
Multitasking on FPGA Coprocessors?

H. Simmler2, L. Levinson1, R. Männer2

1 Weizmann Institute of Science, Rehovot, Israel 76100
2 University of Mannheim, B6, 26; 68131 Mannheim, Germany,

eMail: simmler@ti.uni-mannheim.de

Abstract. Multitasking on an FPGA-based processor is one possibility
to explore the efficacy of reconfigurable computing. Conventional com-
puters and operating systems have demonstrated the many advantages of
sharing computational hardware by several tasks over time. The ability
to do run-time configuration and readback of FPGAs in a coprocessor
architecture allows investigating the problems of implementing realis-
tic multitasking. This paper explores the control software required to
support task switching for an application split over the host processor –
coprocessor boundary as well as the requirements and features of context
saving and restoring in the FPGA coprocessor context. An FPGA copro-
cessor designed especially to support multitasking of such applications is
described.

1 Introduction

FPGAs for custom computing machines have shown remarkable speedups for
several classes of algorithms in the past years. Main reasons for high speedups
are deep pipelines and parallel execution of the algorithms. In the case of FPGA
coprocessors like Pamette [1], microEnable [2] or VCC HOT [3] a high datarate
between the host CPU bus and the coprocessor is also an important factor in
achieving high speedups. The overall performance of these FPGA coprocessor
systems must be measured as a combination of execution time and data transfer
from and back to the host CPU memory.

One ongoing field of research is the run time reconfiguration (RTR) of FP-
GAs. Most RTR approaches use these coprocessor boards as a base platform,
due to the high datarate needed for the FPGA control.

RTR makes use of the reconfigurability of the FPGAs. Algorithms which use
more FPGA resources than available can simply be split into parts which are
then executed sequentially [4]. This is one possible use of reconfiguration. An-
other possibility is to execute several algorithms, that do not require all FPGA
resources, in parallel in one FPGA, i.e. true multitasking [5]. A hardware man-
ager on the CPU takes over the multitasking control and the data transfers.
Due to the multiple usage of the CPU-to-FPGA coprocessor connection for the
parallel executed tasks, the overall performance for each task is reduced and
? Work supported by the German-Israeli Foundation for Scientific Research and De-

velopment



logic must be added to each task to arbitrate the shared resource. A similar
bottleneck is the interface to external RAM or other external devices, because
these externals can be used by only one task at a time. Also each FPGA task
has only a fraction of the total FPGA resources for its execution.

These bottlenecks suggest adopting a simpler usage of RTR that can be
compared to a batch operation [6]. Each single task is managed through a “Vir-
tual Hardware Manager” which is connected to the task processes. This batch
method provides exclusive access to any external device and the full CPU-to-
FPGA communication bandwidth. This is preserved by the execution of only
one task at a time. Therefore the whole performance can be achieved for each
task at the price of a possibly higher latency from start to end of execution. This
can happen, because the tasks are scheduled by a special scheduling policy like
first-come-first-served or shortest-task-first.

The cited RTR approaches used either total or partial overlay techniques to
manage the tasks. However long tasks may block execution for minutes or even
hours. A task manager must thus be able to suspend the ongoing execution of
one task to avoid these blocking situations. Such a preemptive multitasking en-
vironment works like modern operating systems and must be able to extract and
reconstruct the status of the FPGA designs for each task swap. A task manager
suspends the ongoing execution of one task and uses the released FPGA resources
to execute another task [7]. This makes it possible to build a multitasking sys-
tem where each running task receives a defined time slot for its execution on the
FPGA coprocessor. With the overlay technique, the FPGA design of each task
must simply be loaded during initialization. With multitasking, in contrast, the
FPGA design state of the preempted task must be extracted and reconstructed
for each task swap.

The ideas of FPGA multitasking and the proof-of-concept implementation
were briefly presented in [7]. This paper shows a more detailed list of the nec-
essary requirements and presents the latest measurements made with a Xilinx
XCV400 device. Furthermore the effects for supporting multitasking are pre-
sented and a new FPGA coprocessor board architecture is outlined. The fol-
lowing Section 2 lists numerous requirements needed to perform task switching
and describes the task switch in more detail. Section 3 provides a brief overview
of the Client-Server Model that manages the execution of several tasks. Some
new architectural features especially for multitasking support are shown in Sec-
tion 4. Section 5 describes the current status of our project and some recent
measurements followed by the conclusions in Section 6.

2 Task Switching

Essential for implementing multitasking on FPGA coprocessors is the ability to
suspend the execution of an ongoing task and to restore a previously interrupted
task.

