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Abstract—Self-reconfigurable hardware is a new emerging
technology which will enable adaptation of computing systems
to changing environments. This paper deals with the design
of architecture kernels for an autonomous on-board system
and the development of an adaptation manager for real-time
scheduling of the reconfigurable hardware fabric. Our approach
employs a reconfigurable computer architecture with two key
layers: the adaptation manager and the real time configuration
kernel. This provides significant advantages in terms of flexibility,
scalability, cost, and compatibility with embedded technology.
Some preliminary results are presented.

I. INTRODUCTION

Self-reconfigurable hardware will play a crucial role in the

development of autonomous embedded on-board systems for

mission critical platforms such as satellite communications,

deep water exploration and space missions. There is an ob-

vious need for computing systems in the space environment

(e.g. satellites, airborne vehicles, space-crafts and remote

robotics) to be autonomous and self reconfigured in response

to environment changes, and also to operate under low powe.

A self-reconfigurable computing architecture should perform

complex processing in real time with the ability to modify its

structural fabric. Moreover, autonomous computing systems

should react to the changing environment in real time without

disruptions in performance.

Computing systems for space applications require high fault

tolerance because of exposure to ionization radiation. Self

reconfigurable architectures are amenable to achieve fault

tolerance and have the ability of self-repairing to prevent

critical failures due to system faults. Recently, an on-board

system based on a self reconfigurable multiprocessor architec-

ture with dynamic reconfiguration of hardware and adaptable

application software which was presented in [1], [2]. The

hardware fabric was implemented and compared favorably to

Xilinx based reconfigurable systems using several benchmark

applications [2]. The objective of that project was to design

a dynamically reconfigurable System-on-Chip (SoC) platform

for high performance processing and communications on-

board mobile platforms for space missions and small satellites

Self reconfigurable hardware modifies its own configuration

during run time to adapt the changes in environment using

autonomously generated signals. Currently, partially reconfig-

urable Field Programmable Gate Array (FPGA) platforms are

commercially available, e.g. by Xilinx [3]. However, a self-

reconfigurable hardware architecture is still at the conceptual

level [2]. The fine-grained FPGA configuration available at

the bit-level does not allow for upscaling to execute large and

complex computations. For complex applications the FPGA’s

resources are still not efficient despite the increased chip

density. Course grain reconfigurable architectures have been

proposed in the literature but not commercialized. Coarse grain

architectures are scalable but at the loss of bit-level flexibility,

thus they may not be amenable to irregular bit lengths.

Although these architectures are in some sense dynamic,

nonetheless, they do not provide Operating System managing

for pervasive or autonomous dynamic configuration [4], [5].

Currently FPGAs are not capable of autonomous or self

reconfiguration. Future generations of reconfigurable devices

will be based on evolvable reconfigurations [6] which enable

self-growth and reproduction of the reconfigurable hardware

implemented on technologies beyond semiconductor chips.

In this paper we propose a self reconfigurable multilayer

architecture which builds on our previous work regarding the

reconfigurable hardware fabric in [2]. This fabric is based on

sets of variable bit-length tiles with operator-level granularity

which gives significant scalability advantage over FPGAs. We

propose a four layer architecture with two key layers: the

adaptation manager and the real time configuration kernel [1],

[7], [8] which are critical for the reconfigurable system.

II. OVERVIEW

The self reconfigurable architecture is based on an adapta-

tion of the application software and dynamic reconfiguration

of the hardware fabric [1]. The reconfigurable architecture (see

Fig. 1) consists of four functional layers:

• Layer 1 - reconfigurable hardware;

• Layer 2 - embedded processors and memory modules;

• Layer 3 - real-time operating system kernels (RTOS);

• Layer 4 - adaptation software manager.

The hardware fabric consists of layers 1 and 2. Layer

2 consists of pre-configured tiles which are implemented

efficiently e.g. power or performance. Layer 1 consist of

generic tiles which can implement any function in layers 2
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Fig. 1. Self-Reconfigurable Architecture

and 3. The layers 1 and 4 are critical for reconfigurable system

while layers 2 and 3 are supportive.

The main purpose of the adaptation manager (layer 4) is

to assign application functions into classes and to allocate

them for processing at the other layers. The functionality

diagram for communication between the main system mod-

ules, adaptation and dynamic reconfiguration is shown in Fig.

