
IETHER: Dynamic and Self adaptive Middleware

Farooq Muhammad', Fabrice Muller2, Michel Auguin3
University of Nice Sophia-Antipolis / 13S CNRS

2000 rte des lucioles,
Les Algorithmes - bat. Euclide B - BP 121
06903 Sophia Antipolis - Cedex, France

{muhammad',fmuller2,auguin3 } @i3 s.unice.fr

Abstract- The development of reconfigurable devices that could
make themselves domain-specialized at run time is becoming
more and more common. Future reconfigurable architecture will
have these computing devices as basic blocks, and reconfigurable
architecture could make assemblies of these devices, on the fly,
to execute concurrent applications. The migration from
completely generic lookup tables and highly connected routing
fabrics to self adaptive specialized coarse-grain reconfigurable
devices and very structured communication resources presents
designers with the problem of how to best customize the system
based upon anticipated usage. Then there is a need of not only
exploiting parallelism from applications at micro-thread level,
dynamically, but system also starves for a dynamic and self
adaptive middleware to schedule these micro-threads on
thousands of such computing devices. This paper focuses at the
problem of dynamic allocation and scheduling of resources to
numbers of applications on such architecture.

Keywords-Resource Allocation; dynamic scheduling; self
adaptive task structuring.

I. INTRODUCTION
In order to provide high performance computation power

to serve the increasing need of large applications, people strive
to improve a single machine's capacity or construct a
distributed system composed of a scalable set of machines.
Compared to the former, where the improvement is mainly up
to the hardware technology development, the construction of
distributed systems for resource collaboration is more
complex. Some of well-known existing distributed systems
composed of heterogeneous resources are Condor[4],
NetSolve[5], Nimrod[6], Globus and the Grid[7] computation
environment. Sabin et al [9] propose a centralized
metasheduler which uses backfill to schedule parallel jobs in
multiple heterogeneous sites. Similarly, Arora et al [10]
present a completely decentralized, dynamic and sender-
initiated scheduling and load balancing algorithm for the Grid
environment. All these approaches don't deal with application
model where concurrent threads are created and managed at
run. These methods do not target future architecture where
each resource of a processor has capability of self optimizing
and interconnects with other resources to form assemblies to
execute concurrent application.

IETHERI system is hierarchical both at function and
architecture level. At function level, application is written
which self adapts itself to well suit with the application
objective and to cope with dynamic changes happening in
environment. Applications are quite dynamic in nature where

concurrent threads are instanced dynamically according to
number of resources of system. Architecture of the system is
not traditional as it is not single unit of computation. It is a
network of given number of SANEs. A SANE is self adaptive
networked entity which can self optimize itself.

In classical scheduling theory it has been commonly
assumed that a task requires only one processor at a time for
its processing. However for many practical problems this
assumption is not valid. A task requires task-dependent (worst
case execution time) number of processors (minimum)
simultaneously for its processing.

One of the distinguishing characteristics of real-time and
embedded systems is the concern over management of finite
resources to guarantee requested Quality of Service (QoS) to
concurrent applications. The QoS properties are the
quantitative properties of the resource, such as its capacity,
execution speed, reliability, and so on. In real-time and
embedded systems, it is this quantifiable finiteness that must
be managed. The management of resources with many
applications is one of more thorny aspects of system design.

In this paper, we propose an algorithm for scheduling of
hard and soft real-time tasks in an architecture which is
composed of multiple processing units. These computing units
are self adaptive and have the capability to optimize according
to application needs. Application helps create/instantiate
concurrent threads at run time. The primary goal of the
proposed algorithm is to maximize the schedulability of soft
tasks without jeopardizing the schedulability of hard tasks.
The algorithm has the inherent feature of degrading/upgrading
QoS, by dynamic managing concurrency of tasks by allocating
more resources to most appropriate task i.e. (hard real time
tasks are not always preferred over soft real time tasks). This
algorithm helps to maximize execution of concurrent
execution of tasks and distribute resources to thousands of
concurrent threads of a task where objective is to ensure
timeline guarantees of tasks.