Such a task switch can be compared to a task switch on modern CPU’s
[8]. All CPU registers that define the current task’s state, e.g. flag registers,



control registers and code and data descriptors, are saved into a special segment
when a task switch is triggered by the operating system. This is necessary to
continue the process from exactly the same state when it is later re-scheduled
for execution. Then the register contents of another process to be re-started are
restored to the CPU registers and this process continues execution. In case of
an Intel Pentium II 104 bytes have to be stored [9].

A FPGA design normally does not have a code or data descriptor like a CPU.
Rather, an FPGA holds data in several registers scattered over the FPGA. For
example, data pipelines keep all data words of each single pipeline stage in
separate registers, so that they are available at each clock cycle. Therefore, all
used registers, latches and internal memory of an FPGA design must be saved
to enable later restoration of the task. This can require up to 350 kBytes for a
modern FPGA device such as the Xilinx XCV1000 [10]. In addition to saving
all used register bits, there are other requirements which are listed below.

2.1 Requirements

As the central element of an FPGA coprocessor, the FPGA itself must provide
some necessary features.

First, one must be able to extract the current state of all registers and in-
ternal memories. The determination of the internal register status is done by
analyzing the readback bitstream of the FPGA. Therefore the FPGA must pro-
vide a readback bitstream that includes them. Secondly, one must be able to
either preset or reset all registers and memory bits when a task is restored. This
is necessary to restore the FPGA task to the state prior to the task switch. A
detailed description of this task extraction and task reconstruction will be given
in Section 2.2.

In addition to the requirements on the FPGAs, the coprocessor board
must provide two features: Obviously configuration and readback of the FPGA
must be supported. But to be useful, this configuration and readback must be
sufficiently fast to keep task switch times reasonably small. The second require-
ment is complete control of the clock. Stopping the clock allows freezing the task
in the current state, so that the readback can get a snapshot of all register and
RAM settings at that time. Moreover, the ability to do task switching of FPGA
tasks not only depends on the features of FPGA and coprocessor, but also im-
poses requirements on the FPGA design to be executed on the FPGA. Special
attention is required when the FPGA task uses more than one clock. All clocks
are constrained to be integer multiples of the slowest clock and in phase. The
task must be interrupted only between cycles of this slowest clock. This ensures
that when the clocks are restarted in phase no clocks are lost and all relative
timings are preserved.

FPGA designs must not implement latches or registers by means of com-
binatorial logic loops. The state of such storage elements can neither be read
back nor initialized since their state is not accessible to the configuration and
readback systems of the FPGA.



A problem occurs when accessing external RAM on the coprocessor board
where the address and the corresponding data are transferred on different clock
cycles (e.g. synchronous and pipelined RAM [11],[12]). Allowing a task switch
at any time can lead to a switch right after an addressing phase of the external
RAM. The restored FPGA design will then read invalid data, because the ad-
dressed data was already presented at the RAM output. This situation can be
seen at the top of Figure 1. To avoid task switches in this situation additional
interface logic must generate a signal indicating when it is safe to stop the clock
and to switch the task. This TS Signal is generated by the FPGA design and
can be used as an input signal of the Virtex capture block1 [10]. Additionally to
enabling the capture block also the clock has to be stopped to freeze the com-
plete task. This is necessary because the capture block only captures the design
state but does not prevent it from further accessing external devices like RAM.
This can be seen at the bottom of Figure 1.

A

A

B

B

X

X

XX

DC

C D

X

A

A B

X B

X

XX

DC

C D

X

Address

Data

X

X

TS_Signal

Task 2

Address

Data

Task 1Task 1

Insecure

Secure

Switching

Switching

Task Switch Task Reconstruction

Fig. 1. External RAM access during a task switch.

Similar difficulties have to be handled when an external data source or des-
tination is connected. A complete handshake mechanism for the data transfer
is essential to guarantee proper operation. The handshake signals must be held
inactive whenever the connected task is swapped out. The same logic as for the
external RAM can be used here to signal the critical time when a task switch
must not be made.

As mentioned before, it is essential to stop the FPGA design on a single clock
and, in case of external RAM and I/O devices, only at a non-critical time.

Besides the FPGA requirements, the switchable FPGA designs and the clock
control of the coprocessor boards, the task- or hardware manager software
also imposes requirements. The task or hardware manager software must be able
to extract all important state bits from the readback bitstream and must save
them for their later restoration. Usually, e.g. with the Xilinx Virtex series, the
readback bitstream is not suitably formatted for use as a configuration bitstream.
For restoration a new download bitstream must be generated by merging the

1 This capture block is mandatory for reading the status of the design.



extracted current state with the original configuration bit stream. The following
Section 2.2 describes this state extraction and reconstruction process in detail.

