
Latency hiding by Multicontext
Reconfiguration

Grzegorz Jabłoński

Latency hiding by Multicontext
Reconfiguration

Grzegorz Jabłoński

2

NVIDIA CUDANVIDIA CUDA

● NVIDIA proprietary
● Formerly known as “Compute

Unified Device Architecture”
● Extensions to C to allow better

control of GPU capabilities
● Modest extensions but major

rewriting of the code
● No Fortran version available

3

CUDA ExampleCUDA Example
#include <stdio.h>
#include <cuda.h>

// Kernel that executes on the CUDA device
__global__ void square_array(float *a, int N)
{
 int idx = blockIdx.x * blockDim.x + threadIdx.x;
 if (idx<N) a[idx] = a[idx] * a[idx];
}
// main routine that executes on the host
int main(void)
{
 float *a_h, *a_d; // Pointer to host & device arrays
 const int N = 10; // Number of elements in arrays
 size_t size = N * sizeof(float);
 a_h = (float *)malloc(size); // Allocate array on host
 cudaMalloc((void **) &a_d, size); // Allocate array on device
 // Initialize host array and copy it to CUDA device
 for (int i=0; i<N; i++) a_h[i] = (float)i;
 cudaMemcpy(a_d, a_h, size, cudaMemcpyHostToDevice);
 // Do calculation on device:
 int block_size = 4;
 int n_blocks = N/block_size + (N%block_size == 0 ? 0:1);
 square_array <<< n_blocks, block_size >>> (a_d, N);
 // Retrieve result from device and store it in host array
 cudaMemcpy(a_h, a_d, sizeof(float)*N, cudaMemcpyDeviceToHost);
 // Print results
 for (int i=0; i<N; i++) printf("%d %f\n", i, a_h[i]);
 // Cleanup
 free(a_h); cudaFree(a_d);
}

#include <stdio.h>
#include <cuda.h>

// Kernel that executes on the CUDA device
__global__ void square_array(float *a, int N)
{
 int idx = blockIdx.x * blockDim.x + threadIdx.x;
 if (idx<N) a[idx] = a[idx] * a[idx];
}
// main routine that executes on the host
int main(void)
{
 float *a_h, *a_d; // Pointer to host & device arrays
 const int N = 10; // Number of elements in arrays
 size_t size = N * sizeof(float);
 a_h = (float *)malloc(size); // Allocate array on host
 cudaMalloc((void **) &a_d, size); // Allocate array on device
 // Initialize host array and copy it to CUDA device
 for (int i=0; i<N; i++) a_h[i] = (float)i;
 cudaMemcpy(a_d, a_h, size, cudaMemcpyHostToDevice);
 // Do calculation on device:
 int block_size = 4;
 int n_blocks = N/block_size + (N%block_size == 0 ? 0:1);
 square_array <<< n_blocks, block_size >>> (a_d, N);
 // Retrieve result from device and store it in host array
 cudaMemcpy(a_h, a_d, sizeof(float)*N, cudaMemcpyDeviceToHost);
 // Print results
 for (int i=0; i<N; i++) printf("%d %f\n", i, a_h[i]);
 // Cleanup
 free(a_h); cudaFree(a_d);
}

http://llpanorama.wordpress.com/2008/05/21/my-first-cuda-program/

4

G80 Architecture – Computation ModeG80 Architecture – Computation Mode

● Processors execute computing threads
● New operating mode/HW interface for computing

Load/store

Global Memory

Thread Execution Manager

Input Assembler

Host

Texture Texture Texture Texture Texture Texture Texture TextureTexture

Parallel Data
Cache

Parallel Data
Cache

Parallel Data
Cache

Parallel Data
Cache

Parallel Data
Cache

Parallel Data
Cache

Parallel Data
Cache

Parallel Data
Cache

Load/store Load/store Load/store Load/store Load/storeLoad/store

Global Memory

Thread Execution Manager

Input Assembler

Host

TextureTexture TextureTexture TextureTexture TextureTexture TextureTexture TextureTexture TextureTexture TextureTextureTextureTexture

Parallel Data
Cache

Parallel Data
Cache

Parallel Data
Cache

Parallel Data
Cache

Parallel Data
Cache

Parallel Data
Cache

Parallel Data
Cache

Parallel Data
Cache

Load/store Load/store Load/store Load/store Load/store

Stream
Multiprocessor

5

The MultiprocessorThe Multiprocessor

● A multiprocessor consists of
eight Scalar Processor (SP)
cores, two special function
units for transcendentals, a
multithreaded instruction unit,
and on-chip shared memory.

● The multiprocessor creates,
manages, and executes
concurrent threads in hardware
with zero scheduling overhead.

