
The Design and Implementation of Hardware Task Configuration
Management Unit on Dynamically Reconfigurable SoC

Xiao-Wei WANG,, Wei-Nan CHEN, Ying
WANG, Hong-Jun YOU,Cheng-Lian PENG

Computer Science and Technology School
 Fudan University
 Shanghai, CHINA

Xiao-Wei WANG
Shanghai Branch

Navy Equipment& Technology Institute
Shanghai, CHINA

Email :{ 051021035, wnchen, clpeng} @fudan.edu.cn

Abstract—The advantages and the flexibility introduced into
the hardware implementation by partial dynamic
reconfiguration have rapidly changed the design flow of
embedded systems. Configuration management is an important
issue in operating system for dynamically reconfigurable
system-on-chip. Reconfiguration overhead affects the
performance of reconfigurable system. This paper presents a
hardware implemented efficient configuration management
unit. Wet define our operating system framework based on
unified multitask programming model for reconfigurable
system-on-chip at first. Then the detailed design and
implementation of the configuration management unit are
given. Finally a use case is presented, which shows the
efficiency of the configuration.

Key Words: Dynamic Partial Reconfiguration, System-on-Chip,
Operating System, Dynamic Hardware Task, Configuration
Management Unit

I.. INTRODUCTION AND RELATED WORK

Dynamically Reconfigurable System-on-Chip
(DRSoC)integrates dynamically reconfigurable hardware
with embedded processor on the same die [1].It is always
used for data stream driven, mixed hardware/software
applications like data encryption, signal processing and so on
[2][3][4]. The system is a combination of software and
hardware, which strongly control-dominated at a system
level and need real-time operating system (RTOS) services
for synchronization, communication and configuration
management. RTOS for HW management has been recently
introduced. Proofs of concepts are exhibited in [6] and [7].
These experiments show that RTOS level management of
reconfigurable architectures can be considered as available
from a research perspective. In [6] the author proposed
communication API based on message passing where
communication between HW and SW tasks are handled with
a Hardware Abstraction Layer. In [7], the RTOS is mainly
dedicated to the management (placement / communication)
of HW tasks. In [8], more details are given about a Network-
On-Chip communication scheme. The creation of hardware
task is implemented by configuration, so our paper focuses
on configuration management.

 The main task for configuration management
is to select the proper dynamic hardware tasks and
write the corresponding files into configuration
memory of the FPGA. The configuration overhead
is the main performance bottleneck of dynamic
partial reconfigurable system. One of the important
jobs of the configuration managements is to reduce
configuration overhead. After the design is placed
and routed,there are three methods to short the
reconfiguration time: reduce bitstream file size;
optimize the way; optimize the bitstream transfer
from memory to the configuration port like
Internal Access Configuration Port(ICAP) of
Xilinx’s virtex family FPGA.

Most of the papers about reconfiguration
overhead considered that configuration time only
related with the size of the bitstream because the
transfer speed was a constant. Based on the
assumption that the configuration port can process
incoming data every clock cycle, the maximum
theoretical throughput can be calculated by the
clock frequency and the width of the port. In fact,
practical configuration speed is much lower than
theoretical value. We will discuss it in section3.
We propose the new configuration management
unit implemented in hardware to enhance the
practical configuration speed.

This paper is organized as follows: next section
will make a brief view on operating system
framework based on the unified software/hardware
multitask model. In Section 3, we will analyze
practical configuration speed of Xilinx FPGA.
Section 4 illustrates the design and implementation
of the configuration management which is
implemented in hardware. The experiment results
will be presented in Section 5, which shows the
efficiency of configuration. Finally, Section 6
concludes the paper.

2009 International Conferences on Embedded Software and Systems

978-0-7695-3678-1/09 $25.00 © 2009 IEEE

DOI 10.1109/ICESS.2009.83

177

2009 International Conferences on Embedded Software and Systems

978-0-7695-3678-1/09 $25.00 © 2009 IEEE

DOI 10.1109/ICESS.2009.83

177

2009 International Conferences on Embedded Software and Systems

978-0-7695-3678-1/09 $25.00 © 2009 IEEE

DOI 10.1109/ICESS.2009.83

177

2009 International Conferences on Embedded Software and Systems

978-0-7695-3678-1/09 $25.00 © 2009 IEEE

DOI 10.1109/ICESS.2009.83

177

2009 International Conferences on Embedded Software and Systems

978-0-7695-3678-1/09 $25.00 © 2009 IEEE

DOI 10.1109/ICESS.2009.83

179

2009 International Conference on Embedded Software and Systems

978-0-7695-3678-1/09 $25.00 © 2009 IEEE

DOI 10.1109/ICESS.2009.83

179

Authorized licensed use limited to: Politechnika Lodzka. Downloaded on August 18, 2009 at 06:59 from IEEE Xplore. Restrictions apply.

