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Abstract— Dynamic reconfiguration enhances embedded 
system with at run-time adaptive functionality and is an 
improvement in terms of resource utilization and system 
adaptability. SRAM-based FPGAs provides a dynamic 
reconfigurable platform with high logic density. The requirements 
for such an embedded high flexible system based on FPGAs are 
robustness and reliability to prevent operation interrupts or even 
system failures. The complexity of a dynamic reconfigurable system 
with adaptive processing module demands high effort for the user. 
Therefore a high level abstraction of the communication issues is 
required to support application development by an appropriate 
middleware. To achieve such a flexible embedded system we 
present our Network-on-Chip (NoC) approach System-on-Chip 
Wire (SoCWire) and outline its performance and suitability for 
robust dynamic reconfigurable systems. Furthermore we introduce 
a suitable embedded middleware concept to support the system 
reconfiguration and the software application development process. 

Index Terms— SoCWire, Network-on-Chip, Virtex, FPGA, 
Middleware

1. INTRODUCTION

The need of flexibility and adaptability in the development 
process of embedded system for industrial applications e.g. 
robotics, automotive, aerospace and space drastically 
increased in the last decade. Traditionally, three main 
options are available to implement embedded systems: 
microcontroller platform (inclusive DSP systems), FPGAs, 
and ASICs. ASICs provide the highest performance, because 
their design can be optimally configured with respect to the 
application's requirements. However ASICs have a fixed 
configuration that cannot be adapted when the application 
requirements change. On the other hand microcontroller-
based solutions provide only suboptimal processing speed 
due to the execution of software programs. Between these 
two extremes, FPGAs provide a compromise, which is 
suitable for many applications. FPGAs have a run-time 
adaption capability. Special processing modules could be 
requested on demand which is an improvement in terms of 
resource utilization and system adaptability. Dynamic 
reconfigurable systems provide these enhancements. 
Available dynamic reconfigurable devices, e.g. the Xilinx 
Virtex-4 family, provide a platform to the user with high 

logic density. The requirements for such an enhanced 
architecture are: the system needs to be robust and reliable 
for the industrial environment (temperature, shock) and even 
fault tolerant, e.g. for a harsh space environment (Single 
Event Effects (SEEs), a bit-flip in the configuration memory 
or a transient error due radiation). Furthermore, the system 
qualification has to be guaranteed after a module update or 
during the dynamic reconfiguration process to prevent 
operational interrupts or even system failures. Such an 
enhanced dynamic reconfigurable system demand deep 
knowledge of the system architecture and the dynamic 
reconfiguration process by the user. The user needs to know 
the allocation of the processing modules, the reconfiguration 
mechanism and has to prove the functional correctness of the 
module after update to guarantee system qualification. In 
order to support the application development process, the 
system complexity should be made transparent as far as 
feasible to the application developer. To reduce the system 
complexity for the user, the approach is to introduce a high 
level abstraction layer of the communication issues (hiding 
system details like communication links and module location 
to the user) as typically realized by communication 
middleware. Furthermore the complexity of the 
configuration and reconfiguration mechanisms shall also be 
encapsulated in simple high level functions. Consequently, 
the need arises to deploy an appropriate middleware for 
system development support. A middleware has the 
advantage to reduce the application development effort and 
thus the time to market. The deployment of a middleware on 
an embedded system implies additional resource utilization. 
This might become a design problem, since many real-time 
and embedded systems have tight constraints on memory 
footprint due to cost, power consumption, or weight 
restrictions [1]. Therefore, the middleware must be designed 
as lean as possible in term of memory utilization. 
Consequently, an adequate middleware must be tailored to 
meet the special needs of the application field implemented 
on the corresponding embedded system. This eliminates the 
possibility of adapting Commercial off-the-shelf (COTS) 
middleware, which is typically a generic solution without 
optimization of memory utilization and, in the case of our 

J.S. Dai, M. Zoppi and X. Kong (eds), ASME/IFToMM International Conference on Reconfigurable Mechanisms and Robots572

Authorized licensed use limited to: Politechnika Lodzka. Downloaded on August 31, 2009 at 05:11 from IEEE Xplore.  Restrictions apply. 



