Interconnecting Heterogeneous Nodes in an Adaptive
Computing Machine

Frederick Furtek, Eugene Hogenauer, and James Scheuermann

QuickSilver Technology, San Jose, CA 95119 USA
fred@calculus.com

Abstract. A distinguishing characteristic of field-programmable logic is the
ability to route wires in the field, but previous authors have made compelling
arguments for routing packets, not wires, between major system components.
The present paper outlines the packet-switched network for interconnecting het-
erogeneous nodes in QuickSilver Technology’s Adaptive Computing Machine
(ACM). Special attention is paid to two truly innovative aspects of the ACM ar-
chitecture: (1) the Point-to-Point (PTP) protocol for transferring real-time,
streaming data and (2) the node wrapper which makes all nodes appear homo-
geneous regardless of their internal structure or functionality. The wrapper also
provides a single, uniform and consistent mechanism for task management, flow
control and load balancing across all node types. With the PTP protocol and the
node wrapper, nodes as diverse as digital signal processors, reduced-instruction-
set processors, domain-specific processors, reconfigurable fabrics, on-chip and
off-chip bulk memories and input/output ports can communicate seamlessly.
Moreover, once a node (including wrapper) has been configured, or reconfig-
ured, by a supervisory node, it is able to operate autonomously without the need
for global control.

1 Introduction

A distinguishing characteristic of field-programmable logic is the ability to route
wires in the field, but previous authors have made compelling arguments for routing
packets, not wires, between major system elements. Seitz[1] and Dally[2] argue that a
dedicated packet-switched network offers several advantages in structure, perform-
ance and modularity:

— Electrical properties are optimized and well controlled

— Controlled electrical parameters enable aggressive signaling circuits

— Aggressive signaling circuits reduce power and increase propagation velocity

— Sharing wires among multiple communication flows makes more efficient use of
wires

— A standard interface facilitates modularity

QuickSilver Technology’s Adaptive Computing Machine (ACM) [3,4] extends the
previous work by introducing network protocols and hardware mechanisms designed
to make the transfer of real-time streaming data among heterogeneous nodes as
seamless as possible, and does so without the need for global control. Two key as-

J. Becker, M. Platzner, S. Vernalde (Eds.): FPL 2004, LNCS 3203, pp. 125-134, 2004.
© Springer-Verlag Berlin Heidelberg 2004

126 F. Furtek, E. Hogenauer, and J. Scheuermann

pects of the ACM architecture — and the focus of this paper — are (1) the Point-to-
Point (PTP) protocol for transferring real-time streaming data over the ACM network
and (2) the node wrapper which makes all nodes appear homogeneous regardless of
their internal structure or functionality. With the PTP protocol and the node wrapper,
nodes as diverse as digital signal processors, reduced-instruction-set processors, do-
main-specific processors, reconfigurable fabrics, on-chip and off-chip bulk memories
and input/output ports can communicate seamlessly.

The present paper introduces the ACM architecture including network topology
and streaming protocols and describes how the node wrapper provides a single, uni-
form and consistent mechanism for task management, flow control and load balancing
across all node types. The hardware task manager — which is inspired by Dennis’s
pioneering work in data-flow computing [5,6] — is a key component of the node
wrapper and is discussed in detail.

2 The Adaptive Computing Machine

Adaptive Computing Machines are targeted at satisfying the signal and image proc-
essing needs of low-power, handheld, mobile, wireless devices and other forms of
consumer electronics.

2.1 The ACM Network

The Adaptive Computing Machine consists of a collection of heterogeneous nodes
interconnected by a scalable, fractal-based network (Figure 1). The network has a sin-
gle root to which are connected:

— Network input and output ports

— System port (optional)

— Internal and external bulk memory (optional)

— K-Node (Supervisor Node)

— One or more descending quadtrees with heterogeneous leaf nodes

The quadtrees are implemented using 5-ported switch elements, each connected to a
single parent and up to four children. The switch elements implement a fair, round-
robin arbitration scheme and provide pipelining with multi-level look-ahead for en-
hanced performance. At present, the width of all paths is constant (51 bits), but the
option is available to widen pathways as a tree is ascended, in the style of Leiserson’s
fat trees [7], in order to increase network bandwidth.