2.2 Design State Extraction and Reconstruction

State extraction of a FPGA design and reconstruction of this state are the two
key features to enable task switching on FPGAs. The aim of the state extraction
is to ascertain all register and RAM contents that are used by the design. On
the other hand, state reconstruction is to recreate the previously extracted state
for each resource used in the FPGA.

State extraction of a stopped FPGA design is done by filtering all status infor-
mation bits out of the readback bitstream. In order to extract these state bits,
their bit positions within the readback stream must be known. Configuration
information is filtered, because the logic cell configurations and their intercon-
nections will not change at all during a task switch. The extracted state bits are
then stored and form the basis for the reconstruction. Storing only the relevant
information will also reduce the amount of status bits by ≈90%2.

Task reconstruction is done by correctly setting the state of each single register
or latch, and of each RAM bit in the configuration bitstream. This initialization
state is normally included in the netlist file or given in an extra constraints
file. Vendor specific place and route tools will then place the netlist, do all
the routing and finally generate a configuration bitstream for download into
the FPGA device. This whole place and route process can take, e.g., hours
and is therefore unacceptable for preparing a reconstructed configuration for
dynamic task switching. A direct manipulation of the configuration bitstream
avoids this lengthy place and route procedure. Such a bitstream manipulation
can be done for two reasons: First a task switch does not change any logic
functionality or connections in the FPGA design. Secondly, the initialization
information is directly coded by single bits in the configuration bitstream. All
bit positions for each initialization bit in the bitstream must also be known to
enable this direct and fast manipulation of the initialization states. In practice,
the original bitstream is taken and each initialization bit is changed accordingly
to the previously extracted register state. This is done for all used registers and
RAM bits. Finally the manipulated bitstream is used to configure the FPGA.
The result is then the reconstruction of the FPGA state at the moment of the
task switch.

3 Client Server Model

All state extraction and bitstream manipulation must be done by a central unit
in the host software system, the Hardware Management Unit (HMU). To
2 For the Xilinx XCV400 device and 91% for the XCV1000.



achieve best performance the HMU must be part of the operating system itself.
For a proof of concept, however, a client-server model including this HMU is
sufficient and was built with only little effort for achieving good performance.

The client–server implementation was built for WinNT and uses the microEn-
able FPGA coprocessor [2] which includes a PCI interface, a Xilinx XC4028EX
device and SRAM memory. The server is implemented as a multithreaded pro-
gram that has exclusive access to the coprocessor and handles all service func-
tions such as configure or readback. The client–server communication is bidirec-
tional. Passing data and commands is based on interprocess communication and
shared memory. A round–robin scheduling strategy was implemented within the
HMU and special attention was given to the DMA tranfers to avoid blocking
situations by very long DMA transfers. The measurements were done with one
registered design to demonstrate the design reconstruction. Another design used
external RAM to show the data consistence during swapped out FPGA design.

FPGA Coprocessor Board

Server

Hardware Management Unit

Client
Client

Client

Fig. 2. Client–Server model architecture.

The possibility of task switching was successfully shown with the client–
server model. However task switch efficiency was not very good because of the
absence of a fast configuration and readback capability. The XC4028 was con-
figured within ≈80 ms and readback takes ≈800 ms. The design extraction and
state reconstruction for the complete FPGA was performed in 18 ms and 13 ms
respectively on a 166MHz Pentium. Several important conclusions relating to
configuration and to external RAM were made with this client–server model.
First, the configuration/readback interface must be as fast as possible to reduce
the task switch time to a minimum. Secondly, save/restore of external RAM
during a task switch additonally increases the time and must be avoided.

4 An FPGA Coprocessor Designed for Multitasking

An FPGA coprocessor specifically designed to support multitasking has been
outlined. The experience of the client server model and the proof-of-principle
system was incorporated into the new coprocessors architecture. The coprocessor



can also be used as a modern single task FPGA coprocessor. Its most important
features are:

– Fast configuration and readback capability.
As described in Section 2.1 the time needed for a readback and for configuring
the FPGA has the main influence on the system overhead during a task
switch. Therefore it is essential to use a fast configuration interface.
The new Xilinx Virtex (XCV300 through XCV800) was chosen as the FPGA
device because of its eight bit parallel interface that can run at a maximum
speed of 66MHz. It provides both configuration and readback. An estimated
time of ≈12 ms for a task switch with configuration and readback is expected
for the XCV400.

