
A Middleware Aided Robust and Fault Tolerant
Dynamic Reconfigurable Architecture

Yannick Dadji, Björn Osterloh, Harald Michalik
Institute of Computer and communication Network Engineering, TU Braunschweig

Hans-Sommer-Str.66, 38106 Braunschweig, Germany
y.dadji-foyet@tu-bs.de
b.osterloh@tu-bs.de

michalik@ida.ing.tu-bs.de

Abstract— Dynamic reconfiguration enhances embedded
system with at run-time adaptive functionality and is an
improvement in terms of resource utilization and system
adaptability. SRAM-based FPGAs provides a dynamic
reconfigurable platform with high logic density. The requirements
for such an embedded high flexible system based on FPGAs are
robustness and reliability to prevent operation interrupts or even
system failures. The complexity of a dynamic reconfigurable system
with adaptive processing module demands high effort for the user.
Therefore a high level abstraction of the communication issues is
required to support application development by an appropriate
middleware. To achieve such a flexible embedded system we
present our Network-on-Chip (NoC) approach System-on-Chip
Wire (SoCWire) and outline its performance and suitability for
robust dynamic reconfigurable systems. Furthermore we introduce
a suitable embedded middleware concept to support the system
reconfiguration and the software application development process.

Index Terms— SoCWire, Network-on-Chip, Virtex, FPGA,
Middleware

1. INTRODUCTION

The need of flexibility and adaptability in the development
process of embedded system for industrial applications e.g.
robotics, automotive, aerospace and space drastically
increased in the last decade. Traditionally, three main
options are available to implement embedded systems:
microcontroller platform (inclusive DSP systems), FPGAs,
and ASICs. ASICs provide the highest performance, because
their design can be optimally configured with respect to the
application's requirements. However ASICs have a fixed
configuration that cannot be adapted when the application
requirements change. On the other hand microcontroller-
based solutions provide only suboptimal processing speed
due to the execution of software programs. Between these
two extremes, FPGAs provide a compromise, which is
suitable for many applications. FPGAs have a run-time
adaption capability. Special processing modules could be
requested on demand which is an improvement in terms of
resource utilization and system adaptability. Dynamic
reconfigurable systems provide these enhancements.
Available dynamic reconfigurable devices, e.g. the Xilinx
Virtex-4 family, provide a platform to the user with high

logic density. The requirements for such an enhanced
architecture are: the system needs to be robust and reliable
for the industrial environment (temperature, shock) and even
fault tolerant, e.g. for a harsh space environment (Single
Event Effects (SEEs), a bit-flip in the configuration memory
or a transient error due radiation). Furthermore, the system
qualification has to be guaranteed after a module update or
during the dynamic reconfiguration process to prevent
operational interrupts or even system failures. Such an
enhanced dynamic reconfigurable system demand deep
knowledge of the system architecture and the dynamic
reconfiguration process by the user. The user needs to know
the allocation of the processing modules, the reconfiguration
mechanism and has to prove the functional correctness of the
module after update to guarantee system qualification. In
order to support the application development process, the
system complexity should be made transparent as far as
feasible to the application developer. To reduce the system
complexity for the user, the approach is to introduce a high
level abstraction layer of the communication issues (hiding
system details like communication links and module location
to the user) as typically realized by communication
middleware. Furthermore the complexity of the
configuration and reconfiguration mechanisms shall also be
encapsulated in simple high level functions. Consequently,
the need arises to deploy an appropriate middleware for
system development support. A middleware has the
advantage to reduce the application development effort and
thus the time to market. The deployment of a middleware on
an embedded system implies additional resource utilization.
This might become a design problem, since many real-time
and embedded systems have tight constraints on memory
footprint due to cost, power consumption, or weight
restrictions [1]. Therefore, the middleware must be designed
as lean as possible in term of memory utilization.
Consequently, an adequate middleware must be tailored to
meet the special needs of the application field implemented
on the corresponding embedded system. This eliminates the
possibility of adapting Commercial off-the-shelf (COTS)
middleware, which is typically a generic solution without
optimization of memory utilization and, in the case of our

J.S. Dai, M. Zoppi and X. Kong (eds), ASME/IFToMM International Conference on Reconfigurable Mechanisms and Robots572

Authorized licensed use limited to: Politechnika Lodzka. Downloaded on August 31, 2009 at 05:11 from IEEE Xplore. Restrictions apply.