A. Definition OfThe Problem

We have n tasks r ={T, T2,T3,...,JTn and Rx parallel
resources. These parallel resources self adapt themselves
according to task executing on it. These resources form
assemblies and configure/self-adapt [11] connecting fabric
between SANE elements to execute tasks while tasks have the
capability of dynamically managing (creating threads at
runtime) concurrency in it depending upon the availability of

IETHER is IST-FET (Information Society Technology-Future and Emerging
Technologies) European project with main objective to study novel self-
adaptive computing technologies for future embedded and pervasive
applications.

1-4244-1553-5/07/$25.00 §2007 IEEE

Authorized licensed use limited to: Politechnika Lodzka. Downloaded on July 21, 2009 at 10:15 from IEEE Xplore. Restrictions apply.

resources. Each task may have a minimum and/or maximum
demand of resources to respect its deadline constraints.
System resources are limited so that demands of all tasks can
not be satisfied simultaneously. Execution time of task
monotonically decreases with each resource allocated to it
until the maximum level of parallelism in task. For some
tasks where concurrent parts of tasks are dependent,
execution time of a task is monotonically decreasing until a
point (called threshold) and it starts increasing monotonically
after this point for each allocated resource. Task T is
represented as sequence of concurrent execution of pthreads
(uT). Concurrency level at each sequence of task may be
different and may have a value less than its minimum demand
of resources, thus allocating minimum resources statically
could cause system to decrease its performance.

We are interested in scheduling these tasks on Rx
parallel resources such that maximum tasks could respect
their deadline constraints and utilization of resources could be
maximized.
The rest of the paper is organized as follows: in section 2, we
define ATHER architecture. The proposed approach is
presented in section 3. Section 4 presents technique to assign
resources to task, followed by method description for
calculating minimum resource demand of each task.
Algorithm of dynamic allocation of resources is demonstrated
in section 6. Schedulability analysis is illustrated in section 7.
Conclusions are made in section 8.

II. IETHER ARCHITECTURAL MODEL
In the IETHER project, SANE [11] (Self Adaptive

Networked Entity) is introduced as basic computing entity
aims to be networked with other entities of the same type to
form complete systems. Each of these entities is meant to be
self-adaptive, which implies that they can change their own
behavior to react to changes in their environment or to respect
some given constraints.

Inputs Rc.. nfigurab1 out !ut

network

Figure 1. Self Adaptive Networked Entity (SANE)

As shown in Figure 1, the controller changes the state of the
SANE hardware implementation by changing some
parameters of the currently loaded task as well as changing
the task to another implementation of the same task or a
completely different task. The computing tasks are loaded in
the computing engine. They can be described as bit-streams if
the computing engine is viewed as an FPGA fabric or as
binary files for a soft-processor. The existence of the
monitoring process associated with an adaptation controller

part of the SANE is the communication interface. It is
dedicated to collaboration among the SANE hardware
elements that compose the architecture. The collaboration
process is done through a publish/discover mechanism that
allows a SANE hardware element to publish its own abilities
and parameters and to discover the computing environment
formed by the other SANE hardware elements in its
immediate local neighborhood. This mechanism enables the
SANE hardware elements to exchange their tasks or just to
clone their states to other SANE hardware elements.
The SANE processor (Figure 2) is a runtime reconfigurable
architecture composed of thousands of SANE elements.
These elements are interconnected dynamically and self-
adaptively to execute concurrent applications. SANE
processor is a multi-core processor with SANE elements as its
processing cores. SANE processor has more flexibility than
simple multi-core processor due to its capability of not only
reconfiguring its cores (SANEs) but also restructuring the
interconnection between them.

Figure 2. SANE processor composed of SANE Elements

SANE elements (equal to resources allocated to task T1
dynamically) are combined to form a SANE assembly to
execute task Ti. As number of concurrent tasks at run time
varies dynamically so assemblies are formed at run time.
Moreover resources assigned to each task varies, hence
number of SANE elements in one assembly varies
dynamically as well. Number of SANE assemblies in one
SANE processor changes at run time (Figure 3 (a),(b)).