2. The manager receives real time inputs from the sensors

and accesses function libraries containing pre-built configu-

ration matrices of several applications. The manager is also

responsible for a) choosing from the function libraries the

configuration that best conforms to the resource constraints

(power, time, etc.) and b) loading this information into the

hardware fabric (layer 1). The reconfiguration strategy is to

map common functions to the embedded processors (layer 2),

while allocating computation intensive functions (e.g. signal

processing) requiring much parallelism to the reconfigurable

fabric (layer 1). The adaptation manager collects data relating

to power and real-time process completion and learns the

tradeoff between power and operation speed. The adaptation

manager is capable of self adaptation through an evolutionary

training process which can be based on supervisory learning,

incremental learning, and genetic algorithm techniques dis-

cussed in [9], [10]. This learning process helps to improve

adaptation and reconfiguration decisions.

Fig. 2. Functional view

The real time operating system kernel (RTOS) layer (layer

3) consists of two major components: real-time OS and config-

uration OS kernels. A configuration OS kernel is employed for

task scheduling and placement for dynamic reconfiguration of

the hardware fabric. The kernel itself is dynamically assigned

to different embedded modules in layers two and one. Hence,

the embedded RTOS kernel is hardware tailored to efficiently

handle real-time tasks for time critical applications.

The embedded modules layer (layer 2) consists of embedded

processor cores, e.g. DSP cores, memories, soft cores, and

ASIC components. This layer does not require configuration

time to setup for computation compared to the hardware fabric

of layer one. This layer supports the adaptation manager and

OS kernels layers and processes baseline functions that do

not require intensive computations. For baseline functions

computations hard processor cores, such as the ARM core

(Acorn RISC 32-bit processor) can be used due to their

stability, while for communication functions, soft processor

cores are more efficient. This layer is considered separate from

the reconfigurable hardware in layer 1. Due to the fact that

current trend for advanced FPGA platforms (Xilinx, Altera) is

to incorporate hard and soft processor cores, it is possible to

integrate some part of this layer into the FPGA fabric.

The reconfigurable hardware layer (layer 1) is based on

emerging SoC technology which integrates ASICs, micropro-

cessors and FPGAs into a single chip design. The SoC technol-

ogy is able to support modularity and its ability for dynamic

reconfiguration will determine the feasibility of performance

optimization with satisfied low power requirements.

As discussed in [2], the reconfigurable hardware fabric con-

sists of a distributed set of programmable processing tiles that

are capable of instantaneous dynamic reconfigurability (Fig.

3). Each generic tile has three types of hardware resources

i.e. operator unit, local memory, e.g. register cache, and local

control unit. All hardware resources are connected together

through a loop of bus-line interconnects.

Reconfigurable Interconnects

Unit
Control

RegisterRegister
Cache

Operator

. . .
Register
Cache

Operator
UnitUnit Unit

Cache

Operator

Fig. 3. Reconfigurable Tile

The configurable tile is superior to current FPGA technol-

ogy because of its middle grained configuration and efficient

allocation of resources. Configuration occurs within a tile,

and along several tiles which can be interconnected into a

reconfigurable fabric. Tiles can implement application function

modules as a FIR filter, FFT, DCT, and convolution coder.

There are two related problems that need to be addressed:
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mapping a function module into a tile and reconfiguring

dynamically a tile for one function. Both problems have been

addressed in our previous work where we developed mapping

algorithms for the dynamically reconfigurable fabric [2].

The main feature that distinguishes this reconfigurable hard-

ware from FPGAs and DSPs, (digital signal processors) is

the ability to configure the hardware datapath length. A bit-

slice approach is employed to build flexible bit-length operator

units together with their interconnects. Thus applications that

demand unusual bit lengths such as 22 bits or 36 bits will

be accommodated by dynamically configuring tiles to match

these bit lengths. This is a real advantage of the proposed tiles,

since one would need a fixed 32-bit DSP to accommodate

applications with irregular 22 bit-length, and would be unable

to do 36 bits. At the same time, to scale an FPGA to an

odd bit-length may require using far away logic blocks in the

chip incurring delay overheads. The reconfigurable hardware

fabric is assembled by hierarchically connecting tiles into a

tree structure with the tiles being the leaf nodes of the tree,

Fig. 4.

Fig. 4. Reconfigurable fabric

This hierarchy provides good scalability of the fabric for

expansion. It is important both for mapping and for dynamic

reconfiguration of fabric tiles. The idle tiles can be turned off

to reduce power.