SoCWire architecture, will not cover the special
configuration and reconfiguration issues.
We have been developing special application specific
communication middleware in the scope of the SFB562
Project at the Technical University Braunschweig. This
project deals with new concepts for the control of parallel
robots for handling and assembly tasks. In this scope we
developed a PC based control architecture with the
communication middleware MiRPA-X ([2][3][4]) as key
component MiRPA-X supports the modular development of
the control software components and encapsulates all Inter
Process Communication (IPC) features. One requirement for
the middleware was real time capability of the commu-
nication services with time constraint in microseconds range
in order to enable a reliable control of the high dynamic
parallel robot structure. Therefore, MiRPA-X obeys an
application specific design and implements performance
optimized synchronous and asynchronous communication.
In this paper we will propose a robust and fault tolerant
dynamic reconfigurable architecture with application
development aided by a specific middleware.
First, we will outline the dynamic partial reconfiguration
process in Xilinx Virtex-4 and the limitation of a bus
structure. Furthermore we will introduce our SoCWire
architecture for dynamic reconfigurable systems and the
essentials for a NoC approach. Then we will introduce the
main features of the middleware MiRPA-X and discuss
integration of some of these features to support the
application development, the automatic configuration and
reconfiguration mechanism on the SoCWire architecture.

2. DYNAMIC PARTIAL RECONFIGURATION IN VIRTEX-4
FPGA

Xilinx provides the Virtex-4 family at different
qualifications level from commercial, industrial, military and
even for space applications. In contrast to earlier Virtex
families, e.g. Virtex-II, the internal configuration of the
hardware architecture has changed. In previous FPGAs the
CLBs (Configurable Logic Block) were surrounded by a ring
of IOBs (Input-Output Buffer). The IOBs are now organized
in columns. Additionally the FPGA is divided in clock
regions, each comprising 16 CLBs. These clock regions have
significant influence on the configuration process of the
FPGA. Xilinx FPGAs are customized by loading
configuration data into the internal configuration memory.
The configuration memory is arranged in frames that are
tiled about the device. These frames are the smallest
addressable segment of the configuration memory space.
One frame comprises 16 CLBs and therefore one clock
region [5]. This architecture with clock regions and IOB
structures has the advantage to overcome the limitation of
partial reconfiguration in the Virtex-II architecture.

Partial Reconfigurable Modules (PRMs) do not have to
occupy the full height of the device and IOBs above the top
edge and below the bottom edge of the module are not part

of the module resources. Therefore the logic resources left,
right, top and bottom of a PRM can be used for the static
area. The Virtex-4 family provides now a 32Bit data word
width configuration interface (SelectMap) running at 100
Mhz which significantly decrease reconfiguration time by a
factor of 8 compared to Virtex-II.

For communication between modules (static and partial
reconfigurable area) Xilinx provides new unidirectional Bus-
Macros in the Virtex-4 family which can connect modules
horizontal and vertically. These Bus-Macros are suitable for
handshaking techniques and bus standards like AMBA or
Wishbone. Dedicated processing tasks, e.g. image
processing, can be typically structured as a macro-pipeline
with pre- and post-processing steps and require high data
rate point-to-point communication as depicted in Fig. 1.

Host System

Switch

PR Module
3

Data
I/F

PR Module
2

Data
I/F

PR Module
1

Data
I/F

Data
I/F

PR-Area 1 PR-Area 2 PR-Area 3

Fig. 1 Macro-pipeline system

To realize this architecture in a bus structure, multi master
and bus arbitration are needed. Also bus structures are
limited in the Xilinx hardware architecture. In a partial
reconfigurable system a bus requires wires that distribute
signals across the device. The Virtex family provides
bidirectional vertical, horizontal long lines that span the full
height and width of the device and 3-State buffered
horizontal long lines that span the full width of the device.
But these long lines are limited resources in the device: 24
bidirectional horizontal, vertical and four 3-State buffer long
lines per column CLB [6]. Furthermore, the dynamic partial
reconfiguration process does not have an explicit activation.
New frames become active as they are written. If bits are
identical to the current value, the bits will not momentarily
glitch to some other value. But if the bits change, those bits
could glitch when the frame write is processed. Furthermore,
some selections (e.g. the input multiplexers on CLBs) have
their control bits split over multiple frames and thus do not
change atomically.