II.OPERATING SYSTEM FRAMEWORK BASED ON UNIFIED
MULTITASK MODEL

Due to the lack of effective uniform programming model
for reconfigurable system, the migration costs of a function
implementation from software to hardware are normally high.
Even a small task migration needs an excessive modification,
because it relates to different design teams. But the recent
developments in configurable devices have increasingly
blurred the traditional line between hardware and software.
Using this excite characteristic, it seems that we can reduce
the migration cost greatly.

 Operating system is a reasonable solution because it is
the traditional boundary between hardware and software.
Although commercial RTOSs available for popular
embedded processors provide significant reductions in
design time, they typically do not take advantage of the
intrinsic parallelism of hardware tasks, probably because
FPGAs have historically been treated as hardware
accelerators, for which there are only device drivers provided
by the operating system.

To cope with this problem, we adopted a uniform multi-
task (thread) model and implemented a RTOS prototype
which is proposed for hybrid chips containing both CPU and
FPGA components in one chip. We extend this model into
the embedded system design that is composed of a host
processor and several reconfigurable devices. This
programming model allows hardware tasks on reconfigurable
devices to execute in a truly-parallel multitasking manner,
which are organized like software tasks, and substantially
decreases the migration time for a task from SW
implementation to HW implementation. The operating
system framework prototype is shown in figure1. As figure 1
show, one of the most important services of the OS for
reconfigurable system is to manage the HW tasks. The
communication controller manages the data transfer between
HW tasks and processor in communication layer. The
creation and remove of hardware tasks (dynamic module) are
implemented by the reconfiguration operations, which are
the important operation for tasks scheduling. The
configuration management unit is based on the devices’ IPs,
such as Xilinx’s OPB-HWICAP and XPS-HWICAP.
Conventional configuration overhead is calculated theoretical
by the width and clock frequency of the configuration port,
but it is much lower than the theoretical value in practice.

III. CONVENTIONAL HARDWARE TASK CONFIGURATION
MANAGEMENT UNIT

A . Hardware Task Configuration Port and
Theoretical Configuration Bandwidth

Partial reconfiguration of Virtex devices can be
accomplished in either Slave SelectMAP mode or Boundary-
Scan mode (JTAG). Instead of resetting the chip and doing a
full configuration, new data is loaded into a specified area of
the chip, while the

Figure1.The framework of OS based on unified multitask
model

rest of the chip remains operating. ICAP is the
subset of SelectMAP for Internal configuration
access port, so its characters are the same as
SelectMAP’s. For self-reconfiguration system-on-
chip, it uses ICAP IP cores like OPB-HWICAP or
XPS-HWICAP to configure the devices, which
connected through bus and controlled by CPU.
The selectMAP ports of Virtex5 and virtex4
devices are 32-bit wide. So the theoretical
configuration bandwidth (TCB):

cclkfDIWTCB

DIW is data input width; fcclk is the frequency
of the configuration clock.

TABLE I. THEORETICAL CONFIGURATION BANDWIDTH

ICAP/SelectMAPDevices
Family

JTAG
1MHz fmax TCWmax

Virtex2/Pro 125Kbytes/s 100MHz 100Mbytes/s

Virtex4 125Kbytes/s 100MHz 400Mbytes/s

Virtex5 125Kbytes/s 125MHz 500Mbytes/s

178178178178180180

Authorized licensed use limited to: Politechnika Lodzka. Downloaded on August 18, 2009 at 06:59 from IEEE Xplore. Restrictions apply.

TABLE II. B Practical Configuration Bandwidth

Figure2. opb-hwicap write cycle

Figure3. xps-hwicap write cycle

The classic configuration timing diagram is shown in
figure2 and figure3 [19][20]. The theoretical configuration
bandwidth is calculated according the figures. But, in reality,
it is not possible for the ICAP in virtex family devices to
process new data every clock cycle.