III. TASK MODELING AND SCHEDULING

In partially reconfigurable FPGA systems, a set of applica-

tions ortasks can be executed in parallel using contiguous areas

on the same FPGA. The typical strategy for task scheduling

and placement in limited FPGA resources is based on the

1D and 2D area models where the reconfigurable FPGAs are

modeled by rectangular area of reconfigurable units that may

be partitioned between multiple tasks. The tasks are treated as

non-overlapping rectangles that can be allocated anywhere on

the hardware task area for the 2D area model and anywhere

along the horizontal device axis for the 1D area model.

Existing placement algorithms either provide fast placement

and sacrifice efficiency or efficiently allocate hardware area

slowly [11].

In our approach we propose a new real time task scheduling

and mapping methodology based on the tiled structure of

reconfigurable fabric. The number of required tiles depends

on the task sizes. Taking advantage of reconfigurable tiles we

Fig. 5. Task Model

can place the task in several tiles which are located in different

noncontiguous locations in the fabric area. This technique

allows us to avoid the problem of maximizing contiguous

empty space and task rejection due to the unavailable space at

the assigned starting time. Moreover, our approach maximizes

utilization of the reconfigurable fabric resources.

Efficiency and speed of the scheduler is important for

performance of entire systems due to the overheads related to

the scheduling and placement operations. Our task scheduler

is a part of the configuration OS in the Layer 3. Its objective

is to allocate tasks in the reconfigurable fabric in run-time

according to the requests from the adaptation manager (Layer

4).

To characterize the scheduling problem, we begin with

defining the task model shown in Figure 5. Following is the

notation in reference to Figure 5.

Ti Task ID

ei Execution time

di Hard dead line

pi Execution Priority

ni Number of Tiles allocated to task

ai Arrival (or release) time

- task being ready to execute

Xi Laxity, minimum time a task can be delayed to be

activated but still meeting its deadline,

Xi = di −ai − ei
Ci Configuration information for all needed tiles

(FIFO bitstreams)

PS Processor slice time required during execution

(can be 0)

csi Current state of task

si Activation tiem of task

fi Termination task time

{Li} List of size ni for tile coordinates assigned to task

The reconfigurable fabric consists of tiles which are con-

sidered Empty or are assigned to the particular tasks. In the

latter case the state of the task determines the tile’s state,

which can be Active, Inactive, or Reserved. An active tile is

a tile which is executing the task. An inactive tile can be in

three different states: Loading, Terminating, and Suspended.

In the loading state tiles are loading task configurations before

execution, while in the terminating state the tiles are clearing

configuration information. In the suspended state the tiles have

all the required configuration information and wait for some

processor time for execution. In this state tiles are waiting

for processor time allocated by the processor scheduler. The
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Fig. 6. Task scheduler

reserved state corresponds to the tile waiting for a future task

arrival. Finally, there are empty tiles that were cleared after

task terminating. All the state tasks are shown in Table I.

Tile
States

Empty
Tile

Tile Assigned to Task

Active
Tile

Inactive Tile Reserved
Tile

Load Terminate Suspend

Tile
Ops

No
Action

Task
Exec

Load
Task
Configs

Clear
Task
Configs

Wait
for Pro-
cessor
Time

Wait
for
Task
Config

TABLE I
STATE TASK TABLE

The adaptation manager sends different requests to the

scheduler for task management: Task Termination Request

(TTR), Task Execution Request (TER), and Task Reservation

Request (TRR). The role of the adaptation manager is to

decide what tasks should be selected for execution, reservation

or termination. It communicates its request to the task sched-

uler providing task and configuration information. The general

scheme of communications between the task scheduler (Layer

3) and the adaptation manager (Layer 4) is shown in Fig. 6.

For example, suppose the adaptation manager receives a

Task Execution Request (TER). In this case, the scheduler

receives the following task information: task ID, priority, size,

deadline, execution time, configuration, and processor slice

time, if needed. After receiving a request from the adaptation

manager, the scheduler checks the existence of the task in

the allocation table. If the task exists and the corresponding

tiles are in the active or inactive state, the scheduler informs

the adaptation manager that the task is already executing. If

the corresponding tiles are in the reserved state, the scheduler

sets the task as inactive loading state and proceeds to load its

configuration data in its tiles.