2.2 Network Words

All traffic on the ACM network is in the form of 51-bit network words (Figure 2)
where the fields are defined as follows:

Interconnecting Heterogeneous Nodes in an Adaptive Computing Machine 127

NETWORK INPUT
On-Chip

1/0 Block
Bulk SRAM
K- Network SRAM
NOD Root Controller
1/0 Block SDRAM Controller

NETWORK OUTPUT MEMORY INTERFACE

Fig. 1. ACM Network with 32 Leaf Nodes, K-Node (Supervisor Node), Off-Chip-SDRAM
Controller and On-Chip SRAM with Controller

50 434241 38 37 3231 0

ROUTE ‘S‘ SERVICE ‘ AUXILIARY PAYLOAD

Fig. 2. A Network Word

Route — Destination address of the network word; The two high-order bits are the
chip ID

S (Security Bit) — Bit allowing peeks (reads) and pokes (writes) to configuration
memory; Set only for words sent by the K-Node

Service — Type of service
Auxiliary — Dependent on service type
Payload — Payload

The service field defines one of sixteen service types, two of which are of interest
to us here:

128 F. Furtek, E. Hogenauer, and J. Scheuermann

Point-to-Point (PTP) — Streaming data

PTP Acknowledgement — Supports flow control for PTP data; Causes a Consumer or
Producer Count at the destination node to be incremented or decremented

2.3 Nodes

Each node in the network has three elements as illustrated in Figure 3: a node wrap-
per, an execution unit (EU) and memory (nodal memory).

Network In

(}:b Memory
Node

Wrapper

(‘,:> Execution Unit

Network Out

Fig. 3. A Cell

The wrapper makes the node identical in outward appearance to all other nodes re-
gardless of its internal structure or functionality. The wrapper also relieves the execu-
tion unit from having to deal with myriad activities associated with task management
and network interactions. Among other things, the wrapper is responsible for dispos-
ing of each incoming network word in an appropriate fashion — in one clock cycle.

The execution unit is responsible for executing tasks. It may take a wide variety of
forms:

Digital signal processor
Reduced-instruction-set processor
Domain-specific processor

ASIC (application-specific integrated circuit)
— Reconfigurable (FPGA) fabric

But regardless of its form, the EU interacts with the node wrapper through a standard
interface.

Nodal memory is accessible to both the node wrapper and the execution unit. It is
where the node wrapper deposits incoming streaming data and where the EU accesses
that data. A node’s own memory, however, is typically nor where the EU sends output
data. To minimize memory accesses, output data is usually sent directly to the node(s)
requiring that data: the consumer node(s). Nodal memory is also used to store task pa-
rameters and is available to tasks for temporary (scratchpad) storage.

Interconnecting Heterogeneous Nodes in an Adaptive Computing Machine 129

3 Transferring Streaming Data

In a multi-node system where nodes are both consumers and producers of streaming
data, matching production and consumption rates is a fundamental problem. A pro-
ducer task on one node may produce data at a rate that is either greater than or less
than the rate at which a consuming task on another node can handle. If the producer is
sending data at a greater rate than the consumer can handle, then data is eventually
lost. If the producer is sending data at a lesser rate than the consumer can handle, then
the consumer may be starved for data, thereby potentially causing the consumer to sit
idle waiting for additional data.

To address these issues, the ACM provides — via the Point-to-Point protocol and
the node wrapper — a single, uniform and consistent mechanism for task management,
flow control and load balancing. Task management ensures that a task is placed in
execution only when it has sufficient input data and when there is sufficient space in
the consumer node(s) to accommodate the data produced by the task. Flow control
guarantees that a producer task will never overwhelm a consumer task with too much
data in too short a time. Load balancing permits a producer task to distribute data
among several alternate consumer nodes, thus allowing the producer task to operate at
a potentially higher rate.