(b) 3 SANE assemblies

Figure 3. SANE Assemblies

III. APPLICATION MODEL

There are two types of parallelism to be exploited: task
parallelism and data parallelism. In IETHER project,
parallelism is exploited through a coordination language. S-

provides the SANE with the self-adaptation ability. The latest

Authorized licensed use limited to: Politechnika Lodzka. Downloaded on July 21, 2009 at 10:15 from IEEE Xplore. Restrictions apply.

Net[2], used in IETHER project, is a coordination language
that orchestrates asynchronous components that communicate
with each other and their execution environment solely via
typed streams.

The application program units are presented in an
appropriate fully-fledged programming language, such as C,
Java, etc., while the aspects of communication, concurrency
and synchronization (referred to by the term coordination) are
captured by a separate, coordination, language. S-Net program
is compiled down to pthreadedC (uTC)[3] which is used as
user programming language. ,uTC is a rather profound but
simple extension to the C language, allowing it to capture
massive thread-based concurrency. uTC is capable of
expressing static heterogeneous concurrency and dynamic,
homogeneous concurrency.

Only a small number of constructs are added to C, along
with the semantics of the synchronizing memory. The
constructs map onto low-level operations that provide the
concurrency controls in a pthreaded ISA, and allow concurrent
programs to be dynamically instanced and preempted, either
gracefully or with a prejudice. Family identifiers provide the
control over the concurrent sections.

A. Task Structure
A task Ti is represented as a sequence of concurrent

execution of pthreads. Each task Ti consists of a finite series of

sequences{]l, Ti2, . Ti j,..., Ti1n1- Each sequence Tij
consists of (max) Nij concurrent uTs of execution and each ,uT
must run for at most Cij time units; such value is called the
worst-case computation time of,uT, SiJ is the slow down factor
if there is dependency between two siTs.

terms of minimizing wastage of resource utilization (see in
section 4). Initially, execution time of a task is calculated
considering that one SANE is capable of executing only one
uT at a time.

1) Worst Case Execution Time:
The worst case execution time of task is function of

allocated resources at run time. Worst case execution time can
be calculated by considering only one ,uT in execution at one
time i. e with no parallelism.

n

Ci = I N*ij* Ci,j1 Sij
j=l

(1)

2) Best Case Execution Time:
Best case execution time is calculated by assigning

resources equal to are less than maximum uTs at that level

0

.E

n

ci = EsiC,b=Y i
j=l

Worst Case
/ Execution

-\ Time

Best Case\
Execution
Time

!';, 1*i

O

11

-,
0

/1-1 No of SANE
max allocated resources (a)

(2)

Worst Case
/ Execution

Time

Best Case
Execution
Time

max allocated resources No of SANE
(b)

Figure 5. Execution time of task
3 ,uTs

I) I

*,pThread " /

1 uTs

9,uTs o

3 ,uTs

Figure 4. Representation of a task

The number ofuTs in any sequence is limited by a number
and is known a prior. The uTs are instanced dynamically
depending upon the resources availability. In Figure 4, we can

observe that in a task structure, we have different number of
,uTs at different levels. These uTs represents the maximum
limit but threads created at runtime may have different values
bounded by these maximum limits.

The resources are allocated to different tasks depending
upon its criticalness, its execution time and efficiency of a

resource to execute a thread. It is assumed that one resource is
capable of executing a ,uT, but resources can optimize self
adaptively to execute more than one [uT at a time. In this case

middleware will change the task structure dynamically and
self adaptively that helps to make better decisions about
resource allocation. It will increase the resource utilization in

The worst case execution time and best case execution of a
function depends on number of minimum and maximum
resources that can be allocated to it. If there is no dependency
between uTs of one family then there time of execution will be
decreased linearly. But there will be a point after which
increase in allocation of resources will not further decrease
time of execution. It will remain constant. This point is called
saturation point. In some cases when there is strong
dependency between uTs of a family then time of execution
will not be decreased linearly and there will be a threshold
point after which time of execution of family of uTs start
increasing instead of decreasing if more resources are assigned
than its threshold point.

During execution of a task, hardware resource (SANE
element) self adaptively optimize its power to execute more
than one uT of a family. In this scenario, task structure will be
changed due to positive feedback from hardware.