After loading completion, if the task needs processor slice

time to complete execution, the task is set to the inactive

suspended state. Then the task scheduler communicates with

the processor scheduler requesting the required processor time

cycles. The processor scheduler puts the task into a priority-

based queue. Once the processor resources are available, the

task state gets updated to the active execution state and exe-

cution begins. When execution is complete, a message about

successful task execution and its ID is sent to the adaptation

manager. Also, the task enters the inactive terminating state

and commands are sent to the reconfigurable fabric (layer 2)

to physically clear the hardware tiles. Then, the allocation table

is locked during the update and the status of cleared tiles is

set to empty.

If the requested task is not found in the allocation table, the

scheduler performs the Best Fit algorithm. We will describe

the Best Fit shortly. In cases when tile space is not found,

the scheduler sends the failure message with the task ID to

the adaptation manager. When space is found, the scheduler

proceeds to do the same task loading and execution procedures

as described for the reserved tiles. The execution state flow is

shown in Fig. 7

The Best Fit algorithm to place the task onto the reconfig-

urable fabric based on its priority:

• If the number of tiles needed for the task (task size −
N task) is smaller than the number of the empty tiles

N empty, then the first N task empty tiles are assigned

to the task; and the number of the empty tiles is decreased

by N task.

• If the area of empty tiles is not sufficient for the task

allocation, then the N task − N empty tiles left are

selected in terminating tasks of all priorities N term.

• If the empty and terminating tiles can not accommodate

the task ( N task > N empty + N term), then the required

tiles will be selected from the other tasks which have

priorities lower than the current task.

To implement this algorithm two additional parameters are

stored as task characteristics: the set of the tiles used for the

task and the current state of the task. The following task states

are distinguished: reserved, inactive (which includes both

loading and suspended states), active executing, terminating.

Then the task is stored in the allocation table according to its

priority and state.

The tasks are scheduled for execution on the first available

processor according to the highest priority, assuming that tasks

are aperiodic. Tasks with higher priority will be scheduled

before tasks with lower priority regardless of their arrival time

in the queue.

IV. SIMULATION

We consider a fabric consisting of 8 x 8 reconfigurable tiles.

A task can be placed in several tiles which are located in

different places in the fabric area. The number of required tiles

depends on the task size. Lack of restrictions on tile locations

eliminates the problem of maximizing contiguous empty space

and task rejection due to the unavailable contiguous space at

the assigned starting time. The sequence of task requests from

the adaptation manager is simulated through a set of random

processes. As we discussed previously, there are three possible

request types: task termination, reservation, and execution. We

assume that these task requests have independent permanent

probabilities for each clock cycle.

135

Authorized licensed use limited to: Politechnika Lodzka. Downloaded on June 11,2010 at 14:36:21 UTC from IEEE Xplore.  Restrictions apply. 



Queue

Set Task
as Inactive
Loading

Set Task
as Inactive
Suspending

Inactive Load

Inactive Suspend

Set Task
as Inactive
Executing

Set Task
as Inactive
Terminating

Adaptation   Manager

TE   ID    Failure    No Space

TER   ID    Priority    Size    Deadline     Execution Time           Configuration          Processor Time

Allocation Table

Best  Fit

Space  Found

TER   ID    Failure    Exists Task  State

Does’nt Exist

Processor  Scheduler

Delete TaskTE   ID    Success    

Task   Scheduler

Processor

time slice

Active Exec

Fig. 7. Task execution

Reservation. For the case of a reservation request the task

size is randomly generated within a defined interval. The

configuration time for the reservation request is a random value

depending on the task size. To provide the required number of

tiles we employ the best fit algorithm. If empty and terminating

tiles cannot accommodate the task, the required tiles will be

taken from the other tasks which have priorities lower than

the current task. Preemption of low priority tasks that are in

the reservation state results in interruption of the tasks without

their elimination. Such tasks are transferred to the suspended

reservation state and will be reserved only upon execution

request arrival for these tasks. For the case of loading and

suspended states, low priority tasks preemption results in total

task elimination. If the new task to be reserved does not

have enough tile space, it is transferred into the suspended

reservation state.

Termination. When a termination request arrives, we ran-

domly chose the active task that will be terminated. The

termination time is randomly selected from a predefined range

which does not depend on the task size.

Execution. We consider two possible scenarios for the

execution requests, namely, a request for an ”old” task, that

has already been sent for reservation and a request for a ”new”

unreserved task. The choice is made randomly among the tasks

that have been reserved, the tasks that are being reserved and a

predefined number of ”new” tasks. The new tasks and the old

tasks that were in the suspended reservation state require tiles

which are selected with the same Best Fit procedure described

above. The only difference is that tasks with the same priority

at the reservation state are included in the pool of available

tiles, and failure to provide the required number of tiles means

total task elimination. After assignment of the required tiles,

the time characteristics of the arrived task are simulated. The

duration of the preparation state (loading and, if necessary, tile

configuration), is determined with a random process which

depends on the number and the states of the supplied tiles.