Figure4. the architecture of self-reconfiguration data encryption and
decryption system-on-chip

When the clock frequency of ICAP is over 50MHz, it is
necessary to respond to the ICAPs handshaking (busy)
signal[]. This signal indicates whether the ICAP has accepted
the incoming data or not. In Figure 5 the BUSY_ICAP signal
is shown recorded from a reconfiguration sequence using the
configuration management unit. It can be seen that ICAP is
busy quite often which is indicated by the handshaking
signal BUSY_ICAP [17]. Thus the maximum theoretical
throughput cannot be achieved.

We created a self-reconfiguration application system for
data encryption and decryption on XUPV2P board with
XC2VP30 FPGA as figure 4 shows. We tested the
reconfiguration speed, and the results are shown in table 2,
which are far lower than theoretical value in table 1. For
virtex-5, it is similar with virtex-2 and we will show the
experiment result in section 5.

PRACTICAL TEST RESULT OF CONFIGURATION
OVERHEAD ON XUPV2PRO BOARD

Name size Reconfigure
time

throughput

AES
Encryption

307525
Bytes

821.90ms 374.57Bytes/ms

AES
Decryption

293821
Bytes

776.63 ms 378.63Bytes/ms

IV. THE DESIGN AND IMPLEMENTATION OF THE
HARDWARE IMPLEMENTED

CONFIGURATION MANAGEMENT UNIT

The configuration overhead is critical in many
real time applications. For example, the auto vision
system deals with video processing for driver
assistance systems, where hardware tasks should
be exchanged. The following scenario should
describe why it is necessary to reduce the
reconfiguration time. Using a frame input rate of
25 frames per second results in a maximum
allowable time of 40 ms to process one image. If
the image processing can be done in 35 ms, 5 ms
are left over for reconfiguration. Assuming a
reconfiguration can be accomplished within this
timeframe, no frames must be dropped [10].

Many researchers consider that the
configuration throughput is constant as the
theoretical values; so their researches concentrate
on how to reduce the bitstream size of the dynamic
module to accelerate the configuration process. But
they reduced bitstream file at most 20% as they
reported[]. Compared with the practical values in
table 2, it can not satisfy the requirements of
applications in many real time situations.

The theoretical values are ideal and it can
satisfy the requirements of the most real time
applications. As section3.2 analyzed, the main
affect factor is the BUSY_ICAP signal .CPU
manages the configuration process; at least 4
cycles are consumed to get valid handshaking
signals when the BUSY_ICAP signal appears. As
figure 5 shows, the signals appeared so frequently.
The configuration management unit for
conventional hardware tasks in DRSoCs is
implemented in software. Most of the
configuration time is consumed by waiting for
valid handshaking signals because of
BUSY_ICAP signal.

Hardware implemented management unit can
get efficient result in many situations. We
implemented a hardware task configuration
management unit in hardware, which is shown in
figure 6.

179179179179181181

Authorized licensed use limited to: Politechnika Lodzka. Downloaded on August 18, 2009 at 06:59 from IEEE Xplore. Restrictions apply.

Figure5. the waveforms for hardware implemented configuration management unit using 100MHz Clock captured from ChipScope

Figure6. diagram of hardware implemented configuration
management unit

The configuration management unit is a PLB Master
controller provides the necessary interface to transfer
bitstreams to and from the ICAP. In order to avoid
unnecessary overhead, the ICAP controller is equipped
with 64-bit width FIFO. Not only does this minimize the
amount of data which must be transferred, but also reduces
the load on the CPU. After receiving the length of a
bitstream from the controlling processor, the Master ICAP
processor begins bursting in the required bitstream data
directly from FIFO. Incoming data is stored within a FIFO,
from where it can be fed one byte at a time into the ICAP.
ICAP handshaking is also respected to allow for operation
at the native bus speed (usually 100MHz in a system).The
configuration start command will be sent along with the
bitstreams size via the Device Control Register (DCR) bus
directly to the ICAP controller. The controller then
requests the bitstream data from memory and forwards it to
the ICAP as described above. Once implemented, reading
frames from the ICAP will proceed in a similar manner,
except that frames will be accessed one at a time and
stored internally within the ICAP processor rather than

being written out to main memory. The CPU will then be
able to read the frame data directly from the ICAP.