A fault tolerant bus structure with hot-plug ability is
necessary to guarantee data integrity. With these limitations
a bus structure based system would encounter the following
disadvantages:

A Middleware Aided Robust and Fault Tolerant Dynamic Reconfigurable Architecture

573

Authorized licensed use limited to: Politechnika Lodzka. Downloaded on August 31, 2009 at 05:11 from IEEE Xplore. Restrictions apply.

�� No dedicated Bus-Macros are provided by Xilinx
to access long lines which lead to manual time
consuming routing.

�� Failure tolerant bus structure (high efforts) with
hot-plug ability is necessary to guarantee data
integrity

�� Dynamic reconfiguration of a PRM could block
the bus and stop the system

�� Limited long lines resources restrict the bus
structure in data word width

The major disadvantage of a bus structure is the
unpredictable behavior of the dynamic reconfiguration
process in the system which could lead to block the bus and
stop the system. Therefore the PRMs need to be isolated
from the host system physically and logically. Our
framework to physically isolate the PRM from the host
system and therefore to retain the system qualification, is to
subdivide the system into a static area and Partial
Reconfigurable Areas (PR-Areas) which can be updated
during operation. The static area remains unchanged and
comprises all critical interfaces (processor, communication
interfaces and memory controller). This offers the advantage
that only the updated module has to be qualified in a delta-
qualification step.

Furthermore to logically isolate the PRMs from the host
system and with the bus structure limitation issued before we
consider instead a networked architecture with a Network-
on-Chip (NoC) approach providing:

�� Reconfigurable point-to-point communication
�� Support of adaptive macro-pipeline
�� High speed data rate
�� Hot-plug ability to support dynamic reconfigura-

ble modules
�� Easy implementation with standard Xilinx Bus-

Macros
In order to achieve these requirements we have developed

our own NoC architecture: System-on-Chip Wire (SoCWire).

3. SYSTEM-ON-CHIP WIRE (SOCWIRE)
Our approach for the NoC communication architecture,

which we have named SoCWire, is based on the ESA
SpaceWire interface standard [7]. SpaceWire is a well
established standard in the space community, providing a
layered protocol (physical, signal, character, exchange,
packet, network) and proven interface for space applications.
It is an asynchronous communication, serial link, bi-
directional (full duplex) interface including:

�� Link initialization
�� Credit based flow control
�� Detection of Link Errors
�� Link Error Recovery
�� Hot-plug ability
�� Automatic reconnection after link disconnection

Thus, SpaceWire meets all requirements for a fault-
tolerant NoC approach. A further advantage is that

SpaceWire requires significantly small resource utilization,
only.

3.1. SpaceWire
SpaceWire uses Data Strobe (DS) encoding. DS consists

of two signals: Data and Strobe. Data follows the data bit
stream whereas Strobe changes state whenever the Data does
not change from one bit to the next. The clock can therefore
be recovered by a simple XOR function. The performance of
the interface depends on skew, jitter and the implemented
technology. Data rates up to 400 Mb/s can be achieved. The
SpaceWire character level protocol is based on the IEEE
Standard 1355-1995 with additional Time-Code distribution.
The character level protocol includes data character, control
character and control codes. A data character (10bit length)
is formed by 1 parity bit, 1 data-control flag and 8 data bits
and includes data to be transmitted, as shown in Fig. 2.

The data-control flag indicates, if the current character is a
data (0) or control character (1). Control characters (4-bit
length) are used for flow control: A flow control token
(FCT), end of packet markers (EOP or EEP) and an escape
character (ESC) are used to form higher level control codes
(8-14bit length) e.g. NULL (ESC+FCT) and Time-Code
(ESC + Data character).