After the preparation state, a task may require some time slice

of interaction with one of processors; in this case, the task is

directed to the queue. The position in the queue is determined

by the task priority; tasks with same priority will be scheduled

according to their arrival time (FIFO). The first task in the

queue will reach the fist available processor. If a task does not

require a time slice, it goes directly to the fabric execution

state, where a task is also directed after the slice time slice.

The time slice, the duration of execution, and the laxity are

determined as random integers within predefined intervals that

do not depend on the task size. The interval for the time slice

includes zero and negative values that simulate absence of the

time slice. Our task model checks and terminates a task in

the queue when it is ready for a processor if the deadline has

become unreachable.

We have run the simulation for 30,000 clock cycles and

tested the performance of the scheduler through the ratios

between the number of rejected tasks and the total number

of finished tasks.

V. RESULTS

For scheduling algorithm evaluation we analyzed the effect

of the task size, laxity and execution times on the scheduling

performance. For analysis each simulation run involves fixing

two parameters out of task size, laxity and execution time and

varying the third parameter. As a result of simulation we obtain

the number of successfully finished tasks and the number of

rejected tasks due to tile space constrains on fabric and due

to inability to meet the deadline.

The scheduler performance is evaluated by the ratios be-

tween the number of rejected tasks and the total number of

finished tasks. The ratio values equilibrate on average in 2000

cycles after the starting time.

The effect of laxity on the scheduling performance is shown

in Figure 8. The laxity is randomly generated in the intervals of

[1-5], [5-10], and [10-15] time units. The execution time and

the task size are randomly selected from the fixed interval of

[1-10] time units and from the interval of [5-10] reconfigurable

tiles, respectively.

The solid (red) bars correspond to the normalized number of

rejected tasks due to insufficient number of tiles on the fabric.

The solid (blue) bars correspond to the normalized number

of rejected tasks due to inability to meet the deadline. The

triangle intersection is the average value while the upside down

triangle represents the standard deviation. Small laxity, 1-5,
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Fig. 8. Laxity Effect on Failure Rate

makes it difficult to meet the task deadlines and therefore the

number of the tasks rejected due to the deadline constraints

exceeds the number of the tasks rejected due to the space

constraints. When the laxity increases, the number of deadline

rejections decreases. At large enough laxity value, 15-20, the

deadline rejections become zero.

The task size effect on the scheduling performance is shown

in Figure 9. The task sizes are randomly generated in the in-

tervals of [5-10], [10-15], [15-20], and [20-25] reconfigurable

tiles for the fixed interval of [1-10] time units for laxity and

of [1-10] time units for execution time.

5�10 10�15 15�20 20�25

0.1

0.2

0.3

0.4

Fig. 9. Task Size Effect on Failure Rate

It can be seen from Figure 9 that for small task sizes

(interval [5-10]), both rejection rates are low (in the range

of couple percent). Increasing the task size up to [20-25]

increases the rejected task number up to 50% due to the

space constraints, while the rejection rate due to the deadlines

decreases down to zero.

The influence of the execution time on scheduling perfor-

mance is shown in Figure 10. The execution time is randomly

generated in the intervals of [1-5], [5-10], [10-15] , and [15-

20] time units. The laxity and the task size are randomly

selected from the fixed interval of [1-5] time units and from

the interval of [5-10] reconfigurable tiles, respectively. The

results show that the execution time mostly affects the number

of size rejections because the increased execution time leads

to a bottleneck in tile allocations. The number of the dead-

line rejections is almost constant and does not change with

increasing the execution time.
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Fig. 10. Execution Time Effect on Failure Rate

VI. CONCLUSION

The proposed self reconfigurable technology has several

advantages for space applications over other designs [4], [12],

in terms of flexibility, scalability, cost and power. Further

development of the presented scheduler can be achieved by

efforts in following three directions: a) the performance anal-

ysis should be extended to clarify the effect of the request

frequencies, number of priorities, and the interval widths; b)

the performance evaluation based on the ratio between re-

jected and successfully finished tasks is the simplest approach.

However, it might not be the best, because it favors the tasks

with small size and execution time. c) Dynamic priority should

be considered instead of static priority to increase scheduler

performance.
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