B. SelfAdaptive Task Structuring
SANE elements, having capabilities of self optimization,

require a dynamic and self adaptive middleware to cope with
these optimizations of hardware that could distribute resources
in an efficient manner.

Authorized licensed use limited to: Politechnika Lodzka. Downloaded on July 21, 2009 at 10:15 from IEEE Xplore. Restrictions apply.

T

K~w *

1 thread

1 thread cn

3 thread n

1 thread

Figure 6. Varied task structure

Optimization achieved by hardware for any task can be of
different types. SANE element

* could be optimized to provide dedicated functionality
implemented in hardware for a task.

* could self optimize to execute complete or partial
family of uTs concurrently, instead of executing one
,uTat a time.

1) Dedicated SANEfor a Task:
If a SANE element has dedicated hardware for a task or it

has self-optimized itself at runtime to execute all sequences of
task, then there will be no more modifications in structure of
this specific task.

2) Optimized SANEfor Family ofpTs ofa Task:
SANE element may make itself specialized only for parts

of task instead of complete task. It may provide better results
for a family of pTs. In this scenario, task structure will be
changed (Figure 6) and there will be need to recalculate the
execution time of tasks with new parameter i.e. number of
sequences, number of threads at each level (in one sequence)
and worst case execution time of modified thread.

Resources are allocated to different tasks depending upon
their structure and its deadline constraints.

Restructuretas1k RAecalulate11

Figure 7. Restructuring of Task self adaptively

those resources which are allocated to it proportion to
its weight.

* in real cases where application does not have uTs
equal in number (or more) that corresponding to its
weight. The number of uTs that an application can
execute in parallel varies during its execution.

If minimum number of uthreads at any time of execution
are more than number of resources corresponding to its weight
then this task can be scheduled ideally.

0
0

TIME 0 5 10

Figure 8. ideal scheduling of concurrent tasks

But if a task Ti has number of uTs less than R'm'S (resources
proportion to its weight) at some level and greater than R'm,s at
other levels (which is the case most of time), then this task
can't be scheduled ideally. To provide guarantees for this task,
reservation of resources more than its weight is needed. It will
cause certain resources left unused and there will be wastage
of resource utilization.

A. Wasted Resource Utilization
If schedulability analysis is carried out based on minimum

resources R'm,s then there are chances that these resources may
not be fully used during execution of a task. As few sequences
of a task may need less resources than R'm,s. It means certain
percentage of resources will not be used during execution of a
task.

1) Homogenous Concurrent uthreads
,uTC has the capability of controlling the concurrency of

,uTs dynamically if uTs at that level are homogenous. In this
case, if we have more than one homogenous families of,Ts at
same level, then these families can be considered as a single
family. If two or more than two families are concurrent then
number of total uTs at that level Ni,k is sum of all those uTs.

Nik= NOJ +Nim (3)
Each ,uT of these two families will have same worst case

execution time. Wasted Resource Utilization by task Ti when it
is assigned R'm,s.

IV. RESOURCE ALLOCATION & SCHEDULING

Ideal scheduling algorithm is one where each task is
assigned resources proportion to its weight during the whole
length of its execution. Ideal scheduling algorithm is
impractical

* in case of general purpose processors where
computational capacity of one processor can't be
assigned to different tasks in proportion to their
weights. But in case of SANE processors, resources
(SANE Elements) may be assigned proportionally.
Then there is a need to have an application model
which can help to execute a task in parallel to use all

WR1 = E max(O, (R. - N1,)* C1.)
k=l

(4)

where n represents number of sequential families of task
Ti.

2) Heterogeneous Concurrent uthreads
If families of uTs at any level are heterogeneous i.e worst-

case execution time of uT in one family is different from that
of other, then calculation of wasted resource utilization may
have different value than calculated in above equation and is
calculated in the following way.

L 11 Z-9111,

Authorized licensed use limited to: Politechnika Lodzka. Downloaded on July 21, 2009 at 10:15 from IEEE Xplore. Restrictions apply.

n

WRi < X, max(O, (Rs- Nik * max(z, c2k y ...)) (5)
k=i

Where (Ci, k, C21,k, ..., Cmm,) are worst case execution times
of,Ts of concurrent heterogeneous families.

