
The Design and Implementation of Hardware Task Configuration 
Management Unit on Dynamically Reconfigurable SoC 

Xiao-Wei WANG,, Wei-Nan CHEN, Ying 
WANG, Hong-Jun YOU,Cheng-Lian PENG 

Computer Science and Technology School 
 Fudan University 
 Shanghai, CHINA 

Xiao-Wei WANG 
Shanghai Branch 

Navy Equipment& Technology Institute 
Shanghai, CHINA 

Email :{ 051021035, wnchen, clpeng} @fudan.edu.cn

Abstract—The advantages and the flexibility introduced into 
the hardware implementation by partial dynamic 
reconfiguration have rapidly changed the design flow of 
embedded systems. Configuration management is an important 
issue in operating system for dynamically reconfigurable 
system-on-chip. Reconfiguration overhead affects the 
performance of reconfigurable system. This paper presents a 
hardware implemented efficient configuration management 
unit. Wet define our operating system framework based on 
unified multitask programming model for reconfigurable 
system-on-chip at first. Then the detailed design and 
implementation of the configuration management unit are 
given. Finally a use case is presented, which shows the 
efficiency of the configuration. 
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I.. INTRODUCTION AND RELATED WORK

Dynamically Reconfigurable System-on-Chip 
(DRSoC)integrates dynamically reconfigurable hardware 
with embedded processor on the same die [1].It is always 
used for data stream driven, mixed hardware/software 
applications like data encryption, signal processing and so on 
[2][3][4]. The system is a combination of software and 
hardware, which strongly control-dominated at a system 
level and need real-time operating system (RTOS) services 
for synchronization, communication and configuration 
management. RTOS for HW management has been recently 
introduced. Proofs of concepts are exhibited in [6] and [7]. 
These experiments show that RTOS level management of 
reconfigurable architectures can be considered as available 
from a research perspective. In [6]  the author proposed 
communication API based on message passing where 
communication between HW and SW tasks are handled with 
a Hardware Abstraction Layer. In [7], the RTOS is mainly 
dedicated to the management (placement / communication) 
of HW tasks. In [8], more details are given about a Network-
On-Chip communication scheme. The creation of hardware 
task is implemented by configuration, so our paper focuses 
on configuration management. 

  The main task for configuration management 
is to select the proper dynamic hardware tasks and 
write the corresponding files into configuration 
memory of the FPGA. The configuration overhead 
is the main performance bottleneck of dynamic 
partial reconfigurable system. One of the important 
jobs of the configuration managements is to reduce 
configuration overhead. After the design is placed 
and routed,there are three methods to short the 
reconfiguration time: reduce bitstream file size; 
optimize the way; optimize the bitstream transfer 
from memory to the configuration port like 
Internal Access Configuration Port(ICAP) of 
Xilinx’s virtex family FPGA.  

Most of the papers about reconfiguration 
overhead considered that configuration time only 
related with the size of the bitstream because the 
transfer speed was a constant. Based on the 
assumption that the configuration port can process 
incoming data every clock cycle, the maximum 
theoretical throughput can be calculated by the 
clock frequency and the width of the port. In fact, 
practical configuration speed is much lower than 
theoretical value. We will discuss it in section3. 
We propose the new configuration management 
unit implemented in hardware to enhance the 
practical configuration speed. 

This paper is organized as follows: next section 
will make a brief view on operating system 
framework based on the unified software/hardware 
multitask model. In Section 3, we will analyze 
practical configuration speed of Xilinx FPGA. 
Section 4 illustrates the design and implementation 
of the configuration management which is 
implemented in hardware. The experiment results 
will be presented in Section 5, which shows the 
efficiency of configuration. Finally, Section 6 
concludes the paper. 
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II.OPERATING SYSTEM FRAMEWORK BASED ON UNIFIED
MULTITASK MODEL

Due to the lack of effective uniform programming model 
for reconfigurable system, the migration costs of a function 
implementation from software to hardware are normally high. 
Even a small task migration needs an excessive modification, 
because it relates to different design teams. But the recent 
developments in configurable devices have increasingly 
blurred the traditional line between hardware and software. 
Using this excite characteristic, it seems that we can reduce 
the migration cost greatly. 