SoCWire architecture, will not cover the special 
configuration and reconfiguration issues. 
We have been developing special application specific 
communication middleware in the scope of the SFB562 
Project at the Technical University Braunschweig. This 
project deals with new concepts for the control of parallel 
robots for handling and assembly tasks. In this scope we 
developed a PC based control architecture with the 
communication middleware MiRPA-X ([2][3][4]) as key 
component MiRPA-X supports the modular development of 
the control software components and encapsulates all Inter 
Process Communication (IPC) features. One requirement for 
the middleware was real time capability of the commu-
nication services with time constraint in microseconds range 
in order to enable a reliable control of the high dynamic 
parallel robot structure. Therefore, MiRPA-X obeys an 
application specific design and implements performance 
optimized synchronous and asynchronous communication. 
In this paper we will propose a robust and fault tolerant 
dynamic reconfigurable architecture with application 
development aided by a specific middleware.  
First, we will outline the dynamic partial reconfiguration 
process in Xilinx Virtex-4 and the limitation of a bus 
structure. Furthermore we will introduce our SoCWire 
architecture for dynamic reconfigurable systems and the 
essentials for a NoC approach. Then we will introduce the 
main features of the middleware MiRPA-X and discuss 
integration of some of these features to support the 
application development, the automatic configuration and 
reconfiguration mechanism on the SoCWire architecture.  

2. DYNAMIC PARTIAL RECONFIGURATION IN VIRTEX-4
FPGA

Xilinx provides the Virtex-4 family at different 
qualifications level from commercial, industrial, military and 
even for space applications. In contrast to earlier Virtex 
families, e.g. Virtex-II, the internal configuration of the 
hardware architecture has changed. In previous FPGAs the 
CLBs (Configurable Logic Block) were surrounded by a ring 
of IOBs (Input-Output Buffer). The IOBs are now organized 
in columns. Additionally the FPGA is divided in clock 
regions, each comprising 16 CLBs. These clock regions have 
significant influence on the configuration process of the 
FPGA. Xilinx FPGAs are customized by loading 
configuration data into the internal configuration memory. 
The configuration memory is arranged in frames that are 
tiled about the device. These frames are the smallest 
addressable segment of the configuration memory space. 
One frame comprises 16 CLBs and therefore one clock 
region [5]. This architecture with clock regions and IOB 
structures has the advantage to overcome the limitation of 
partial reconfiguration in the Virtex-II architecture.  

Partial Reconfigurable Modules (PRMs) do not have to 
occupy the full height of the device and IOBs above the top 
edge and below the bottom edge of the module are not part 

of the module resources. Therefore the logic resources left, 
right, top and bottom of a PRM can be used for the static 
area. The Virtex-4 family provides now a 32Bit data word 
width configuration interface (SelectMap) running at 100 
Mhz which significantly decrease reconfiguration time by a 
factor of 8 compared to Virtex-II.  

For communication between modules (static and partial 
reconfigurable area) Xilinx provides new unidirectional Bus-
Macros in the Virtex-4 family which can connect modules 
horizontal and vertically. These Bus-Macros are suitable for 
handshaking techniques and bus standards like AMBA or 
Wishbone. Dedicated processing tasks, e.g. image 
processing, can be typically structured as a macro-pipeline 
with pre- and post-processing steps and require high data 
rate point-to-point communication as depicted in Fig. 1. 
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Fig. 1  Macro-pipeline system 

To realize this architecture in a bus structure, multi master 
and bus arbitration are needed. Also bus structures are 
limited in the Xilinx hardware architecture. In a partial 
reconfigurable system a bus requires wires that distribute 
signals across the device. The Virtex family provides 
bidirectional vertical, horizontal long lines that span the full 
height and width of the device and 3-State buffered 
horizontal long lines that span the full width of the device. 
But these long lines are limited resources in the device: 24 
bidirectional horizontal, vertical and four 3-State buffer long 
lines per column CLB [6]. Furthermore, the dynamic partial 
reconfiguration process does not have an explicit activation. 
New frames become active as they are written. If bits are 
identical to the current value, the bits will not momentarily 
glitch to some other value. But if the bits change, those bits 
could glitch when the frame write is processed. Furthermore, 
some selections (e.g. the input multiplexers on CLBs) have 
their control bits split over multiple frames and thus do not 
change atomically.  