P 0 X X X X X X X X

0 1 2 3 4 5 6 7
LSB MSB

Data-Control Flag
Parity Bit

Fig. 2 . Data character

3.2. SoCWire CODEC
As mentioned before, SpaceWire is a serial link interface

and the performance of the interface depends on skew, jitter
and the implemented technology. For our NoC approach we
are in a complete on-chip environment. The maximum
character length in the SpaceWire standard without time
code, which is not needed in our NoC, is 10bit (data
character). Therefore we have modified the SpaceWire
interface to a 10bit parallel data interface [8].

The advantage of this parallel data transfer interface is
that we can achieve significantly higher data rates as
compared to the SpaceWire standard. Additionally, we have
implemented a scalable data word width (8-128bit) to
support medium to very high data rates. On the other hand
we keep in our implementation the advantageous features of
the SpaceWire standard including flow control and hot-plug
ability. Also the error detection is still fully supported
making it suitable even for an SEE sensitive environment.
For a parallel data transfer the Flow Control Token (FCT)
need be included in the parallel data transfer. After
initialization phase, every eighth data character is followed
by one FCT to signal the readiness of the destination to

Yannick Dadji, Björn Osterloh and Harald Michalik

574

Authorized licensed use limited to: Politechnika Lodzka. Downloaded on August 31, 2009 at 05:11 from IEEE Xplore. Restrictions apply.

receive data. The maximum data rate for a bi-directional
(full-duplex) transfer can therefore be calculated by:

8
)(

)(

WidthDWordf
WidthDWordf

s
MbDRate MHzCore

MHzCoreBi

�
�����

	

�
�

For a unidirectional data transfer the flow control
characters are processed in parallel and the maximum data
rate can be calculated by:

WidthDWordf
s

MbDRate MHzCoreUni ����
	

�
�

)(

Fig. 3 shows data rates for different data word width,
unidirectional and bi-directional (full-duplex) data transfer at
a core clock frequency of 200 MHz.

8 16 32 64 128
0

2

4

6

8

10

12

14

16

18

20

22

24

26

28

30

1,6
3,2

6,4

12,8

25,6

1,4
2,8

5,6

11,2

22,4

G
bi

t/s

Data Word Width (Bit)

 Unidirectional
 Bi-directional

Fig. 3 SoCWire CODEC data rates at core clock frequency 200 MHz

The SoCWire CODEC has been implemented and tested
in Xilinx Virtex-4 LX60-10. Figure 4 shows the occupied
area, absolute values and maximum clock period.

8 16 32 64 128
0

1

2

3

4

5

6

340 389 475
708

977

143 186 266
431

746

1

2

3

5

9

219

228 228

225

221

R
es

ou
rc

e
U

til
iz

at
io

n
(%

)

Data Word Width (Bit)

 Lut
 FF
 BRAM
 CoreClockF.

200

205

210

215

220

225

230

 C
or

e
C

lo
ck

 F
re

qu
en

cy
 (M

H
z)

Fig. 4 SoCWire CODEC synthesis report

Fig. 3 and Fig. 4 show that high data rates are achieved
with small resource utilization occupied by the SoCWire
CODEC.

3.3. SoCWire Switch
To build up a network, a switch and a packet oriented

protocol is needed. The switch enables the transfer of
packets arriving at one link interface to another link interface
on the switch, and then sending out from this link. The
SoCWire Switch and its packet format are again based on
the SpaceWire standard. The packet level comprises:
destination address + cargo + end of packet. The destination
address includes the destination identifier to support routing
of packets. The cargo contains the data characters that need
to be transferred from source to destination. It can be in any
packet format, e.g IP packets. The end of packet marker can
be either EOP for normal end of packet or alternatively EEP
for exceptional end of packet as an indication of an error in
the packet.

The SoCWire Switch determines from the destination
address where the packet is to be routed to. Direct port
addressing (packets with a port address are routed directly to
one of the output ports) with header deletion has been
implemented. As soon as the destination port of a packet is
determined and the port is free the packet is routed
immediately to that output port. The port is marked as busy
and can not be accessed until the end of the packet. This is
also known as wormhole routing which reduces buffer space
and latency. Our SoCWire Switch is a fully scalable design
supporting data word width (8-128bit) and 2 to 32 ports. It is
a totally symmetrical input and output interface with direct
port addressing including header deletion. The SoCWire
Switch has been implemented and tested in a Xilinx Virtex-4
LX60-10. Table 1 shows the occupied area and maximum
clock frequency for a 4 port switch are dependent on the data
word width.