6

The WarpsThe Warps

● Running threads are divided into
blocks, which share the multiprocessor
and can exchange data through the
local memory

● Multiprocessor employs a new
architecture we call SIMT (single-
instruction, multiple-thread).
● The multiprocessor maps each thread to

one scalar processor core, and each
scalar thread executes independently
with its own instruction address and
register state.

● The multiprocessor SIMT unit creates,
manages, schedules, and executes
threads in groups of 32 parallel threads
called warps.

7

The Mapping Between Blocks and SMsThe Mapping Between Blocks and SMs

8

The WarpsThe Warps

● Individual threads composing a SIMT warp start together at the same
program address but are otherwise free to branch and execute
independently.

● When a multiprocessor is given one or more thread blocks to execute,
it splits them into warps that get scheduled by the SIMT unit.

● Every instruction issue time, the SIMT unit selects a warp that is ready
to execute and issues the next instruction to the active threads of the
warp.
● A warp executes one common instruction at a time, so full efficiency is

realized when all 32 threads of a warp agree on their execution path.
● If threads of a warp diverge via a datadependent conditional branch, the

warp serially executes each branch path taken, disabling threads that are
not on that path, and when all paths complete, the threads converge back
to the same execution path.

● Branch divergence occurs only within a warp; different warps execute
independently regardless

9

Compute CapabilityCompute Capability

● NVIDIA defines the computing capabilities of their devices by a number
● G80 has a Compute Capability of 1.1:

● The maximum number of threads per block is 512;
● The maximum sizes of the x-, y-, and z-dimension of a thread block are 512, 512, and 64,

respectively;
● The maximum size of each dimension of a grid of thread blocks is 65535;
● The warp size is 32 threads;
● The number of registers per multiprocessor is 8192;
● The amount of shared memory available per multiprocessor is 16 KB organized into 16

banks;
● The total amount of constant memory is 64 KB;
● The total amount of local memory per thread is 16 KB;
● The cache working set for constant memory is 8 KB per multiprocessor;
● The cache working set for texture memory varies between 6 and 8 KB per multiprocessor;
● The maximum number of active blocks per multiprocessor is 8;
● The maximum number of active warps per multiprocessor is 24;
● The maximum number of active threads per multiprocessor is 768;
● The limit on kernel size is 2 millions of microcode instructions;

10

G80 Example: Executing Thread BlocksG80 Example: Executing Thread Blocks

● Threads are assigned to Streaming
Multiprocessors in block granularity
● Up to 8 blocks to each SM as resource

allows
● SM in G80 can take up to 768 threads

● Could be 256 (threads/block) * 3 blocks
● Or 128 (threads/block) * 6 blocks, etc.

● Threads run concurrently
● SM maintains thread/block id #s
● SM manages/schedules thread execution

t0 t1 t2 … tmt0 t1 t2 … tm

Blocks

SP

Shared
Memory

MT IU

SP

Shared
Memory

MT IU

SP

Shared
Memory

MT IU

SP

Shared
Memory

MT IU

t0 t1 t2 … tmt0 t1 t2 … tmSM 1SM 0

11

G80 Example: Thread SchedulingG80 Example: Thread Scheduling

● Each Block is executed as 32-thread Warps
● An implementation decision, not part of the CUDA

programming model
● Warps are scheduling units in SM

● If 3 blocks are assigned to an SM and each block has 256
threads, how many Warps are there in an SM?
● Each Block is divided into 256/32 = 8 Warps
● There are 8 * 3 = 24 Warps

12

G80 Example: Thread Scheduling (Cont.)G80 Example: Thread Scheduling (Cont.)
● SM implements zero-overhead warp scheduling

● At any time, only one of the warps is executed by SM
● Warps whose next instruction has its operands ready

for consumption are eligible for execution
● Eligible Warps are selected for execution on a

prioritized scheduling policy
● All threads in a warp execute the same instruction

when selected
● 4 clock cycles needed to dispatch the same instruction

for all threads in a Warp in G80
● If one global memory access is needed for every 4

instructions, a minimal of 13 Warps are needed to fully
tolerate 200-cycle memory latency

TB1
W1

TB = Thread Block, W = Warp

TB2
W1

TB3
W1

TB2
W1

TB1
W1

TB3
W2

TB1
W2

TB1
W3

TB3
W2

Time

TB1, W1 stall
TB3, W2 stallTB2, W1 stall

Instruction: 1 2 3 4 5 6 1 2 1 2 3 41 2 7 8 1 2 1 2 3 4

warp 8 instruction 11warp 8 instruction 11

SM multithreaded
Warp scheduler

warp 1 instruction 42warp 1 instruction 42

warp 3 instruction 95warp 3 instruction 95

warp 8 instruction 12warp 8 instruction 12

...

time

warp 3 instruction 96warp 3 instruction 96

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12