 Operating system is a reasonable solution because it is 
the traditional boundary between hardware and software. 
Although commercial RTOSs available for popular 
embedded processors provide significant reductions in 
design time, they typically do not take advantage of the 
intrinsic parallelism of hardware tasks, probably because 
FPGAs have historically been treated as hardware 
accelerators, for which there are only device drivers provided 
by the operating system. 

To cope with this problem, we adopted a uniform multi-
task (thread) model and implemented a RTOS prototype 
which is proposed for hybrid chips containing both CPU and 
FPGA components in one chip. We extend this model into 
the embedded system design that is composed of a host 
processor and several reconfigurable devices. This 
programming model allows hardware tasks on reconfigurable 
devices to execute in a truly-parallel multitasking manner, 
which are organized like software tasks, and substantially 
decreases the migration time for a task from SW 
implementation to HW implementation. The operating 
system framework prototype is shown in figure1. As figure 1 
show, one of the most important services of the OS for 
reconfigurable system is to manage the HW tasks. The 
communication controller manages the data transfer between 
HW tasks and processor in communication layer. The 
creation and remove of hardware tasks (dynamic module) are 
implemented by the reconfiguration operations, which are 
the important operation for tasks scheduling. The 
configuration management unit is based on the devices’ IPs, 
such as Xilinx’s OPB-HWICAP and XPS-HWICAP. 
Conventional configuration overhead is calculated theoretical 
by the width and clock frequency of the configuration port, 
but it is much lower than the theoretical value in practice.  

III. CONVENTIONAL HARDWARE TASK CONFIGURATION
MANAGEMENT UNIT

A . Hardware Task Configuration Port and 
Theoretical Configuration Bandwidth  

Partial reconfiguration of Virtex devices can be 
accomplished in either Slave SelectMAP mode or Boundary-
Scan mode (JTAG). Instead of resetting the chip and doing a 
full configuration, new data is loaded into a specified area of 
the chip, while the 

Figure1.The framework of OS based on unified multitask 
model 

rest of the chip remains operating. ICAP is the 
subset of SelectMAP for Internal configuration 
access port, so its characters are the same as 
SelectMAP’s. For self-reconfiguration system-on-
chip, it uses ICAP IP cores like OPB-HWICAP or 
XPS-HWICAP to configure the devices, which 
connected through bus and controlled by CPU. 
The selectMAP ports of Virtex5 and virtex4 
devices are 32-bit wide. So the theoretical 
configuration bandwidth (TCB): 

cclkfDIWTCB

DIW is data input width; fcclk is the frequency 
of the configuration clock. 

TABLE I. THEORETICAL CONFIGURATION BANDWIDTH 

ICAP/SelectMAPDevices
Family

JTAG 
1MHz fmax  TCWmax 

Virtex2/Pro 125Kbytes/s 100MHz 100Mbytes/s 

Virtex4 125Kbytes/s 100MHz 400Mbytes/s 

Virtex5 125Kbytes/s 125MHz 500Mbytes/s 
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TABLE II. B Practical Configuration Bandwidth 

Figure2. opb-hwicap write cycle 

Figure3. xps-hwicap write cycle 

The classic configuration timing diagram is shown in 
figure2 and figure3 [19][20]. The theoretical configuration 
bandwidth is calculated according the figures. But, in reality, 
it is not possible for the ICAP in virtex family devices to 
process new data every clock cycle. 