Table 1 SoCWire Switch (4 Ports) synthesis report

AreaDWord
Width

Max. fCore
(MHz) LUT FlipFlops

8 190 1736 668
32 170 2540 1169

The SoCWire Switch basically consists of a number of
SoCWire CODECs according to the number of ports and
additional fully pipelined control machines. The maximum
data rate is therefore equivalent to the SoCWire CODEC.

3.4. SoCWire Test and Results
We have implemented four SoCWire CODECs, one in the

Host system, three in the PRMs and one SoCWire Switch in
a dynamic reconfigurable macro-pipeline system, see Fig. 5.
The Host system and SoCWire Switch where placed in the
static area and the PRMs in the partial reconfigurable areas.
All SoCWire CODECs where configured with an 8 bit data
word width. The implementation of the system with
reconfigurable areas could be easily implemented with the
standard unidirectional Xilinx Bus-Macros. Fig. 5 shows a
cut out of the placed and routed SoCWire macro-pipeline

A Middleware Aided Robust and Fault Tolerant Dynamic Reconfigurable Architecture

575

Authorized licensed use limited to: Politechnika Lodzka. Downloaded on August 31, 2009 at 05:11 from IEEE Xplore. Restrictions apply.

system: the PRMs (PRM1, PRM2 and PRM3) and Bus-
Macros in a Virtex-4 LX 60. The static area is distributed
over the FPGA.

Fig. 5. SoCWire Macro-Pipeline System

The PRMs were configured as packet forwarding modules.
We have tested different configuration of packet forwarding
e.g. between modules, through the whole macro-pipeline
system, under the condition of parallel communication
between nodes. The system runs at 100MHz and the
maximum data rates of the simulation could be validated to
be 800 Mbps according to the selected 8-bit data word width.
We dynamically reconfigured one PRM in the system.
During the reconfiguration process the communication
between the PRM and SoCWire Switch was interrupted, the
other PRMs connections were still established. After the
reconfiguration process was completed the communication
between the two nodes was built up automatically within
400 ns and without any further external action (e.g. reset of
node or switch). This makes the system ideal for dynamic
reconfigurable systems. The Partial Reconfiguration Time
(PRT) can be calculated by:

The size of one PRM was 37912 Bytes (64 Bytes
command + 37848 Bytes data) and therefore the PRT 758µs
(SelectMap, 8Bit data word width at 50 Mhz). For this test
system the area for one PRM was set to utilize 0.6 % of the
logic resources.

4. ROBUST DYNAMIC RECONFIGURABLE SYSTEM

SoCWire meets all requirements for a robust and fault
tolerant dynamic reconfigurable architecture. The
architecture provides system robustness and reliability.
Programming a dynamic reconfigurable system is without
design aids an intensive task for the user. The user needs
detailed knowledge of the architecture, the processing
modules, the dynamic reconfiguration process and the
requalification of the system after a module update.

To simplify the application development process by
hiding the system complexity to the user we propose to
integrate a middleware, which is derived from the existing

middlware approach MiRPA-X. Thus, we will give a short
description of the MiRPA-X in the first part of this section.
Then we will show how we intend to integrate the
middleware in the SoCWire architecture.

4.1. MiRPA-X

MG

M
EC

H
. R

O
BO

TE
R

ST

R
UC

TU
R

E

CO
NT

RO
L

PCCOORD.
TRANSF.

TRAJECT
. GEN.

COLLISION
DETECT

CONTROL

...

REGULATION

SENSOR ACTOR

MIDDLEWARE
MIRPA-X

COMMUNICATION
SYSTEM

MG

M
EC

H
. R

O
BO

TE
R

ST

RU
C

TU
RE

SENSOR ACTOR

CO
NT

R
O

L
PCCOORD.

TRANSF.

TRAJECT
. GEN.

COLLISION
DETECT

CONTROL

...