– A memory switch to avoid additional memory swapping.
The client–server model can handle only one FPGA design at a time that
has access to the external RAM. Assuming that there can be more than
one design with this RAM access, the memory contents constitute part of
the dynamic state that must be swapped out and back by the task switch.
For several megabytes of memory, this dramatically increases the time to
switch tasks. In order to avoid this additional overhead the new architecture
includes a RAM switch and eight individual RAM blocks. Figure 3 shows the
connection scheme of this RAM switch for several tasks. This RAM switch
allows the HMU to simply disconnect RAM blocks that are assigned to a
task to be suspended by a task switch. The RAM blocks of the following
task to be re-activated are then connected to the same FPGA interface and
the newly restored task can start execution.

RAM RAM RAM RAM RAM RAM RAMRAM

Task 1

Task 2

Task 3

Task 4

U

C
P

Ram Switch

FPGA
Executing Task 4

Fig. 3. RAM switch connection scheme. The figure shows the coprocessor FPGA
executing Task 4 and in parallel the HMU accessing the RAM of Tasks 2 and 3.

– Direct RAM access during task execution.
The RAM switch also can connect some or all RAM blocks, which are cur-
rently not used by the running task, directly to the CPU-to-coprocessor
connection.



This feature enables the HMU to prepare the next task for execution by
transferring its input data to its RAM block in parallel to the currently
running task. This optimizes the utilization time of the FPGA. Figure 4
illustrates this in a time diagram.

– Simple data sharing between concurrent tasks.
The mentioned relationship between a task and a RAM block can be ex-
panded in such a way that one or more RAM blocks can be accessed by two
tasks. Therefore data transfer between two concurrent tasks can be imple-
mented easily as well as RTR with several subdesigns.

Setup

Setup

Running

Running

Running

Running Term.

Term.

Term.

Idle
Task Switch

Execution

Task 1

Task 2

Task 3
Time

FPGA State

Fig. 4. Task execution timing diagram.

It must be mentioned that all running tasks can make use of the maxi-
mum performance of external FPGA interfaces like the RAM interface and the
CPU-to-FPGA connection. Therefore they retain the same performance at the
interfaces and only the task switch overhead has an influence on the overall
performance.

The time needed to perform a task switch has to be added to the execution
time for calculating the overall performance. The effect on this performance is
only negligible if the task execution time is much higher than the estimated task
switch time of ≈12 ms. A DES keybreak [13] or a protein structure prediction
[14,15] are tasks that have such a very long execution time. Other algorithms
like image processing or matrix multiplication have much shorter execution times
and would require the HMU to switch the task before the time slot is over. This
will result in less overall efficiency due to the task switch time but can be avoided
by processing multiple data packets before a task switch occurs.

5 Current Status

The multitasking FPGA coprocessor described above is almost ready for con-
struction.

Recent measurements done with another Virtex FPGA coprocessor board3

have shown that a XVC400 FPGA can be configured within 12.4 ms and read-
3 microEnableII; PCI based card with one XCV400 device.



back can be performed within 14.4 ms using the SelectedMap interface. Due
to the increased amount of bits4, the time needed for manipulating the bit-
stream is about 2.7 times higher on the same 166MHz Pentium. Measurements
on a modern PentiumIII/600MHz have shown that only restoring the complete
XCV400 bitstream can be done in ≈7.5 ms. Additional tests with the extrac-
tion/reconstruction library and real hardware were also successfull for the re-
construction of registered designs whereas the reconstruction of internal RAM
will be tested in the future. Extracting the status bits from the readback bit-
stream was successfully shown for FPGA designs using register and internal
RAM.

Concerning the HMU, the client server model has been implemented and
successfully run. Some detailed planning has begun to include the manager ar-
chitecture directly into the operating system. Linux has been chosen for this
because it is an open system and allows the necessary modifications.

For demonstration and measurements, several algorithms are already imple-
mented or currently under development for the new multitasking architecture.
Most of them, like the protein structure prediction, have long execution times,
but there are also some algorithms, such as image processing, with much shorter
execution times.

6 Conclusion

This paper describes the possibility of performing multitasking of FPGA designs.
The idea is to share the FPGA resources among several tasks through the use of
pseudo multitasking, much as computer operating systems emulate multitasking
on a single CPU.