3.1 Point-to-Point Channels

Streaming data is transferred between two nodes (points) via a Point-to-Point chan-
nel (Figure 4). Associated with each PTP channel are:

— A Producer Node (Node A in Figure 4)

— A Producer Task running on the Producer Node’s execution unit that produces a
finite-sized block of PTP data per task activation, that block of data being sent over
the PTP channel as a sequence of PTP words (Task 1 in Figure 4)

— An Output Port on the Producer Node that is associated with the Producer Task
(Output Port j in Figure 4)

— A Consumer Node (Node B in Figure 4)

— An Input Port on the Consumer Node via which the Consumer Task receives PTP
data from the PTP channel (Input Port k in Figure 4)

— A circular Input Buffer in the Consumer Node’s nodal memory into which the in-
coming PTP data is deposited (Input Buffer k in Figure 4)

— A Consumer Task running on the Consumer Node’s execution unit that consumes
a finite amount of the PTP data residing in the circular input buffer per task activa-
tion (Task 2 in Figure 4)

Data is conveyed over a PTP channel when the Producer Task transfers a 50-bit
Point-to-Point word (Figure 5) to the node wrapper in the Producer Node. (The 51"
bit, the Security Bit, is added later by the network.) The node wrapper, in turn, hands
the PTP word over to the packet-switched network for transfer to the Consumer Node.
The 8-bit Route Field of the PTP word provides the address of the Consumer Node,
while the low-order 5 bits of the Auxiliary Field indicate to which of the Consumer

130 F. Furtek, E. Hogenauer, and J. Scheuermann

Node’s input ports the data is directed. When the PTP word arrives at the Consumer
Node, the node wrapper deposits the 32-bit payload into the circular input buffer as-
sociated with the indicated input port. The transfer is then complete.

Node A
Task 1

OutputL
Port

Node B

Fig. 4. A Point-to-Point Channel

50 43424 38 37 36 323 0

Node ‘ ‘0 (] O‘M‘ Port ‘ Data

Fig. 5. A Point-to-Point Word

4 Task Management, Flow Control, and Load Balancing

Having described a simple mechanism for moving streaming data between two points
in the ACM, we now turn our attention to the mechanisms for task management, flow

control and load balancing.

Interconnecting Heterogeneous Nodes in an Adaptive Computing Machine 131

4.1 Consumer Counts and Producer Counts

As already noted, there is an input buffer associated with each input port. There is
also a two's-complement signed count associated with each port, both input and out-
put.

For an input port, the count is referred to as a consumer count since it reflects the
amount of data in that port’s input buffer that is available to be consumed by the asso-
ciated task. A consumer count is enabled when its value is non-negative — that is,
when its sign bit is 0. An enabled consumer count indicates that the associated input
buffer has the minimum amount of data required by an activation of the associated
task. At system initialization, or upon reconfiguration, a consumer count is typically
reset to —C, where C is the minimum number of 32-bit words required per task acti-
vation.

For an output port, the count is referred to as a producer count since it reflects the
amount of available space in the downstream input buffer to accept the data that is
produced by the associated task. A producer count is enabled when its value is nega-
tive — that is, when its sign bit is 1. An enabled producer count indicates that the
downstream input buffer has space available to accommodate the maximum amount
of data produced per activation of the associated task. At system initialization, or
upon reconfiguration, a producer count is typically reset to P — S — 1, where P is the
maximum number of 32-bit words produced per task activation and S is the size of the
downstream input buffer in 32-bit words.

Notice that both consumer counts and producer counts are typically initialized to
negative values, which means that consumer counts start out disabled while producer
counts start out enabled. This initial state reflects the fact that input buffers are usu-
ally empty at system initialization/reconfiguration.

4.2 PTP Acknowledgements

Consumer and Producer Counts are updated by a system of credits and debits in the
form of forward acknowledgements and backward acknowledgements. Both types
of acknowledgements are network words (Figure 6) sent by a task as the last steps in a
task activation. In both cases, the payload contains four fields: (1) a bit indicating the
type of acknowledgement, (2) a port, (3) a task and (4) an Ack Value.