A fault tolerant bus structure with hot-plug ability is 
necessary to guarantee data integrity. With these limitations 
a bus structure based system would encounter the following 
disadvantages: 
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�� No dedicated Bus-Macros are provided by Xilinx 
to access long lines which lead to manual time 
consuming routing. 

�� Failure tolerant bus structure (high efforts) with 
hot-plug ability is necessary to guarantee data 
integrity  

�� Dynamic reconfiguration of a PRM could block 
the bus and stop the system 

�� Limited long lines resources restrict the bus 
structure in data word width 

The major disadvantage of a bus structure is the 
unpredictable behavior of the dynamic reconfiguration 
process in the system which could lead to block the bus and 
stop the system. Therefore the PRMs need to be isolated 
from the host system physically and logically. Our 
framework to physically isolate the PRM from the host 
system and therefore to retain the system qualification, is to 
subdivide the system into a static area and Partial 
Reconfigurable Areas (PR-Areas) which can be updated 
during operation. The static area remains unchanged and 
comprises all critical interfaces (processor, communication 
interfaces and memory controller). This offers the advantage 
that only the updated module has to be qualified in a delta-
qualification step. 

Furthermore to logically isolate the PRMs from the host 
system and with the bus structure limitation issued before we 
consider instead a networked architecture with a Network-
on-Chip (NoC) approach providing: 

�� Reconfigurable point-to-point communication 
�� Support of adaptive macro-pipeline 
�� High speed data rate 
�� Hot-plug ability to support dynamic reconfigura-

ble modules 
�� Easy implementation with standard Xilinx Bus-

Macros
In order to achieve these requirements we have developed 

our own NoC architecture: System-on-Chip Wire (SoCWire). 

3. SYSTEM-ON-CHIP WIRE (SOCWIRE)
Our approach for the NoC communication architecture, 

which we have named SoCWire, is based on the ESA 
SpaceWire interface standard [7]. SpaceWire is a well 
established standard in the space community, providing a 
layered protocol (physical, signal, character, exchange, 
packet, network) and proven interface for space applications. 
It is an asynchronous communication, serial link, bi-
directional (full duplex) interface including: 

�� Link initialization 
�� Credit based flow control 
�� Detection of Link Errors 
�� Link Error Recovery 
�� Hot-plug ability 
�� Automatic reconnection after link disconnection 

Thus, SpaceWire meets all requirements for a fault-
tolerant NoC approach. A further advantage is that 

SpaceWire requires significantly small resource utilization, 
only. 

3.1. SpaceWire 
SpaceWire uses Data Strobe (DS) encoding. DS consists 

of two signals: Data and Strobe. Data follows the data bit 
stream whereas Strobe changes state whenever the Data does 
not change from one bit to the next. The clock can therefore 
be recovered by a simple XOR function. The performance of 
the interface depends on skew, jitter and the implemented 
technology. Data rates up to 400 Mb/s can be achieved. The 
SpaceWire character level protocol is based on the IEEE 
Standard 1355-1995 with additional Time-Code distribution. 
The character level protocol includes data character, control 
character and control codes. A data character (10bit length) 
is formed by 1 parity bit, 1 data-control flag and 8 data bits 
and includes data to be transmitted, as shown in Fig. 2. 

The data-control flag indicates, if the current character is a 
data (0) or control character (1). Control characters (4-bit 
length) are used for flow control: A flow control token 
(FCT), end of packet markers (EOP or EEP) and an escape 
character (ESC) are used to form higher level control codes 
(8-14bit length) e.g. NULL (ESC+FCT) and Time-Code 
(ESC + Data character). 