REGULATION

A) B)

Fig. 6 PC based software control architecture: a) implementation without
middleware, IPC issues require deeper system knowledge from the user, and

b) implementation with middleware, no system knowledge required from
IPC issues.

MiRPA-X is an object server, which transparently handles
data and procedure requests. Its lean design is optimized for
high communication performance. It supports the
client/server implementation pattern, therefore control
software components are registered as client or server in the
MiRPA-X environment. One of the key features of MiRPA-
X is the ability to hide the identity of servers from clients; so
every data transfer is content-based, not structure-based.
This enables modifying the whole control system structure
dynamically without recompilation or restart of system
components in general. Fig. 6 shows exemplarily the
realization of a PC based control system consisting of
multiple software components exchanging data with each
other to perform a specific control task. On the left side a), a
software component is directly linked to all components it
communicates with. The user must know all the
communication links available on the system. A dynamic
reconfiguration of the system is quasi impractical. On the
right side b) the middleware MiRPA-X is introduced as the
exclusive communication partner for all software
components. The connection to the object server of the
middleware is encapsulated in high level API functions.
Therefore the user must not know any system information
while developing the control components. MiRPA-X
supports the IPC; this can be realized in both synchronous
and asynchronous way. The synchronous way consists of
blocking request/reply pattern. The asynchronous way
consists of non blocking command messages send over the
middleware to the corresponding target component.
Additionally MiRPA-X supports IPC over shared memory
region. This is designated for software components with
tight data coupling. Since the shared memory access has no
inherent synchronization mechanism, access conflicts and

][][
][][

BytesSelectMapHzCCLK
BytesPRMsPRT

WidthDWord�
�

PRM1

PRM2

PRM3

Bus-Macros

Yannick Dadji, Björn Osterloh and Harald Michalik

576

Authorized licensed use limited to: Politechnika Lodzka. Downloaded on August 31, 2009 at 05:11 from IEEE Xplore. Restrictions apply.

data integrity violation may appear when many components
simultaneously access the same shared memory. To solve
this problem, MiRPA-X introduces a real-time sequence
control engine, the token manager. The token manager
defines a high priority token cycle that includes all registered
components. To ensure data integrity, the token manager
enforces a sequential shared memory access of the registered
components.

SERVERSERVERCLIENT

MIRPA-X

CONFIG

CONTROL

COMMAND

REQUEST ANSWER

CONTROL
CONFIG

UserServerThread

ReceiveThreadUserClientThread

ObjectServer

CONTROL

COMMAND

REQUEST

Fig. 7 Message types in the MiRPA-X environment

Fig. 7 shows the general message types, which are
transmitted in the MiRPA-X environment. All requests are
passed to MiRPA-X, which then routes the requests to their
ultimate targets and back, if an answer is required. MiRPA-
X supports four different message types:

�� REQUEST / ANSWER – transmission of service
requirement and waiting for service delivery.

�� COMMAND – transmission of non blocking
procedure call

�� CONFIG – service and resource (shared memory)
registration

�� CONTROL - request of statistical information about
resource and service delivery status

4.2. Middleware Aided Dynamic Reconfiguration

Fig. 8 shows an example of a dynamic reconfigurable
architecture. It consists of a System-On-Chip (SoC) design
with additional external resources. The on-Chip design is
organized in a static and a Partial Reconfigurable (PR) area.
The static area comprises the host system, the SoCWire
switch, the I/O controller and the memory controller. On the
host system, a PowerPC is installed and the operating system
QNX is running. The I/O controller enables the integration
of additional peripheral devices. The memory controller
enables the integration of additional external application
memory. To avoid a bottleneck by the memory access, the
memory controller implements a multi port (0..n) connection
to the SoCWire switch. On the host system, the middleware
MiRPA-XE (additional extension E for “Embedded”) is
deployed. The PR area can be dynamically reconfigured on
demand with application dependant hardware modules at run
time. In Fig. 8 the PR area is exemplarily configured with

the modules PRM 1, 2, und 3. The external resources consist
of the configuration memory where all hardware modules
are stored, the shared memory region (which could also be
on-Chip for small systems) for data exchange between
software applications and PRMs, the I/O driver and the
application memory space used by the PRM processing. To
support the reconfiguration process, the middleware needs to
know the corresponding basic configuration information of
every PRM. This configuration information consists of the
module name, a unique module identifier, a list of services
provided and a global module status. To publish the
configuration information each module implements a
dedicated memory location which contains the configuration
information. At the start up, the middleware will extract all
configuration information and set up a configuration
database and a Look-Up table (LUT) for a dynamic run time
mapping of service request into module allocation.

