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AbstractÐFPGA-based configurable computing machines are evolving rapidly. They offer the ability to deliver very high performance

at a fraction of the cost when compared to supercomputers. The first generation of configurable computers (those with multiple FPGAs

connected using a specific interconnect) used statically reconfigurable FPGAs. On these configurable computers, computations are

performed by partitioning an entire task into spatially interconnected subtasks. Such configurable computers are used in logic

emulation systems and for functional verification of hardware. In general, configurable computers provide the ability to reconfigure

rapidly to any desired custom form. Hence, the available resources can be reused effectively to cut down the hardware costs and also

improve the performance. In this paper, we introduce the concept of temporal partitioning to partition a task into temporally

interconnected subtasks. Specifically, we present algorithms for temporal partitioning and scheduling data flow graphs for configurable

computers. We are given a configurable computing unit (RPU) with a logic capacity of SRPU and a computational task represented by

an acyclic data flow graph G � �V ;E�. Computations with logic area requirements that exceed SRPU cannot be completely mapped on

a configurable computer (using traditional spatial mapping techniques). However, a temporal partitioning of the data flow graph

followed by proper scheduling can facilitate the configurable computer based execution. Temporal partitioning of the data flow graph is

a k-way partitioning of G � �V ;E� such that each partitioned segment will not exceed SRPU in its logic requirement. Scheduling assigns

an execution order to the partitioned segments so as to ensure proper execution. Thus, for each segment in fs1; s2; � � � ; skg, scheduling

assigns a unique ordering si ! j, 1 � i � k, 1 � j � k, such that the computation would execute in proper sequential order as defined

by the flow graph G � �V ;E�.

Index TermsÐ Configurable computing, field programmable gate arrays, spatial partitioning, temporal partitioning, scheduling, data

flow graphs, reconfigurable computers, high performance computing.

æ

1 INTRODUCTION

THE configurable computing paradigm [19] is a hybrid of
the two traditional computing paradigms: general

purpose computing and application specific computing
(ASC). General purpose computing [37], [13] is defined
around instruction set architecture(microprocessor)
machines. This paradigm has long been in existence and
is very popular primarily because of its ease of use. General
purpose computers are facilitated by software tools like
compilers [1] that facilitate easy and effective mapping of
applications. Application specific computing (ASC) sup-
ports customization of applications in the form of hard-
ware. Due to customization of hardware, this approach
offers maximum performance for executing applications.
This approach is suitable for acceleration of compute
intensive (e.g., signal and image processing) applications
that take a long time to execute on general purpose
machines. However, due to the need for customization,
this approach is not very flexible and has tremendous cost
overheads.

Configurable computing has the potential of offering the

performance that is comparable to that of custom hardware

and a flexibility comparable to that of a general purpose

machine. Configurable computing machines are built
around programmable hardware, essentially consisting of
fine or coarse grain programmable devices called Field
Programmable Gate Arrays (FPGAs) [8], [21]. Typically,
they consist of a collection of FPGAs interconnected using a
fixed or programmable interconnect [9], [20]. The majority
of the configurable computing machines [23], [35], [7], [18],
[43] operate as coprocessors [2] and have some local
memory. Fig. 1 shows a model under which most machines
operate. The coprocessors can be, on demand, configured to
perform any desired function.

Configurable computing machines have been demon-
strated to have a wide variety of applications from logic
emulation [4], [44], [40], [11], [39] to algorithm specific
hardware execution. Some of the compute intensive tasks
that have made effective use of configurable computing
machines include DNA sequence matching [22], RSA
cryptography [23], text searching [27], fingerprint matching
[24], and high-speed image processing [3].

A custom computing machine and its architecture are
static in nature, i.e., in no instance can the size of the
mapped application exceed the size (or capacity) of the
programmable hardware. This capacity/size is usually
measured in terms of gate equivalence [48]. Large scale
FPGA-based compute engines include logic emulators and
hardware accelerators.