.Zt
.N
,.r_

a1)

D3 E

Or
a1) C

WRj

Execution Time curve

Wasted Resource
Utilization

4. ~~~Ci
Pi-WR,

5. go to step 3

6. else return R1

A task Ti can be allocated more than R'm,s at run time. If a
task Ti use more than R'm,s for certain duration, then minimum
resource for rest of task may have a smaller value and is
calculated dynamically (dynamic minimum demand R'm,d).
A. Task Preemption

If a task Ti has used more than R'm,s, then this task Ti can be
pre-empted as well. Time PTi for which a task can be pre-
empted by low priority task depends upon the time for which
this task has used resources more than R'm,s and how much.

1 0 20 30 40 50 60 70 80

No Of SANE

Figure 9. Wasted Resource Utilization

If Wasted Resource Utilization (WRd by task Ti is zero
when it is assigned R'm,, then

R> otherwise R> >L;:1
With the new static value of R'm,,s task will respect its real

time constraints but wastage of resources will be increased.

Wasted Resource Utilization will be Zero if

R' s < min(Nii, Ni2'...' Nin)

V MINIMUM RESOURCES FOR EACH TASK

A task is represented as a sequence of concurrent
executions of uthreads. At each level a task has different
number of uTs and worst case execution time of a ,uT at one
level may be different from that of a uT at other level.
Moreover the slow down factor may be different at different
levels.

If worst case execution time calculated for a task Ti is
higher than its deadline Pi, then there is a need to recalculate
minimum number of resources that a task should be assigned
to guarantee its deadline constraint.

The minimum number of resources R'm,s that a task should
be allocated can be calculated by an iterative process. We have
a function associated with each level of a task. With the help
of this function we can calculate the worst case and best case
execution time of this family of siTs. Calculation of minimum
resources that does not correspond exactly to its weight
(higher than its weight) is calculated as follows:

1. R,'=Fc O

ki

k=+

3. if(, + WlR > Pi)

PT, =Pi-{j +WRij (6)

A task can be pre-empted for a longer time than calculated
in above equation, if it could be allocated more than R'mns. It is
possible in two situations:

n

i=l

* set of tasks for which R'mn,, and Rim,d have different
values and absolute deadlines of these tasks are
greater than absolute deadline of Ti.

In both of these cases task Ti can be pre-empted for a
longer duration. Time for which this task can be pre-empted is
calculated as follows:

Cir
PT, = Pi p

R' + R$-RidRm jm,sm,d
j=l

J +WR (7)

VI. ALGORITHM

Real-time applications are classified into two major
categories of hard and soft real-time tasks (HRT and SRT
tasks respectively). Hard real-time tasks have critical deadlines
that are to be met in all working scenarios to avoid
catastrophic consequences. In contrast, soft real-time tasks
(e.g., multimedia tasks) are those whose deadlines are less
critical such that missing the deadlines occasionally has
minimal effect on the performance of the system.

Tasks are allocated resources depending upon its value of
R'ms. The calculation of minimum resources for a task changes
at run time (Figure 10), if it was allocated more than R'm'S
during its execution.

HRT tasks can't be preempted by any task if RIm,s and R'm,d
have same value. If there is a difference then HRT task can be
preempted.

I

Authorized licensed use limited to: Politechnika Lodzka. Downloaded on July 21, 2009 at 10:15 from IEEE Xplore. Restrictions apply.

Algorithm: Dynamic allocation ofResources.
Whenever new family starts

If (RF>=Nik) RF= Free resources
Allocate Nik;

else
if (RF >=Rm)

allocate RF;
else HRT = hard real time task

if (R`alloc(HRT) > Rm') ; Rlj10c allocated resources to Ti
liberate (Rial10-c Rmi);

else
if (low priority SRT task exist)

preempt lower priority Ti (SRT);
else

allocate RF;
Whenever a family is finished (or preempted)

Recalculate Rim's;
Algorithm 1 Dynamic Allocation of Resources

If there is no such HRT task, where R'm'S and R'm,d have
different values then SRT task can't preempt HRT task. In this
case low priority SRT task can be preempted only by higher
priority SRT task.