P 0 X X X X X X X X

0 1 2 3 4 5 6 7
LSB MSB

Data-Control Flag
Parity Bit

Fig. 2 . Data character 

3.2. SoCWire CODEC 
As mentioned before, SpaceWire is a serial link interface 

and the performance of the interface depends on skew, jitter 
and the implemented technology. For our NoC approach we 
are in a complete on-chip environment. The maximum 
character length in the SpaceWire standard without time 
code, which is not needed in our NoC, is 10bit (data 
character). Therefore we have modified the SpaceWire 
interface to a 10bit parallel data interface [8]. 

The advantage of this parallel data transfer interface is 
that we can achieve significantly higher data rates as 
compared to the SpaceWire standard. Additionally, we have 
implemented a scalable data word width (8-128bit) to 
support medium to very high data rates. On the other hand 
we keep in our implementation the advantageous features of 
the SpaceWire standard including flow control and hot-plug 
ability. Also the error detection is still fully supported 
making it suitable even for an SEE sensitive environment. 
For a parallel data transfer the Flow Control Token (FCT) 
need be included in the parallel data transfer. After 
initialization phase, every eighth data character is followed 
by one FCT to signal the readiness of the destination to 

Yannick Dadji, Björn Osterloh and Harald Michalik

574

Authorized licensed use limited to: Politechnika Lodzka. Downloaded on August 31, 2009 at 05:11 from IEEE Xplore.  Restrictions apply. 



receive data. The maximum data rate for a bi-directional 
(full-duplex) transfer can therefore be calculated by: 
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For a unidirectional data transfer the flow control 
characters are processed in parallel and the maximum data 
rate can be calculated by: 
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Fig. 3 shows data rates for different data word width, 
unidirectional and bi-directional (full-duplex) data transfer at 
a core clock frequency of 200 MHz.  
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Fig. 3  SoCWire CODEC data rates at core clock frequency 200 MHz 

The SoCWire CODEC has been implemented and tested 
in Xilinx Virtex-4 LX60-10. Figure 4 shows the occupied 
area, absolute values and maximum clock period. 
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Fig. 4  SoCWire CODEC synthesis report 

Fig. 3 and Fig. 4 show that high data rates are achieved 
with small resource utilization occupied by the SoCWire 
CODEC.

3.3. SoCWire Switch 
To build up a network, a switch and a packet oriented 

protocol is needed. The switch enables the transfer of 
packets arriving at one link interface to another link interface 
on the switch, and then sending out from this link. The 
SoCWire Switch and its packet format are again based on 
the SpaceWire standard. The packet level comprises: 
destination address + cargo + end of packet. The destination 
address includes the destination identifier to support routing 
of packets. The cargo contains the data characters that need 
to be transferred from source to destination. It can be in any 
packet format, e.g IP packets. The end of packet marker can 
be either EOP for normal end of packet or alternatively EEP 
for exceptional end of packet as an indication of an error in 
the packet.  

The SoCWire Switch determines from the destination 
address where the packet is to be routed to. Direct port 
addressing (packets with a port address are routed directly to 
one of the output ports) with header deletion has been 
implemented. As soon as the destination port of a packet is 
determined and the port is free the packet is routed 
immediately to that output port. The port is marked as busy 
and can not be accessed until the end of the packet. This is 
also known as wormhole routing which reduces buffer space 
and latency. Our SoCWire Switch is a fully scalable design 
supporting data word width (8-128bit) and 2 to 32 ports. It is 
a totally symmetrical input and output interface with direct 
port addressing including header deletion. The SoCWire 
Switch has been implemented and tested in a Xilinx Virtex-4 
LX60-10. Table 1 shows the occupied area and maximum 
clock frequency for a 4 port switch are dependent on the data 
word width. 

Table 1 SoCWire Switch (4 Ports) synthesis report 

AreaDWord
Width

Max.    fCore 
(MHz) LUT FlipFlops 

8 190 1736 668 
32 170 2540 1169 

The SoCWire Switch basically consists of a number of 
SoCWire CODECs according to the number of ports and 
additional fully pipelined control machines. The maximum 
data rate is therefore equivalent to the SoCWire CODEC.  