Figure4. the architecture of self-reconfiguration data encryption and 
decryption system-on-chip 

When the clock frequency of ICAP is over 50MHz, it is 
necessary to respond to the ICAPs handshaking (busy) 
signal[]. This signal indicates whether the ICAP has accepted 
the incoming data or not. In Figure 5 the BUSY_ICAP signal 
is shown recorded from a reconfiguration sequence using the 
configuration management unit. It can be seen that ICAP is 
busy quite often which is indicated by the handshaking 
signal BUSY_ICAP [17]. Thus the maximum theoretical 
throughput cannot be achieved.  

We created a self-reconfiguration application system for 
data encryption and decryption on XUPV2P board with 
XC2VP30 FPGA as figure 4 shows. We tested the 
reconfiguration speed, and the results are shown in table 2, 
which are far lower than theoretical value in table 1. For 
virtex-5, it is similar with virtex-2 and we will show the 
experiment result in section 5. 

PRACTICAL TEST RESULT OF CONFIGURATION 
OVERHEAD ON XUPV2PRO BOARD

Name size Reconfigure
time 

throughput

AES
Encryption 

307525
Bytes 

821.90ms 374.57Bytes/ms 

AES
Decryption

293821
Bytes 

776.63 ms 378.63Bytes/ms 

IV. THE DESIGN AND IMPLEMENTATION OF THE 
HARDWARE IMPLEMENTED

CONFIGURATION MANAGEMENT UNIT

The configuration overhead is critical in many 
real time applications. For example, the auto vision 
system deals with video processing for driver 
assistance systems, where hardware tasks should 
be exchanged. The following scenario should 
describe why it is necessary to reduce the 
reconfiguration time. Using a frame input rate of 
25 frames per second results in a maximum 
allowable time of 40 ms to process one image. If 
the image processing can be done in 35 ms, 5 ms 
are left over for reconfiguration. Assuming a 
reconfiguration can be accomplished within this 
timeframe, no frames must be dropped [10]. 

Many researchers consider that the 
configuration throughput is constant as the 
theoretical values; so their researches concentrate 
on how to reduce the bitstream size of the dynamic 
module to accelerate the configuration process. But 
they reduced bitstream file at most 20% as they 
reported[]. Compared with the practical values in 
table 2, it can not satisfy the requirements of 
applications in many real time situations. 

The theoretical values are ideal and it can 
satisfy the requirements of the most real time 
applications. As section3.2 analyzed, the main 
affect factor is the BUSY_ICAP signal .CPU 
manages the configuration process; at least 4 
cycles are consumed to get valid handshaking 
signals when the BUSY_ICAP signal appears. As 
figure 5 shows, the signals appeared so frequently. 
The configuration management unit for 
conventional hardware tasks in DRSoCs is 
implemented in software. Most of the 
configuration time is consumed by waiting for 
valid handshaking signals because of 
BUSY_ICAP signal. 

Hardware implemented management unit can 
get efficient result in many situations. We 
implemented a hardware task configuration 
management unit in hardware, which is shown in 
figure 6. 
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Figure5. the waveforms for hardware implemented configuration management unit using 100MHz Clock captured from ChipScope 

Figure6. diagram of hardware implemented configuration 
management unit 

The configuration management unit is a PLB Master 
controller provides the necessary interface to transfer 
bitstreams to and from the ICAP. In order to avoid 
unnecessary overhead, the ICAP controller is equipped 
with 64-bit width FIFO. Not only does this minimize the 
amount of data which must be transferred, but also reduces 
the load on the CPU. After receiving the length of a 
bitstream from the controlling processor, the Master ICAP 
processor begins bursting in the required bitstream data 
directly from FIFO. Incoming data is stored within a FIFO, 
from where it can be fed one byte at a time into the ICAP. 
ICAP handshaking is also respected to allow for operation 
at the native bus speed (usually 100MHz in a system).The 
configuration start command will be sent along with the 
bitstreams size via the Device Control Register (DCR) bus 
directly to the ICAP controller. The controller then 
requests the bitstream data from memory and forwards it to 
the ICAP as described above. Once implemented, reading 
frames from the ICAP will proceed in a similar manner, 
except that frames will be accessed one at a time and 
stored internally within the ICAP processor rather than 

being written out to main memory. The CPU will then be 
able to read the frame data directly from the ICAP.  

