associated with a set of functions or tasks whose operation
is mutually exclusive with respect to each other in time. If
the cardinality of a particular mutually exclusive (mutex)
set is n, then there will be an n-to-1 mapping between the
tasks in that mutex set and the dynamically reconfigurable
subset of the FPGA that will be used to implement those

functions. In the methodology described here, the term
partially reconfigurable region (PRR) is used to describe the
area of the FPGA that will be reserved for implementing all
of the tasks in one dynamically reconfigurable subset. The
term partially reconfigurable module (PRM) is used to
describe the implementation of a single dynamic task that
will be mapped into a PRR. Each task in the subset will be
implemented as a partially reconfigurable module (PRM)
that will be swapped in and out of its corresponding PRR at
run-time.
 The designer must establish precisely the nature of the
communication between the modules in a given region and
the static logic. For each input or output, an appropriate
bus macro of the correct orientation must be allocated.
Note that all communication from dynamic regions to or
from device I/O must be routed through the static logic.
 At the end of the first stage, the design must be
organized into a series of HDL files with a pre-determined
file structure. The first of these is the top-level file, which
we will call TOP for simplicity. TOP contains all global
logic such as clock primitives (e.g. digital clock managers
(DCMs) and BUFG global clock buffers); IO port
instantiations; bus macro instantiations; signal declarations;
base design instantiations; and PR module instantiations. A
user constraint file (.UCF) is also created for TOP.
 Next come all the HDL files for the static portion of the
design. Then, finally, the HDL files for each of the PRMs
associated with each of the PRRs must be included. In
synthesizing the design files, the synthesis parameter

IOBUF (in XST, the Xilinx synthesis tool set) must be
enabled for TOP and disabled for all other files.

3.2. Design phase 2: Budgeting with PlanAhead

The goal of the budgeting phase is to determine the size and
location of the PRRs and to lock down the placement of the
bus macros. The budgeting phase can be done manually.
The process, however, is laborious and instead many of the
steps have been automated with a tool called PlanAhead.
 PlanAhead is a Xilinx software tool for the design and
analysis of circuits on Xilinx FPGAs, and is based on the
principles of hierarchical floorplanning. It is deployed
between synthesis and place-and-route and enables the
designer to more rapidly analyze, modify, constrain and
implement their designs. PlanAhead is an optional tool that
complements the mainstream ISE tool chain. It is typically
deployed for designs requiring the highest performance and
consistently leads to faster and more compact solutions. It
also promotes design reuse through the creation of reusable
intellectual property blocks.
 PlanAhead allows us to import the logical design
hierarchy in the form of EDIF files. We can then create a
corresponding physical hierarchy and map it to an initial
floorplan. This step is remarkably straightforward due to
the tool’s highly intuitive interface and allows us to begin
the budgeting phase. PlanAhead uses the concept of a
physical block (PBlock) as the basic unit of physical
hierarchy. PBlocks partition a design physically and can be

Design
Partitioning

Design
Floorplanning
and Budgeting

Top level
implementation

PRM
implementation

Merged
Bitstream

Generation

PRMs:
 HDL Files

Static and
Toplevel Design

HDL Files

Static Design
implementation

Placement
Constraints

Placement and
Context Constraints

Implemented
Static Design

Implemented
PRMs

PRM
Bitstreams

PRR ‘Blank’
Bitstreams

Static Design
Bitstreams Merged

with PRM Bitstreams

Reconfigurable
Design Specification

Static Routes
Excluded from

PRMs

Fig. 4 Partial Reconfiguration Design Flow

composed hierarchically for block nesting. Once created,
the PBlocks can be placed and sized on a floorplan of the
target FPGA. Various estimates of performance are
immediately available (prior to place and route) to guide the
designer in permuting the floorplan and iteratively
improving the design.
 The partial flow is based on rectangular PRRs. In the
budgeting phase we determine the size and location of the
PRRs by allocating them to a PBlock. For any PBlock,
PlanAhead can interactively provide estimates of the
resources used by the PRR as it is moved or re-sized on the
floorplan. This makes it very easy to test that each PRM
associated with a given PRR will indeed fit in that rectangle
and to determine the best shape and location for the PRR.
Once the size and location of the PRRs are optimized, the
bus macros must be placed in a CLB column inside the
PBlock that is close to the PRR boundary so that it can
physically straddle the dynamic and static regions.
 PlanAhead generates a customized constraints file
(.UCF) for each module. The static design components are
mapped to a single PBlock and are required to have an
AREA_GROUP constraint but do not need a RANGE
constraint. All PRMs must have both AREA_GROUP and
RANGE constraints. The RANGE constraints enumerate
the resources (slices, BRAMs, etc) required by the PRMs.