3.4. SoCWire Test and Results 
We have implemented four SoCWire CODECs, one in the 

Host system, three in the PRMs and one SoCWire Switch in 
a dynamic reconfigurable macro-pipeline system, see Fig. 5. 
The Host system and SoCWire Switch where placed in the 
static area and the PRMs in the partial reconfigurable areas. 
All SoCWire CODECs where configured with an 8 bit data 
word width. The implementation of the system with 
reconfigurable areas could be easily implemented with the 
standard unidirectional Xilinx Bus-Macros. Fig. 5 shows a 
cut out of the placed and routed SoCWire macro-pipeline 
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system: the PRMs (PRM1, PRM2 and PRM3) and Bus-
Macros in a Virtex-4 LX 60. The static area is distributed 
over the FPGA. 

Fig. 5. SoCWire Macro-Pipeline System 

The PRMs were configured as packet forwarding modules. 
We have tested different configuration of packet forwarding 
e.g. between modules, through the whole macro-pipeline 
system, under the condition of parallel communication 
between nodes. The system runs at 100MHz and the 
maximum data rates of the simulation could be validated to 
be 800 Mbps according to the selected 8-bit data word width. 
We dynamically reconfigured one PRM in the system. 
During the reconfiguration process the communication 
between the PRM and SoCWire Switch was interrupted, the 
other PRMs connections were still established. After the 
reconfiguration process was completed the communication 
between the two nodes was built up automatically within 
400 ns and without any further external action (e.g. reset of 
node or switch). This makes the system ideal for dynamic 
reconfigurable systems. The Partial Reconfiguration Time 
(PRT) can be calculated by: 

The size of one PRM was 37912 Bytes (64 Bytes 
command + 37848 Bytes data) and therefore the PRT 758µs 
(SelectMap, 8Bit data word width at 50 Mhz). For this test 
system the area for one PRM was set to utilize 0.6 % of the 
logic resources. 

4. ROBUST DYNAMIC RECONFIGURABLE SYSTEM

SoCWire meets all requirements for a robust and fault 
tolerant dynamic reconfigurable architecture. The 
architecture provides system robustness and reliability. 
Programming a dynamic reconfigurable system is without 
design aids an intensive task for the user. The user needs 
detailed knowledge of the architecture, the processing 
modules, the dynamic reconfiguration process and the 
requalification of the system after a module update.  

To simplify the application development process by 
hiding the system complexity to the user we propose to 
integrate a middleware, which is derived from the existing 

middlware approach MiRPA-X. Thus, we will give a short 
description of the MiRPA-X in the first part of this section. 
Then we will show how we intend to integrate the 
middleware in the SoCWire architecture.  

4.1. MiRPA-X 
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Fig. 6  PC based software control architecture: a) implementation without 
middleware, IPC issues require deeper system knowledge from the user, and 

b) implementation with middleware, no system knowledge required from 
IPC issues. 

MiRPA-X is an object server, which transparently handles 
data and procedure requests. Its lean design is optimized for 
high communication performance. It supports the 
client/server implementation pattern, therefore control 
software components are registered as client or server in the 
MiRPA-X environment. One of the key features of MiRPA-
X is the ability to hide the identity of servers from clients; so 
every data transfer is content-based, not structure-based. 
This enables modifying the whole control system structure 
dynamically without recompilation or restart of system 
components in general. Fig. 6 shows exemplarily the 
realization of a PC based control system consisting of 
multiple software components exchanging data with each 
other to perform a specific control task. On the left side a), a 
software component is directly linked to all components it 
communicates with. The user must know all the 
communication links available on the system. A dynamic 
reconfiguration of the system is quasi impractical. On the 
right side b) the middleware MiRPA-X is introduced as the 
exclusive communication partner for all software 
components. The connection to the object server of the 
middleware is encapsulated in high level API functions. 
Therefore the user must not know any system information 
while developing the control components. MiRPA-X 
supports the IPC; this can be realized in both synchronous 
and asynchronous way. The synchronous way consists of 
blocking request/reply pattern. The asynchronous way 
consists of non blocking command messages send over the 
middleware to the corresponding target component. 
Additionally MiRPA-X supports IPC over shared memory 
region. This is designated for software components with 
tight data coupling. Since the shared memory access has no 
inherent synchronization mechanism, access conflicts and 
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data integrity violation may appear when many components 
simultaneously access the same shared memory. To solve 
this problem, MiRPA-X introduces a real-time sequence 
control engine, the token manager. The token manager 
defines a high priority token cycle that includes all registered 
components. To ensure data integrity, the token manager 
enforces a sequential shared memory access of the registered 
components. 