50 43424 38 37 32313029 1615 1312 87 6 210

Node ‘ ‘0 (] 1‘0 0000 0‘ ‘ Ack Value ‘ ‘ Task ‘0‘ Port ‘ ‘

Fig. 6. A PTP Acknowledgement
The sequence of acknowledgements that a task performs at the end of each activa-
tion is as follows:
A. For each output port of the task:

1. Send a forward acknowledgement to the consumer node specifying the con-
sumer input port and the consumer task; Ack Value is the number of PTP
words the task just sent to the consumer input port

132 F. Furtek, E. Hogenauer, and J. Scheuermann

2. Send a backward acknowledgement (a self ack) to the node on which the task
resides specifying the output port and the task; Ack Value is the number of
PTP words the task just sent via the output port

B. For each input port of the task:

1. Send a backward acknowledgement to the producer node specifying the pro-
ducer output port and producer task; Ack Value is minus the number of 32-
bit words the task just consumed from the input port’s buffer

2. Send a forward acknowledgement (a self ack) to the node on which the task
resides indicating the input port and the task; Ack Value is minus the number
of 32-bit words the task just consumed from the input port’s buffer

4.3 The Hardware Task Manager

The hardware task manager is the part of the node wrapper responsible for updating
consumer and producer counts in response to incoming acknowledgements. It also
monitors the sign bits of those counts and launches a task when an appropriate set of
counts is enabled. This last responsibility is met using two signed counts that are as-
sociated not with a port but with a task: a task input count and a task output count.
A task’s input (output) count reflects the number of task consumer (producer) counts
that are enabled. A task count is said to be enabled when its value is non-negative. A
task is enabled — and available for execution — when both its input count and its out-
put count are enabled.

Incoming acknowledgements update various counts and cause tasks to be launched
as follows:

A. If a forward acknowledgement is received:

1. Interpret the specified port as an input port, and add Ack Value to the corre-
sponding consumer count

2. If the consumer count makes a transition from disabled to enabled (enabled
to disabled), then increment (decrement) the input count of the specified task
by 1

B. Else if a backward acknowledgement is received:

1. Interpret the specified port as an output port, and add Ack Value to the corre-
sponding producer count

2. If the producer count makes a transition from disabled to enabled (enabled to
disabled), then increment (decrement) the output count of the specified task
by 1

C. If after Step A or B the specified task’s input and output counts are both en-
abled, then place the task on the ready-to-run queue if it is not already on the
queue; Launch the task when it reaches the head of the queue

These actions, in effect, embody the firing rule for tasks. They cause a task to be
placed on the ready-to-run queue and ultimately executed when a sufficient number of
consumer counts and a sufficient number of producer counts are enabled. What those

Interconnecting Heterogeneous Nodes in an Adaptive Computing Machine 133

sufficient numbers are is determined by the initial values of a task’s input count and
output count. If I (O) is the number of input (output) ports associated with a task and
IC,,... (OC,..) is the initial value of the task’s input (output) count, and if we assume
that all consumer counts are initially disabled and all producer counts are initially en-
abled as discussed above, then a task fires when

-IC, . out of I consumer counts are enabled
AND

(O -0C,,,) out of O producer counts are enabled

Initial

For example, for I = 4,

IfIC,,,, =—1, then 1 out of 4 consumer counts must be enabled
IfIC, ., = -2, then 2 out of 4 consumer counts must be enabled
IfIC,,,, = -3, then 3 out of 4 consumer counts must be enabled
IfIC, ., = —4, then 4 out of 4 consumer counts must be enabled
For O =4,
If OC,,,, = 3. then 1 out of 4 producer counts must be enabled
If OC,,,, = 2, then 2 out of 4 producer counts must be enabled
If OC,,, =1, then 3 out of 4 producer counts must be enabled
If OC,,,, = 0, then 4 out of 4 producer counts must be enabled

4.4 Flow Control

Earlier, we said that flow control guarantees that a producer task will never over-
whelm a consumer task with too much data in too short a time. In the context of the
ACM, that means that a producer task will never overflow an input buffer of a con-
sumer task. The mechanism that guarantees this property has been spelled out above:

1. The producer count associated with the output port of the producer task is initial-
ized to P— S — 1 as described in Section 4.1.

2. The producer and consumer tasks perform the sequence of acknowledgments out-
lined in Section 4.2 upon the completion of each activation.