3.3. Design phase 3: Top level context

After the top level HDL file and UCF have been created
and synthesized it is necessary to translate this information
into a native Xilinx format. This is done by running the
tool NGDBuild with the ‘-modular initial’ option on the
synthesized netlist. This creates a file which contains the
top level context. The top level context includes IO
placement, clock resources, bus macros, static and PRM
module placement. This file is used to pass context
information to the later static implementation and PRM
implementation phases.

3.4. Design phase 4: Static implementation

The purpose of the static implementation phase is to place
and route the static subset of the design. This phase
requires that the synthesized netlists that comprise the static
subset of the design be copied into a reserved directory.
The bus macros and user constraint file containing
information about the context and static logic must also be
copied to this directory. NGDBuild is then run in this
directory referencing the top level context file that was
generated in phase 3. Finally MAP and PAR are run
resulting in a placed and routed file for the static part of the
design.
 The static design is prohibited from using logic
resources in the PR regions. However, the static design is
allowed to use routing resources contained in PR regions.

Allowing the static design to route through PR regions
improves the routability and performance of the static
design. The routing resources in the PR regions that are
used for static routes are stored in a file called “static.used”.
This file is used in the PRM implementation phase
(described next) and the static routes are copied into every
PRM and these routing resources cannot be used by the
PRM logic.

3.5. Design phase 5: PRM implementation

The PRM implementation phase builds the PR modules that
will go into the PR regions. Each PRM is implemented
separately within its own directory. The PRM directories
contain the synthesized netlist for the PRM and the user
constraints file containing information about the particular
PRM and associated context logic. The “static.used” file
generated during the static implementation phase is copied
into the PRM directories and renamed “arcs.exclude”.
NGDBuild, MAP and PAR are run in each PRM directory.
NGDBuild is run with the ‘-modular module_name’ option
and references the top-level context file generated in phase
3. The MAP and PAR tools do not require any special
options. PAR automatically looks for and uses any
“arcs.exclude” file that is present in the PRM
implementation directory.

3.6. Design phase 6: Merge

The final implementation phase is the merge phase. During
the merge phase, a complete design is built from the static
design and each PRM. As many complete designs will be
built as there are PRMs. The merge function is performed
by running the PR_verifydesign and PR_assemble scripts.
These tools are unique to the EA PR software.
 The PR_verifydesign script will generate a merged full
bitstream and partial bitstream for each PRM. The
PR_assemble script is required to generate full bitstreams
for designs that have multiple PR regions. The
PR_assemble script takes a list of PRMs, one for each PRR,
and generates a full bitstream for the merged design. The
resulting bitstream can be used as the initial full bitstream
with the desired PRMs already in place. The PR_assemble
script also generates “blanking” bitstreams for the PR
regions. A “blanking” bitstream is a default configuration
containing no PRM logic. The “blanking” bitstreams do
contain the static route-throughs. Blanking bitstreams can
be loaded when a PRM is not required which can reduce
power consumption.

3.7. Design phase 7: Bitstream download and test

Once the full and partial bitstreams have been generated
they need to be tested. The early access PR version of the

iMPACT (the Xilinx tool for downloading bitstreams to
program devices) has been updated to support downloading
partial bitstream via JTAG. The general procedure is to
first download a full bitstream using iMPACT and then to
download the various partial bitstreams to verify that they
work as well. Once the full and partial bitstreams have
been validated using iMPACT, they can be integrated into
an embedded solution.

4. CONCLUSIONS
The current early access version of the PR tools are being
offered to well-qualified partners who are willing to deploy
them and contribute feedback for their improvement. A
number of reference designs are also included. For
interested readers, more details are available at:
 www.xilinx.com/support/prealounge/protected/index.htm.
As one would expect with an early-access tool flow, there
are opportunities for improvements and future work. One
immediate opportunity would be to extend device support
to include Xilinx’s latest Virtex-5 FPGAs.

There are also opportunities to better automate the
sizing of PRRs in the PlanAhead tool. At present, the
designer must consider each PRM to identify the final
requirements on PRR resources. Finally, we have not
discussed automating support for design simulation or
reconfiguration scheduling in this paper and these would
be important candidates for future work.