Even though parallel execution of several tasks in the same FPGA is possible,
there are several advantages for multitasking: e.g. switching between the FPGA
designs of several tasks will retain the full communication data rate between
the CPU and the FPGA. Although the total data rate over time is the same for
parallel execution and multitasking, in the case of multitasking the I/O resources
are totally dedicated to the current FPGA design. Therefore the application is
not concerned with sharing these resources.

Secondly, in contrast to the overlay technique for sequential execution of
several algorithm steps with different FPGA designs, the hardware manager does
not need to wait until pipelines, FIFOs, etc. are completely empty. Multitasking
allows switching the FPGA design at almost any time without loosing data.

The third advantage concerns programming of the FPGA design. Each FPGA
design has the complete set of I/O resources available. The programmer does
not need to care about resource sharing and so writing FPGA designs is much
easier.

The disadvantages are almost the same as in modern multitasking operating
systems. Only one task at a time is allowed to execute5. The completion of com-
4 XC4028EX has ≈668 kBits; XCV400 has ≈1.75 MBits.
5 On a single processor computer.



putations is delayed. Full efficiency cannot be achieved due to the task switching
overhead.

The described client–server model was implemented to demonstrate this task
switching principle for FPGAs. This model together with two FPGA designs,
especially designed to check the feasibility of task switching on FPGAs, have
shown that it works for the XC4000 series. Additional tests and measurements
with Virtex devices have shown that it can be done within a reasonable time.

The lessons from this experience and measurements have been incorporated
into the design of a new architecture, containing specific multitasking support
features. Some of these important features have been described in this paper.

References

1. Mark Shand: PCI Pamette V1. DEC, Systems Research Center, Palo Alto, USA.
1997. http://www.research.digital.com/SRC/pamette

2. K.-H. Noffz and R. Lay: microEnable, Silicon Software GmbH, Mannheim, Ger-
many. 1999. http://www.silicon-software.com

3. Virtual Computer Corporation: VCC H.O.T. II, Virtual Computer Corporation,
Reseda, USA. 1997. http://www.vcc.com

4. R. Hudson, D. Lehn and P. Athanas: A Run-Time Reconfigurable Engine for Image
Interpolation, IEEE Symposium on FPGAs for Custom Computing Machines, Los
Alamitos, California. April 1998. Page 88-95.

5. G. Brebner: The Swappable Logic Unit: A Paradigm for Virtual Hardware, IEEE
Symposium on FPGAs for Custom Computing Machines, Los Alamitos, California.
April 1997. Pages 77–86.

6. J. Jean, K. Tomko, V. Yavagal, R. Cook and J. Shah: Dynamic Reconfiguration
to Support Concurrent Applications, IEEE Symposium on FPGAs for Custom
Computing Machines, Los Alamitos, California. April 1998. Pages 302–303.

7. H. Simmler, L. Levinson and R. Männer: Preemptive Multitasking on FPGAs.
IEEE Symposium on FPGAs for Custom Computing Machines, Los Alamitos,
California. April 2000. unpublished.

8. J. Nehmer and P. Sturm: Systemsoftware. dPunkt.Verlag. 1998.
9. Intel: Intel Architecture Software Developer’s Manual, Volume 3, Intel Inc.. 1999.

http://www.intel.com/design/product.htm
10. Xilinx Inc.: Virtex 2,5V Field Programmable Gate Arrays, Xilinx. San Jose, Cali-

fornia 95124. 1999.
http://www.xilinx.com/products/virtex.htm

11. IDT: Fast Static Rams and Modules, IDT Inc. 1999.
http://www.idt.com/products/sram/Welcome.html

12. Samsung: SRam Products, Samsung Semiconductor Inc.. 1999
http://www.usa.samsungsemi.com/products/browse/ntramsram.htm

13. T. Kean and A. Duncan: DES Key Breaking, Encryption and Decryption on
the XC6216, IEEE Symposium on FPGAs for Custom Computing Machines, Los
Alamitos, California. April 1998. Pages 310–311.

14. H. Simmler, E. Bindewald, R. Männer: Acceleration of Protein Energy Calcula-
tion by FPGAs, Proc. Int’l Conf. on Mathematics and Engineering Techniques in
Medicine and Biological Science. CSREA Press, June 2000. unpublished.

15. E. Bindewald, et.al.: Ab inition protein structure prediction with MOLEGO, Proc.
7th Int’l Conf. on Intelligent Systems for Molecular Biology. 1999.


	Introduction
	Task Switching
	Requirements
	Design State Extraction and Reconstruction

	Client Server Model
	An FPGA Coprocessor Designed for Multitasking
	Current Status
	Conclusion