V. CASE STUDY AND EXPERIMENTAL RESULTS

Figure 7 adaptive audio filtering system-on-chip prototypes

The prototype is built on ML505 board with
XCV5LX50T FPGA as figure 6 shows. The hardware
task configuration management unit implemented by
hardware, which is responsible for dynamic hardware task
creation and remove. The Microbalze7.0b CPU, system
bus, peripherals, external DDR memory, as well as
hardware tasks are all clocked at 100M Hz. We created
device driver for configuration management unit in
uclinux. Comparing with table2, the configuration
throughput of virtex5 is nearly 7 times than that of
virtex2pro FPGA when we use the original configuration
unit provided by Xilinx. This is mainly due to the
configuration port width because virtex-2 is 8-bit wide
while virtex-5 is 32-bit wide. Comparing the data in
table5 with data intable 6, hardware implemented
configuration unit accelerates the configuration over 3.5
times. Comparing data in table 2 with data in table 6, the
speedup of configuration is over 21 times. Because the

180180180180182182

Authorized licensed use limited to: Politechnika Lodzka. Downloaded on August 18, 2009 at 06:59 from IEEE Xplore. Restrictions apply.

original configuration unit for virtex-4 and virtex-5 is
xps- hwicap in XPS9.2 and

TABLE III.

TABLE IV.

 RESOURCE UTILIZATION AND TIMING SUMMARY OF XPS-
HWICAP ON XC5VL50T

the later version of Xilinx’s embedded development kit,
which is a much larger and consume more internal
resource than virtex-2’s opb-hwicap. Comparing table 3
with talbe4, the configuration management implemented
unit in hardware consume only a little more than the
original configuration unit.

RESOURCE UTILIZATION AND TIMING SUMMARY OF
CONFIGURATION MANAGEMENT UNIT ON XC5VL50T

Resource Name Used
Resource

Total
Resource

Ratio

Number of Slice 854 28800 0%
Number of Flip-
Flops/Latches

686 5980 0%

Number of Slice
LUTs

457 28800 0%

Number BRAM 4 7680 0%
Maximum
Frequency

Minimum period: 5.830ns (Maximum
Frequency: 171.527MHz)

TABLE V. RECONFIGURATION TIME FOR THE ORIGINAL XPS-HWICAP

Dynamic
Module

Bitstream
Length

Configuration
Time

Throughput

highpass 215KB 25.8ms 8.49KB/ms
bandpass 216KB 25.92s 8.45KB/ms
lowpass 215KB 25.8ms 8.49KB/ms
blank 161KB 19.32ms 8.46KB/ms
allpass 175 KB 21ms 8.49KB/ms

VI. CONCLUSIONS AND FUTURE WORK

In order to provide convenience for operating system to
manage hardware tasks and reduce the configuration
overhead of dynamic module for stream-oriented
applications running on RSoC, a hardware implemented
configuration management unit is proposed. The operating
system framework based on multitask programming model

and the theoretical are introduced, and the practical
configuration time was

TABLE VI. RECONFIGURATION TIME FOR HARDWARE IMPLEMENTED
CONFIGURATION MANAGEMENT UNIT

analyzed. The results tested from the using case show
that the practical configuration overhead reduced over 3.5
times than the original on virtex-5 device, and over 21
times than that on virtex-2 device.

Many effective methods were proposed for virtex-2 and
earlier device to reduce the size the bitstream of the
dynamic partial hardware module to reduce the
configuration overhead, but few can be used in virtex-4
and newer devices. We will analyze the detail of the
virtex-5 and virtex-4’s bitstream files, and optimize it to
reduce their sizes because Xilinx’s development tools no
longer support virtex-2pro and earlier devices after ISE9.2
versions. We will improve our configuration unit and
added DMA in it to accelerate the configuration in our
operating system for reconfigurable computer.

REFERENCES

[1] K. Compton and S. Hauck, “Reconfigurable Computing: A Survey
of Systems and Software”, ACM Computing Surveys, vol. 34, no.
2, pp. 171–210, 2002.

[2] A. S. Zeineddini, K. Gaj, “Secure partial reconfiguration of
FPGAs”, Proceedings of the 2005 IEEE International Conference
on Field-Programmable Technology (FPT’05): 155-162, 2005.

[3] Chang-Seok Choi, Hanho Lee. A reconfigurable FIR filter design
on a partial reconfiguration platform [C]. Proceedings of the 1st
IEEE International Conference on Communications and
Electronics: 352-355, 2006.