FPGA-based logic emulation is important for functional
verification of large designs. As the design complexity
grows, emulation becomes a key factor in the rapid
prototyping of large scale designs. Several academic [4]
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and commercial logic emulators [40], [11], [39] have come
into existence. Typically, these systems are built with large
scale programmable hardware. As the size of the program-
mable hardware increases, the cost of the associated system
also scales up tremendously. There is a limitation on the
size of the design/application that can be mapped onto a
configurable machine. In order to effectively use a multi-
device reconfigurable architecture, a collection of CAD tools
is required. One of the more important CAD tools is the
multidevice partitioner. A multidevice partitioner must
operate under area (size of each programmable device) and
pin (number of programmable I/Os per device) constraints.
Generally, the pins are consumed much faster than the logic
during multidevice partitioning. Thus, few devices yield
small logic density, while a large number of devices result
in poor logic utilization (per device) and lower perfor-
mance. Hence, a suitable size for a configurable computing
machine is one that results in best area to performance
trade-off. In fact, very large architectures yield poor logic
utilization. Thus, the cost of the architecture does not scale
linearly with the size of the application. It must factor in
poor logic utilization as design sizes increase. Finally, the
size of the largest application that can be implemented by
programmable hardware is limited by the physical size of
the hardware itself.

In this paper, our interest lies in hardware implementa-
tion of applications that have logic requirements that

greatly exceed the logic capacity of the configurable
computer. In order to facilitate the execution of such an
application, we have proposed a temporal partitioning
based mapping methodology. Temporal partitioning
divides the design into mutually exclusive, limited size
segments such that the logic requirement for implementing
a segment is less than or equal to the logic capacity of the
configurable computer. Such temporal segments can be
scheduled for execution in proper order to ensure correct
overall execution.

2 MOTIVATING EXAMPLE

We illustrate our concept with the help of a motivating
example. Fig. 2 illustrates an example where an application
expressed in terms of a data flow graph (DFG) is partitioned
into four (labeled A, B, C, and D) segments. For such a
graph, each node represents an operator or a function. If the
directed edges are assumed to represent the data depen-
dency between the nodes of the graph, then it is clear that
segments A and B have no interdependency. Segment C
depends on the outputs from segments A and B, and
segment D depends on the outputs of segment C. Thus, it is
possible to execute the entire application on a limited size
hardware if it is ensured that segment A will execute prior
to segment C, segment B will execute prior to segment C,
and segment C will execute prior to segment D. Fig. 2c
illustrates one such mapping where segments A, B, C, and
D are mapped to time steps t1, t2, t3; and t4, respectively,
and ti precedes tj if i < j.

In order to ensure proper execution of the application
represented by the graph in Fig. 2, the output generated by
the execution of segment A must be stored in a buffer so
that it is available(as an input) when segment C is executed.
Similar arguments for data buffering hold for other
segments also.

Definition 1. An input value to a segment is called stable if it
is also the value that would result from a correct implementa-
tion of the entire application on one large hardware.

For example, in Fig. 2, the inputs to segment C are
stable only after segments A and B have finished
executing. Prior to execution of segment A, any value at
the input of segment C is unstable.

Definition 2. A precedence-relation defines an ordering
of the partitioned segments that would guarantee a stable

input for each partition.

Fig. 2b illustrates a precedence-relation for the
segments defined in Fig. 2a. Note that segments A and B are
not dependent on each other and thus can be executed in
any order with respect to each other.

3 RELATED WORK

Partitioning and scheduling of graphs, with minor
variations in the objective being pursued, is an active
problem in many areas of research. Some of the research
areas that address this problem include multiprocessing
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Fig. 1. Typical model for configurable computing machines.

Fig. 2. An example data flow graph (DFG) with its partitioning and
scheduling.



[16], [33], high level synthesis [17], [25], and reconfigur-
able computing.

In multiprocessing, partitioning and scheduling are neces-
sary for the programs to exploit parallelism. Partitioning
ensures that the granularity of the parallel program is
coarse enough for the target multiprocessor without losing
too much parallelism. Scheduling is necessary to achieve
good processor utilization and to optimize interprocessor
communication in the target multiprocessor. Thus, in the
presence of two or more processors, our example in Fig. 2
would dispatch (for simultaneous exection) segments A and
B onto two independent processors.

Partitioning and Scheduling in high level synthesis is
performed under resource constraints [32] and/or timing
constraints [26]. The high level synthesis tools perform
partitioning and scheduling for a fixed datapath architec-
ture. The design choices made in the datapath have a direct
impact on the complexity of the control path to be
synthesized. In the case of reconfigurable computers, the
architecture can change from one configuration to another.
This adaptive nature of reconfigurable computers yields
better performance and makes the synthesis task easier.

Several novel reconfigurable architectures have been
proposed around the concept of time sharing logic
resources. These include Time Multiplexed FPGA [42],
Dharma [6], and DPGA [14]. The architectures require
specialized CAD tools for physical mapping, as proposed in
[41], [5], and [15].