Figure 10. Recalculation ofRm

VII. SCHEDULABILITY

To get the system's behavior deterministic for HRT tasks,
we must be sure that at any time minimum demand of
resources for all HRT task does not exceed number of
resources in architecture. Schedulability analysis for HRT
tasks

n

E Ris < Rx (8)
i=l

If the sum of minimum resources is less than Rx then
extra resources can be used to schedule SRT tasks. The
allocation/reservation of R'm,n,s to task Ti introduce wasted slots
of resources, these wasted slots can be exploited to schedule
SRT tasks. A necessary condition for scheduling of SRT tasks

rnCk
k=l Pk

n WR1
< E+Wi=l Ti + WR

VIII. CONCLUSIONS:
In this paper we have presented an approach for scheduling

ofHRT and SRT tasks where each task requires more than one
resource to finish its execution. We have provided a model
that allocates resources to tasks dynamically, that redefines its
demand of minimum resources self-adaptively. This model
restructures the task as well if SANE hardware optimizes
itself. It provides a means of efficiently exploiting
unprecedented computational power of SANE processor.

IX. ACKNOWLEDGMENT
This work was partially supported by the European

Commission under Project IETHER No. FP6-2004-IST-4-
027611, and by French Ministry of Higher Education and
Research under contract No84-2005. http://www.aether-
ist.org.

REFERENCES:
[1] Bousias, K, Hasasneh N M and Jesshope C R (2006) Instruction-level

parallelism through microthreading - a scalable Approach to chip
multiprocessors, Computer Journal, 49 (2), pp 211-233.

[2] A.Shafarenko (2006) The principles and construction of SNet, Internal
report, Dept of Computer Science, University of Hertfordshire.

[3] Bousias, K. and Jesshope, C. R. (2005) The challenges of massive on-
chip concurrency. Tenth Asia-Pacific Computer Systems Architecture
Conference, Singapore, October 24-26. LNCS 3740, Springer-Verlag.

[4] Michael Litzkow, Miron Livny, and Matt Mutka, "Condor - a hunter of
idle workstations," Proceedings of the 8th International Conference of
Distributed Computing Systems, pp. 104-1 11, June 1988.

[5] Henri Casanova and Jack Dongarra, "NetSolve: a network server for
solving computational science problems," The International Journal of
Supercomputer Applications and High Performance Computing, vol.11,
no. 3, pp. 212-223, Fall 1997.

[6] Abramson D., Sosic R., Giddy J., and Hall B., "Nimrod: a tool for
performing parametised simulations using distributed workstations,"
The 4th IEEE Symposium on High Performance Distributed
Computing, Virginia, Aug. 1995.

[7] Ian Foster and Carl Kesselman, The Grid: Blueprint for a New
Computing Infrastructure. ISBN 1-55860-475-8, July 1998.

[8] http: lwww.aether-ist.org/
[9] G. Sabin, R. Kettimuthu, A. Rajan, and P. Sadayappan, Scheduling of

Parallel Jobs in a Heterogeneous Multi-Site Environment, in the Proc.
of the 9th International Workshop on Job Scheduling Strategies for
Parallel Processing, Lecture Notes In Computer Science; Vol. 2862,
Washington, U.S.A, June 2003.

[10] M, Arora, S.K. Das, R. Biswas, A Decentralized Scheduling and Load
Balancing Algorithm for Heterogeneous Grid Environments, in Proc. of
International Conference on Parallel Processing Workshops
(ICPPW'02), Vancouver, British Columbia Canada, August 2002,

[11] Paulsson, M. H"ubner, J. Becker J.-M. Philippe, C. Gamrat "On- Line
Routing of Reconfigurable Functions For Future Self-Adaptive
Systems- Investigations within the AETHER project" 17th
Iinternatioanl Conference in Field Programable Logic and Applications
FPLO7, Amsterdam,, Netherlands August 2007.

(9)

Where n represents number of HRT tasks and there are m
SRT tasks in the system.

Authorized licensed use limited to: Politechnika Lodzka. Downloaded on July 21, 2009 at 10:15 from IEEE Xplore. Restrictions apply.