SERVERSERVERCLIENT

MIRPA-X

CONFIG

CONTROL

COMMAND

REQUEST ANSWER

CONTROL
CONFIG

UserServerThread

ReceiveThreadUserClientThread

ObjectServer

CONTROL

COMMAND

REQUEST

Fig. 7  Message types in the MiRPA-X environment 

Fig. 7 shows the general message types, which are 
transmitted in the MiRPA-X environment. All requests are 
passed to MiRPA-X, which then routes the requests to their 
ultimate targets and back, if an answer is required. MiRPA-
X supports four different message types: 

�� REQUEST / ANSWER – transmission of service 
requirement and waiting for service delivery. 

�� COMMAND – transmission of non blocking 
procedure call 

�� CONFIG – service and resource (shared memory) 
registration 

�� CONTROL - request of statistical information about 
resource and service delivery status 

4.2. Middleware Aided Dynamic Reconfiguration 

Fig. 8 shows an example of a dynamic reconfigurable 
architecture. It consists of a System-On-Chip (SoC) design 
with additional external resources. The on-Chip design is 
organized in a static and a Partial Reconfigurable (PR) area. 
The static area comprises the host system, the SoCWire 
switch, the I/O controller and the memory controller. On the 
host system, a PowerPC is installed and the operating system 
QNX is running. The I/O controller enables the integration 
of additional peripheral devices. The memory controller 
enables the integration of additional external application 
memory. To avoid a bottleneck by the memory access, the 
memory controller implements a multi port (0..n) connection 
to the SoCWire switch. On the host system, the middleware 
MiRPA-XE (additional extension E for “Embedded”) is 
deployed. The PR area can be dynamically reconfigured on 
demand with application dependant hardware modules at run 
time. In Fig. 8 the PR area is exemplarily configured with 

the modules PRM 1, 2, und 3. The external resources consist 
of the configuration memory where all hardware modules 
are stored, the shared memory region (which could also be 
on-Chip for small systems) for data exchange between 
software applications and PRMs, the I/O driver and the 
application memory space used by the PRM processing. To 
support the reconfiguration process, the middleware needs to 
know the corresponding basic configuration information of 
every PRM. This configuration information consists of the 
module name, a unique module identifier, a list of services 
provided and a global module status. To publish the 
configuration information each module implements a 
dedicated memory location which contains the configuration 
information. At the start up, the middleware will extract all 
configuration information and set up a configuration 
database and a Look-Up table (LUT) for a dynamic run time 
mapping of service request into module allocation.  
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Fig. 8  Dynamic reconfigurable architecture 

The middleware offers a high level API function to 
support the hardware reconfiguration process. The API 
function encapsulates all the reconfiguration process, 
therefore transparency is provided since the user needs not to 
handle with the complex reconfiguration mechanism. The 
parameter needed for the reconfiguration process is the name 
of the PRM to configure. The API function resumes the 
module reconfiguration process and loads the corresponding 
hardware code from the configuration memory into the PR 
areas (e.g. through the Xilinx ICAP interface). After the 
module reconfiguration process is completed the SoCWire 
system automatically builds up a link connection to the 
module. The module signals its activity by sending a 
message to the host system. The Middleware then operates 
certain tests (test vectors, timing constraints) to validate the 
correct behavior of the module and to guarantee system 
qualification. After a successful validation the module is 
ready for processing. The Middleware sends the results of 
the reconfiguration process (reconfiguration successful or 
failed) to the user. 
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4.3. Middleware Aided Application Development Process 
Beside the reconfiguration process of the PRM the 