In this research, we have developed methodologies to
overcome mapping problems associated with area con-
strained hardware. Specifically, we have developed algo-
rithms for temporal partitioning and scheduling of large
designs/applications on area constrained reconfigurable
hardware. The algorithms are very generic in nature and
can be easily targeted toward any reconfigurable architec-
ture that resembles the abstract model described in
Section 1. The overall mapping process requires temporal
partitioning followed by proper scheduling of application
segments (application segments that result from temporal
partitioning). Each schedule executes under a control
machine which ensures stable inputs to each temporal
segment in the schedule.

4 PROBLEM FORMULATION

A program or an application is represented by a DFG. A
DFG is a directed acyclic graph, G � �V ;E;W;D�, where V
is a set of nodes, jV j � n, and E is a set of edges. For each
node vi 2 V , there exists a weight wi 2W , 1 � i � n, and
delay di 2 D, 1 � i � n. Each node vi 2 V represents an
implementation of a functional operation and, correspond-
ingly, wi represents the size of the logic and di represents
the delay of the function.1 A directed edge eij �< vi; vj > ,
eij 2 E exists iff the function represented by vj depends on
the output of the function represented by vi. A large
number of compute intensive signal and image processing
applications can easily be incorporated in such a model.

The problem of partitioning can be stated as:

Given: A Data Flow Graph G � �V ;E;W;D� as described
above and a configurable unit of size SRPU
Objective: Divide G into k segments such that:

1. size of each segment is less than or equal to SRPU
2. there exists an acyclic precedence-relation for

all k segments.

It should be noted that just satisfying Condition 1 in the
above objective can result in a cyclic2

precedence-

relation even when the application DFG is acyclic. One
such example is illustrated in Fig. 3. In Fig. 3a, we see the
unpartitioned DFG. Figs. 3b and 3c illustrate two example
partitions where the size of each segment is limited to two
nodes. Clearly, Fig. 3b results in a cyclic precedence relation
(segments A and B) and is not feasible. On the other hand,
Fig. 3c results in a feasible precedence relation.

5 CONFIGURABLE COMPUTER MODEL

In order to experimentally verify our temporal partitioning
framework, we make use of a configurable computer model
that is similar to the one illustrated in Fig. 1. Temporally
partitioned segments are synthesized and their configura-
tions are stored on a host computer. The configurations are
dispatched to the configurable unit in the order that is
determined by the precedence-relation. Temporary data
buffering is accomplished using the local memory asso-
ciated with the configurable computing machine.

For our experimental setup, the reconfigurable unit is
part of the hardware/software co-execution environment
called RACE [35]. The hardware platform, RACE-I, consists
of four Xilinx XC4013 FPGAs interconnected in a complete
graph (K4) configuration. Each FPGA is supported with a
local memory of 128 Kbytes. The RACE-I platform is
connected to a SUN SparcStation using the SBUS interface.
An additional XC4013 acts as a controller and the system
interface. The controller is used for programming the
FPGAs and DMA transfers to the host system. The memory
associated with each FPGA is 8-bits wide and resides on an
address and data bus that is local to that FPGA. Fig. 4
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1. Size and delay are expressed in terms of the target hardware. 2. Cyclic relation will never result in stable inputs.

Fig. 3. Example illustrating possible formation of cycles.



illustrates the complete layout of the RACE-I system along

with architectural details.

5.1 Design Considerations

To implement a design on the configurable unit, the data

memory is used to provide stable inputs to the design and

then store back the results. In other words, the data memory

provides the necessary communication between various

temporally partitioned segments. This requires the addition

of a controller finite state machine (FSM) which performs the

task of providing stable inputs to the temporal segments

and writing back outputs to the data memory. We call this

controller FSM the data controller. We have developed a

synthesis tool for automatic generation of the data controller

for the partitions (explained in Section 6.3).

6 DFG PARTITIONING

In this section, we describe various algorithms for partition-

ing the DFG and mapping it to configurable hardware. Fig. 5

illustrates the design flow for our DFG partitioning system.

The input design specification can come from one of several

commercial formats [46]. Since our processing is on DFG,

G = (V, E, W, D), as described in Section 4, the input

specification requires preprocessing before partitioning is

carried out.
The input design specification is transformed into a

graph. This allows easy identification of data dependencies

between various nodes in the graph. The characteristics of

the functional block are technology dependent and (in our

experimental study) they are mapped to Xilinx XC4000

FPGAs [49]. An example graph for an application is shown

in Fig. 6.