SoCWire
Switch

Sh
ar

ed
 M

em
or

y

PRM
Module 1

Host System

MiRPA-XE
Core

APP

APP

PRM
Module 2

PRM
Module 3

MEM
Ctrl

I/O
Ctrl

Application
Memory

Module
1

Conf. Info
Module

2

Conf. Info

Module
3

Conf. Info
Module

n

Conf. Info

Configuration Memory

I/O
Driver

0 n

S
ys

te
m

 o
n

C
hi

p

Partial reconfigurable area

External ressources

Fig. 8 Dynamic reconfigurable architecture

The middleware offers a high level API function to
support the hardware reconfiguration process. The API
function encapsulates all the reconfiguration process,
therefore transparency is provided since the user needs not to
handle with the complex reconfiguration mechanism. The
parameter needed for the reconfiguration process is the name
of the PRM to configure. The API function resumes the
module reconfiguration process and loads the corresponding
hardware code from the configuration memory into the PR
areas (e.g. through the Xilinx ICAP interface). After the
module reconfiguration process is completed the SoCWire
system automatically builds up a link connection to the
module. The module signals its activity by sending a
message to the host system. The Middleware then operates
certain tests (test vectors, timing constraints) to validate the
correct behavior of the module and to guarantee system
qualification. After a successful validation the module is
ready for processing. The Middleware sends the results of
the reconfiguration process (reconfiguration successful or
failed) to the user.

A Middleware Aided Robust and Fault Tolerant Dynamic Reconfigurable Architecture

577

Authorized licensed use limited to: Politechnika Lodzka. Downloaded on August 31, 2009 at 05:11 from IEEE Xplore. Restrictions apply.

4.3. Middleware Aided Application Development Process
Beside the reconfiguration process of the PRM the

middleware also supports the application development on
the host system. For this purpose three basic high level
functionalities of MiRPA-X will be adapted to the embedded
environment: the shared memory access management
(analogue to 4.1), the processing request (derived from the
MiRPA-X request /reply communication model) and the task
activation service (derived from the MiRPA-X non Blocking
COMMAND messages). Each processing required by an
application is coded in the MiRPA-XE environment as a
service identified by a unique name within the system. In
this way transparency is provided, since the user does not
need to specify the PRM or the software application that
should process the service. If a software component
performs a PRM processing request service, it sends a
request message containing the service name to the
middleware. To figure out which PRM is concerned by a
service request, the middleware uses its internal
configuration database. Subsequently the middleware issues
a service request packet and forwards it via the SoCWire
system to the corresponding PRM, when the latter is active.
Upon reception of the packet the PRM starts processing. The
data to be processed can either be compiled in the request
packet (synchronous processing) or passed through a shared
memory (asynchronous processing). By a synchronous
processing, the software component blocks until it receives
the processing result. When the PRM completes the
processing it sends back the processing results via the
SoCWire system to the middleware. The middleware then
compiles the result in a reply message and sends it back to
the former software component. If for any reason the PRM
does not reply to the request (i.e. the PRM is out of order),
then calling process will remain blocked. This may lead to
the collapse of the overall application. To avoid this, timeout
information will be appended to each blocking service
request. This way, a calling process will unblock with the
corresponding timeout error if the target PRM does not
answer a request within the specified time.

Task activation services can be used in collaboration with
shared memory communication. When a software
component wants to perform task activation, it sends a non-
blocking task activation message to the middleware. The
middleware forwards the message via the SoCWire system
to the corresponding PRM. Upon reception of the activation
The PRM starts the task processing. It processes data
contained in a prior specified shared memory region and
write the processing results a second shared memory region.
To communicate the processing results, the PRM may use
two different ways. By a small data set of processing result,
it may pass a message to the middleware. By a large data set,
the PRM may write the processing result in a shared memory
region and set a task completion flag. Then it would send a
task completion signal to the middleware and the latter
would forward the signal to the corresponding software
component.