V. CASE STUDY AND EXPERIMENTAL RESULTS

Figure 7  adaptive audio filtering system-on-chip prototypes  

The prototype is built on ML505 board with 
XCV5LX50T FPGA as figure 6 shows. The hardware 
task configuration management unit implemented by 
hardware, which is responsible for dynamic hardware task 
creation and remove. The Microbalze7.0b CPU, system 
bus, peripherals, external DDR memory, as well as 
hardware tasks are all clocked at 100M Hz. We created 
device driver for configuration management unit in 
uclinux. Comparing with table2, the configuration 
throughput of virtex5 is nearly 7 times than that of 
virtex2pro FPGA when we use the original configuration 
unit provided by Xilinx. This is mainly due to the 
configuration port width because virtex-2 is 8-bit wide 
while virtex-5 is 32-bit wide. Comparing  the data in 
table5 with data intable 6, hardware implemented 
configuration unit accelerates the configuration over 3.5 
times. Comparing data in table 2 with data in table 6, the 
speedup of configuration is over 21 times. Because the 
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original configuration unit for virtex-4 and virtex-5 is 
xps- hwicap in XPS9.2 and

TABLE III. 

TABLE IV. 

 RESOURCE UTILIZATION AND TIMING SUMMARY OF XPS-
HWICAP  ON XC5VL50T 

the later version of Xilinx’s embedded development kit, 
which is a much larger and consume more internal 
resource than virtex-2’s opb-hwicap. Comparing table 3 
with talbe4, the configuration management implemented 
unit in hardware consume only a little more than the 
original configuration unit. 

RESOURCE UTILIZATION AND TIMING SUMMARY OF 
CONFIGURATION MANAGEMENT UNIT ON XC5VL50T 

Resource Name Used
Resource

Total
Resource

Ratio

Number of Slice 854 28800 0%
Number of Flip-
Flops/Latches

686 5980 0%

Number of Slice 
LUTs

457 28800 0%

Number BRAM 4 7680 0%
Maximum 
Frequency 

Minimum period: 5.830ns (Maximum 
Frequency: 171.527MHz) 

TABLE V. RECONFIGURATION TIME FOR THE ORIGINAL XPS-HWICAP

Dynamic 
Module

Bitstream 
Length

Configuration
Time 

Throughput

highpass 215KB 25.8ms 8.49KB/ms 
bandpass 216KB 25.92s 8.45KB/ms 
lowpass 215KB 25.8ms 8.49KB/ms 
blank 161KB 19.32ms 8.46KB/ms 
allpass 175 KB 21ms 8.49KB/ms 

VI. CONCLUSIONS AND FUTURE WORK

In order to provide convenience for operating system to 
manage hardware tasks and reduce the configuration 
overhead of dynamic module for stream-oriented 
applications running on RSoC, a hardware implemented 
configuration management unit is proposed. The operating 
system framework based on multitask programming model 

and the theoretical are introduced, and the practical 
configuration time was 

TABLE VI. RECONFIGURATION TIME FOR HARDWARE IMPLEMENTED 
CONFIGURATION MANAGEMENT UNIT

analyzed. The results tested from the using case show 
that the practical configuration overhead reduced over 3.5 
times than the original on virtex-5 device, and over 21 
times than  that on virtex-2 device. 

Many effective methods were proposed for virtex-2 and 
earlier device to reduce the size the bitstream of the 
dynamic partial hardware module to reduce the 
configuration overhead, but few can be used in virtex-4 
and newer devices. We will analyze the detail of the 
virtex-5 and virtex-4’s bitstream files, and optimize it to 
reduce their sizes because Xilinx’s development tools no 
longer support virtex-2pro and earlier devices after ISE9.2 
versions. We will improve our configuration unit and 
added DMA in it to accelerate the configuration in our 
operating system for reconfigurable computer.  
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