4.5 Load Balancing

The mechanism described in Section 4.3 — that launches a task when just one of its
output ports is enabled — permits a producer task, usually a high-throughput task, to
send the output of each activation to one of several alternate, usually lower-
throughput, consumer tasks. The downstream processing load is thus distributed (bal-
anced) among the several consumer tasks. To support this capability, the node wrap-
per makes available to the execution unit the identities of enabled input and output
ports.

134 F. Furtek, E. Hogenauer, and J. Scheuermann

5 Conclusions

The node wrapper and the point-to-point protocol provide an asynchronous, distrib-
uted mechanism for handling streaming data in a system with heterogeneous nodes.
This distributed intelligence supports task management, flow control and load bal-
ancing across a wide range of node types.

This work is connected to prior research in several related areas. Petri nets [8] were
the first mathematical model to truly capture the notion of concurrency, and the firing
rule described in Section 4.3 above can be seen as a generalization of Petri’s original
firing rule. Dennis’s work on data-flow computing [5,6] — which inspired our work
and was in turn inspired, at least in part, by Petri’s work — is based on the principle
that computing should be data-driven, that an operator (task) should fire (execute)
when input data and output buffers are available. Seitz[1] and Dally[2] recognized the
importance of making a transition from routing wires — the realm of field-
programmable logic — to routing packets (tokens) — the realm of data-flow computing.

There is also a connection to Lysaght’s work [9] on logic caching since the hard-
ware task manager provides a mechanism for distributed, rather than centralized,
control of logic caching. Finally, there is a connection to threshold logic which can be
appreciated when one realizes that consumer and producer counts act as threshold
gates with the output sign bit indicating whether a threshold has been reached.

References

1. Seitz, C. L.: Let's Route Packets Instead of Wires. In: Dally, W. J. (ed.): Proceedings of the
6th MIT Conference on Advanced Research in VLSI. MIT Press (1990) 133-37

2. Dally, W., Towles, B.: Route Packets, Not Wires: On-Chip Interconnection Networks. In:
Proc. Design Automation Conf. (June 2001) 684-689

3. Master, P.: The Age of Adaptive Computing is Here. In: Glesner, M., Zipf, P., Renovell, M.
(eds.): Proceedings of the 12th International Conference on Field Programmable Logic (FPL
2002). Lecture Notes in Computer Science, Vol. 2438. Springer-Verlag, Berlin Heidelberg
New York (2002) 1-3

4. Guccione, S. A.: The Adaptive Computing Machine Combines DSP Programmability with
the Power and Performance of Custom Hardware. In: Global Signal Processing Expo and
Conference (GSPx). Dallas, TX (2003)

5. Dennis, J. B.: First Version of a Data Flow Procedure Language. In: Programming Sympo-
sium. Lecture Notes in Computer Science, Vol. 19. Springer-Verlag, Berlin, New York
(1974) 362-376

6. Dennis, J. B.: The Evolution of 'Static' Data-Flow Architecture. In: Gaudiot, J.-L., Bic, L.
(eds.): Advanced Topics in Data-Flow Computing. Prentice-Hall, Englewood Cliffs (1991)
35-91

7. Leiserson, C. E.: Fat-trees: Universal Networks for Hardware-Efficient Supercomputing. In:
IEEE Transactions on Computers, C-34(10) (October 1985) §92-901

8. Petri, C.A.: Kommunikation mit Automaten: Institut fiir Instrumentelle Mathematik,
Schriften des IIM Nr. 2, Bonn (1962)

9. Lysaght, P., Dunlop, J.: Dynamic Reconfiguration of Field Programmable Gate Arrays. In:
Moore, W., Luk, W. (eds.): Proceedings of the 1993 International Workshop on Field-
Programmable Logic and Applications, Oxford (1993)

	1 Introduction
	2 The Adaptive Computing Machine
	2.1 The ACM Network
	2.2 Network Words
	2.3 Nodes

	3 Transferring Streaming Data
	Point-to-Point Channels

	Task Management, Flow Control, and Load Balancing
	Consumer Counts and Producer Counts
	PTP Acknowledgements
	The Hardware Task Manager
	Flow Control
	Load Balancing

	5 Conclusions