[4] J. Y. Mignolet, S. Vernalde, D. Verkest and R. Lauwereins.
Enabling Hardware-Software Multitasking on a Reconfigurable
Computing Platform for Networked Portable Multimedia
Appliances. In Proceedings of the International Conference on
Engineering Reconfigurable Systems and Architecture: 116-122,
2002.

[5] C. Claus, F. H. M¨uller, and W. Stechele. .Combitgen: A new
approach for creating partial bitstreams in Virtex-II Pro devices..
Workshop on reconf igurable computing Proceedings(ARCS 06),
pages 122.131, March 2006.

[6] M. Vuletic, L. Pozzi, P Ienne. Seamless hardware-software
integration in reconfigurable computing systems [J]. IEEE Design
& Test of Computers, 22(2): 102-113, 2005.

[7] H. K.-H. So and R. W. Brodersen, “Improving Usability of FPGA
based Reconfigurable Computers through Operating System

Resource name used total
Resource

ratio

Number of Slice 594 28800 0%
Number of Flip-
Flops/Latches

356 5980 0%

Number of Slice
LUTs

1698 28800 0%

Number BRAM 0 7680 0%
Maximum
Frequency

126MHz

dynamic
module

bitstream
length

configuratio
n
time

throughput

highpass 215KB 86.6ms 2.54KB/ms
bandpass 216KB 87ms 2.53KB/ms
lowpass 215KB 86.6ms 2.55KB/ms
blank 161KB 64.85ms 2.54KB/ms
allpass 175 KB 70.49ms 2.55KB/ms

181181181181183183

Authorized licensed use limited to: Politechnika Lodzka. Downloaded on August 18, 2009 at 06:59 from IEEE Xplore. Restrictions apply.

Support,” in Proc. IEEE 16th Int. Conf. Field Programmable Logic
and Applications, 2006, pp. 349–354.

[8] J-Y.Mignolet, V.Nollet, P.Coene, D.Verkest, S.Vernalde, and
R.Lauwereins, Infrastructure for design and management of
relocatable tasks in a heterogeneous reconfigurable system-on-
chip," in Design, Automation and Test in Europe conf. (DATE),
Munich, Germany, Mar. 2003.

[9] C. Claus, F. H. M¨uller, J. Zeppenfeld, andW. Stechele. .Using
Partial-Run-Time Reconfigurable Hardware to accelerate Video
Processing in Driver Assistance System, In Proceedings of the
Design, Automation and Test in Europe Conference (DATE07),
Nice, France, April 2007.

[10] K. Compton and S. Hauck. Reconfigurable computing: A Survey
of Systems and Software. ACM Computing Surveys, 34(2):171–
210, June 2002.

[11] P. Pande, C. Grecu, M. Jones, A. Ivanov and R. Saleh.
Performance Evaluation and Design Trade-offs for Network-on-
Chip Interconnect Architectures, IEEE Transactions on Computers,
54(8): 1025 - 1040, August 2005.

[12] Xilinx Inc. Two Flows for Partial Reconfiguration: module based
or difference based. Xilinx Application Note. September 2004.

[13] The Open Group. IEEE Std 1003.1, available at
http://www.opengroup.org/onlinepubs/009695399/toc.htm, 2004.

[14] Bo Zhou, Wei-dong Qiu, Yan Chen and Cheng-Lian Peng. SHUM-
uCOS: A RTOS Using Multi-task Model to Reduce Migration Cost
between SW/HW Tasks. In Proceedings of the 9th International
Conference on Computer Supported Cooperative Work in Design
(CSCWD’05): 984-989, May 2005.

[15] Xue-Gong Zhou, Ying Wang, Xun-Zhang Huang and Cheng-Lian
Peng. On-line Scheduling of Real-Time Tasks for Reconfigurable
Computing System. IEEE International Conference on Field
Programmable Technology (FPT’06): 57-64, December 2006.

[16] Xilinx Inc. Microblaze Processor Reference Guide, Xilinx
Documentation, May 2007.

[17] Xilinx Inc. OPB HWICAP, v1.00b, March 2006.
[18] xilinx Inc,UG002(v2.5)Virtex II platform FPGA User

Guide,November,2007
[19] Xilinx Inc,U071 Virtex4 FPGA configuration User Guide, April

8,2008
[20] Xilinx Inc,UG191 Virtex5 FPGA Configuration User

Guide,February,11,2008

182182182182184184

Authorized licensed use limited to: Politechnika Lodzka. Downloaded on August 18, 2009 at 06:59 from IEEE Xplore. Restrictions apply.