The MIRPA-XE is realized as a soft- and hardware
module. The software module uses the QNX services to
implement the API functions relative to the processing
request and task activation services. In the hardware module,
a SoCWire interface converts the message passing data into
SoCWire packets and vice versa.

With the assistance of the middleware the complex
hardware reconfiguration process is made transparent for the
user. Also the communication mechanisms derived from
MiRPA-X ease the software application development and to
reduce the development time.

5. CONCLUSION

Dynamic reconfiguration enhances embedded system with
at run-time adaptive functionality and is an improvement in
terms of resource utilization and system adaptability. To
meet these requirements, an improved communication
architecture with NoC approach is required to guarantee
system qualification and to prevent operational interrupts.
Furthermore a suitable framework is needed to support the
complex system reconfiguration mechanism and the
application development.

In this paper we presented our NoC approach SoCWire.
SoCWire meets all requirements for a high speed dynamic
reconfigurable architecture. High data rates are achieved
with significantly small implementation efforts. Hardware
errors detection, hot-plug ability and support of adaptive
macro-pipeline are provided. The implemented test
application demonstrates the suitability of SoCWire for
robust dynamic reconfigurable systems. Furthermore, we
introduce a middleware concept to support the complex
system reconfiguration process and the application
development at the user level. Through the middleware
support the configuration process is made transparent for the
user. Finally we presented three high level communication
functionalities which reduce the complexity of the
communication issues by the software development process
on our SoCWire system.

ACKNOWLEDGMENT

The authors highly appreciate the support given by the
German Research Foundation (DFG) within SFB562 and by
QNX Software Systems providing free software licenses.

REFERENCES

[1] R. Joost and R. Salomon, “Advantages of FPGA-Based
Multiprocessor Systems in Industrial Applications”, Industrial
Electronics Society, 31st Annual Conference of IEEE, 2005. IECON
2005.

[2] Y. Dadji, H. Michalik, T. Moeglich, J. Steiner, “Performance
optimized Communication system for high-dynamic and real-time
Robot Control Systems”, CD-ROM proceedings of the 16th.
International Workshop on Robotic in Alpe-Adria-Danube Region, 7-
9 June 2007, Ljubljana, Slovenia.

[3] N. Kohn, J.-U. Varchmin, J. Steiner, U. Golz, “Universal
communication architecture for high-dynamic robot systems using

Yannick Dadji, Björn Osterloh and Harald Michalik

578

Authorized licensed use limited to: Politechnika Lodzka. Downloaded on August 31, 2009 at 05:11 from IEEE Xplore. Restrictions apply.

QNX”, 8th International Conference on Control, Automation
Robotics and Vision, Kunming, China, pp. 205- 210, 2004.

[4] Y. Dadji et al., “Networked Architecture for Distributed PC-based
Robot Control Systems”, International Conference on Automation,
Robotics and ControlSystems, 7-10 July 2008, Orlando, Florida

[5] Xilinx, Virtex-II Pro and Virtex-II Pro X Platform FPGAs:
Functional Description, www.xilinx.com, September 2005

[6] Xilinx, Virtex-4 Configuration Guide, www.xilinx.com, October
2007

[7] ECSS, Space Engineering: SpaceWire–Links, nodes, routers, and
networks, ESA-ESTEC, Noordwijk Netherlands, January 2003,
ECSS-E-50-12A

[8] B. Osterloh, H. Michalik, B. Fiethe, K. Kotarowski. "SoCWire: A
Network-on-Chip Approach for Reconfigurable System-on-Chip
Designs in Space Applications." In NASA/ESA Conference on
Adaptive Hardware and Systems, Volume (AHS-2008), pp 51-56,
Noordwijk, June 2008

A Middleware Aided Robust and Fault Tolerant Dynamic Reconfigurable Architecture

579

Authorized licensed use limited to: Politechnika Lodzka. Downloaded on August 31, 2009 at 05:11 from IEEE Xplore. Restrictions apply.