5. ACKNOWLEDGEMENTS
Many colleagues at Xilinx have contributed both directly
and indirectly to the development of the current flow for
partial reconfiguration. These include Adam Donlin, Eric
Shiflet, Jason Moore, Manuel Uhm and Steve Lass. We
would like to record our thanks to all of them.
 We would also like to acknowledge that credit for the
original idea and deployment of the bus macros goes to the
team of Prof. Juergen Becker (including Michael Huebner,
Michael Ullmann and Tobias Becker) at the University of
Karlsruhe, Germany. The macros described here were
inspired by their earlier work, as described in [14, 15].

6. REFERENCES
[1] S. Trimberger, D. Carberry, A. Johnson, and J. Wong, “A

time-multiplexed FPGA. In Proc. 5th IEEE Symp. on Field-
Programmable Custom Computing Machines 1997, pp. 22–
28.

[2] Y. Adachi, K. Ishikawa, S. Tsutsumi, and H. Amano, “An
implementation of the Rijndael on Async-WASMII”,
International Conference on Field-Programmable
Technology (FPT), 2003. 15-17 Dec. 2003, pp. 44 – 51.

[3] J. Becker, M. Huebner, and M. Ullmann, “Power estimation
and power measurement of Xilinx Virtex FPGAs: trade-offs
and limitations”, 16th Symposium on Integrated Circuits and
Systems Design, (SBCCI), 8-11 Sept. 2003, pp. 283 - 288.

[4] J. Emmert, C. Stroud, B. Skaggs, and M. Abramovici,
“Dynamic fault tolerance in FPGAs via partial
reconfiguration”, Field-Programmable Custom Computing
Machines, 2000 IEEE Symposium on, 17-19 April 2000, pp.
165 – 174.

[5] M. Gokhale, P. Graham, E. Johnson, N. Rollins, and M.
Wirthlin, “Dynamic reconfiguration for management of
radiation-induced faults in FPGAs”, Parallel and Distributed
Processing Symposium, 2004. Proceedings, 18th
International 26-30 April 2004.

[6] K. Bondalapati, and V. K. Prasanna,, “Reconfigurable
computing systems”, Proceedings of the IEEE Volume 90,
Issue 7, July 2002, pp. 1201 – 1217.

[7] S. Vassiliadis, S. Wong, G. Gaydadjiev, K. Bertels, G.
Kuzmanov, amd E. M. Panainte, “The MOLEN
polymorphic processor”, IEEE Transactions on Computers,
Volume 53, Issue 11, Nov. 2004, pp.1363 – 1375.

[8] S. Lopez-Buedo, J. Garrido, E. Boemo, “Dynamically
inserting, operating, and eliminating thermal sensors of
FPGA-based systems”, IEEE Transactions on Components
and Packaging Technologies, Volume 25, Issue 4, Dec.
2002, pp. 561 – 566.

[9] S. Guccione, D. Levi, and P. Sundararajan, “JBits: Java-
based interface for reconfigurable computing”, Proc. Conf.
on Military and Aerospace Application of Programmable
Devices and Technology, 1999.

[10] K. Nasi, T. Karouhalis, M. Danek, and Z. Pohl, Z.
“FIGARO - an automatic tool flow for designs with dynamic
reconfiguration”, Field Programmable Logic and
Applications, 2005. International Conference on, 24-26 Aug.
2005, pp. 590 – 593.

[11] “Two Flows for Partial Reconfiguration: Module Based or
Difference Based”, Xilinx Application Note XAPP290,
version 1.1, Xilinx, Inc. (2003).

[12] “Two Flows for Partial Reconfiguration: Module Based or
Difference Based”, Xilinx Application Note XAPP290
(V1.2), ww.xilinx.com/bvdocs/appnotes/xapp290.pdf, Sept.
9, 2004.

[13] B. Blodget, S. McMillan and P. Lysaght, “A lightweight
approach for embedded reconfiguration of FPGAs”, Design,
Automation and Test in Europe Conference and Exhibition,
2003, pp. 399 – 400.

[14] J. Becker, M. Huebner, M. Ullmann, “Real-Time
Dynamically Run-Time Reconfiguration for Power-/Cost
optimized Virtex FPGA Realizations”, Proceedings of the
IFIP International Conference on Very Large Scale
Integration (VLSI-SoC), Darmstadt, Germany, December 1
–3 2003, pp. 129 – 134.

[15] M. Hübner, M. Ullmann, L. Braun, A. Klausmann, J.Becker,
“Scalable Application-Dependent Network on Chip
Adaptivity for Dynamical Reconfigurable Real-Time
Systems”, Proceedings of the 14th International Conference
on Field Programmable Logic and Application (FPL'04),
2004, August, Springer, pp. 1037-1041.