middleware also supports the application development on 
the host system. For this purpose three basic high level 
functionalities of MiRPA-X will be adapted to the embedded 
environment: the shared memory access management 
(analogue to 4.1), the processing request (derived from the 
MiRPA-X request /reply communication model) and the task 
activation service (derived from the MiRPA-X non Blocking 
COMMAND messages). Each processing required by an 
application is coded in the MiRPA-XE environment as a 
service identified by a unique name within the system. In 
this way transparency is provided, since the user does not 
need to specify the PRM or the software application that 
should process the service. If a software component 
performs a PRM processing request service, it sends a 
request message containing the service name to the 
middleware. To figure out which PRM is concerned by a 
service request, the middleware uses its internal 
configuration database. Subsequently the middleware issues 
a service request packet and forwards it via the SoCWire 
system to the corresponding PRM, when the latter is active. 
Upon reception of the packet the PRM starts processing. The 
data to be processed can either be compiled in the request 
packet (synchronous processing) or passed through a shared 
memory (asynchronous processing). By a synchronous 
processing, the software component blocks until it receives 
the processing result. When the PRM completes the 
processing it sends back the processing results via the 
SoCWire system to the middleware. The middleware then 
compiles the result in a reply message and sends it back to 
the former software component. If for any reason the PRM 
does not reply to the request (i.e. the PRM is out of order), 
then calling process will remain blocked. This may lead to 
the collapse of the overall application. To avoid this, timeout 
information will be appended to each blocking service 
request. This way, a calling process will unblock with the 
corresponding timeout error if the target PRM does not 
answer a request within the specified time. 

Task activation services can be used in collaboration with 
shared memory communication. When a software 
component wants to perform task activation, it sends a non-
blocking task activation message to the middleware. The 
middleware forwards the message via the SoCWire system 
to the corresponding PRM. Upon reception of the activation 
The PRM starts the task processing. It processes data 
contained in a prior specified shared memory region and 
write the processing results a second shared memory region. 
To communicate the processing results, the PRM may use 
two different ways. By a small data set of processing result, 
it may pass a message to the middleware. By a large data set, 
the PRM may write the processing result in a shared memory 
region and set a task completion flag. Then it would send a 
task completion signal to the middleware and the latter 
would forward the signal to the corresponding software 
component. 

The MIRPA-XE is realized as a soft- and hardware 
module. The software module uses the QNX services to 
implement the API functions relative to the processing 
request and task activation services. In the hardware module, 
a SoCWire interface converts the message passing data into 
SoCWire packets and vice versa. 

With the assistance of the middleware the complex 
hardware reconfiguration process is made transparent for the 
user. Also the communication mechanisms derived from 
MiRPA-X ease the software application development and to 
reduce the development time. 

5. CONCLUSION

Dynamic reconfiguration enhances embedded system with 
at run-time adaptive functionality and is an improvement in 
terms of resource utilization and system adaptability. To 
meet these requirements, an improved communication 
architecture with NoC approach is required to guarantee 
system qualification and to prevent operational interrupts. 
Furthermore a suitable framework is needed to support the 
complex system reconfiguration mechanism and the 
application development. 

In this paper we presented our NoC approach SoCWire. 
SoCWire meets all requirements for a high speed dynamic 
reconfigurable architecture. High data rates are achieved 
with significantly small implementation efforts. Hardware 
errors detection, hot-plug ability and support of adaptive 
macro-pipeline are provided. The implemented test 
application demonstrates the suitability of SoCWire for 
robust dynamic reconfigurable systems. Furthermore, we 
introduce a middleware concept to support the complex 
system reconfiguration process and the application 
development at the user level. Through the middleware 
support the configuration process is made transparent for the 
user. Finally we presented three high level communication 
functionalities which reduce the complexity of the 
communication issues by the software development process 
on our SoCWire system. 
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