6.1 ASAP Level Assignment

The temporal partitioning performed under the area

constraints should respect the dependencies between the

nodes (to ensure correct execution). Hence, a node can be

executed iff all its predecessors have already been executed

(i.e., the inputs to every node should be stable before it is

executed). For every node vi 2 V , we assign Level�vi�, called

the ASAP level [17], the depth of the node with respect to

primary inputs. Let

. Level�vi� denotes the topological level of the node vi
in the input directed acyclic graph. Initially, all the
nodes of the graph are assigned a Level � 1.

. Queue denotes the queue of nodes with Level 6� 1.

. Indegree�vi� denotes the number of incoming edges
for the node vi with Level � 1. For all nodes vj 2 V
such that inputs to vj are primary inputs only, the
Indegree�vj� � 0.

. FanoutSet�vi� denotes the set of fanout nodes of vi,
i.e., vj 2 FanoutSet�vi� iff there exists a directed
edge < vi; vj > in E.

. FaninSet�vi� denotes the set of fanin nodes of vi,
i.e., vj 2 FaninSet�vi� iff there exists a directed
edge < vj; vi > in E.

Initially, all the nodes are assigned Level � 1 and all the

primary inputs of the design have Indegree � 0. All the

primary inputs are assigned Level � 1 and added to the

queue. Now, every node vi is removed from the queue and

the Indegree of all its fanout nodes is decremented. The

Indegree of a node is a measure of the number of fanin

nodes with unassigned Level. If the Indegree is zero, then

the node can be assigned a Level equal to one more than the

maximum level of its fanin nodes, i.e., FaninSet�vi�.
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Fig. 4. Architecture of the RACE configurable computing problem.



Level�vi� �MAX�Level�FaninSet�vi��� � 1: �1�

If j V j denotes the size of the node set of the graph and
j E j denotes the size of the edge set of the graph, then the
initial computation of Indegree and the identification of the
primary input nodes can be done by a simple traversal of
the graph (which takes about O�j V j � j E j�. The algorithm
traverses all outgoing edges of each vertex only once, so its
running time is proportional to the number of outgoing
edges of the visited vertices. Since the total number of
outgoing edges in the graph is equal to the size of the edge
set E, the runtime complexity of the algorithm is
O�j V j � j E j�.
Algorithm: AssignLevels

Queue ( ;
For each node vi 2 V do

If Indegree�vi� � 0 then
Level�vi� ( 1
Queue:Add�vi�

End If
End For each
While Queue is not empty do

For each wi 2 FanoutSet�ui� do
Indegree�wi� ( Indegree�wi� ÿ 1
If Indegree�wi� � 0 then

Level�wi� ( Level�ui� � 1
Queue:Add�wi�

End If
End For each

End While

6.2 Partitioning Algorithms

The main objective of temporal partitioning is to partition
the DFG under the area constraint given by the size of the
configurable unit, SRPU . Additionally, a second equally
important objective is to exploit the inherent parallelism
that is present in an application. (This second objective is
typically used in partitioning graphs for multiprocessors
[33].) However, when the degree of parallelism exploited
increases, a new performance bottleneck arises in the form
of communication overhead for satisfying the data depen-
dencies between the partitions. Hence, it is a trade-off to
come up with a method that extracts maximum perfor-
mance from the available resources.

To quantitatively study the above trade-off, we have
designed two different partitioning algorithms. A level-based
partitioning algorithm and a clustering-based partitioning
algorithm. The first algorithm tries to achieve maximum
possible parallelism, thereby decreasing the delay. The
second algorithm tries to minimize the communication
overhead by sacrificing the parallelism, i.e., increasing the
delay.

We study the trade-off between decreasing the delay of
the partition (by making use of parallelism) to the
communication overheads associated with such parallelism.
Our study involves the execution of the temporal partitions
on the configurable unit model explained in Section 5.
Hence, the communication overhead in our case is the size
of the data controller that addresses the data communication
between the sequentially executing segments. We also
substantiate our study with various example designs and
illustrate the overheads.

6.2.1 Level Based Partitioning

The level assignment algorithm classifies the nodes of the
input application according to their ASAP levels [17]. The
ASAP levels also expose the parallelism hidden in the graph
nodes, i.e., all the nodes with the same level can be
considered for parallel execution without any dependency
check. There also exists some degree of parallelism among
the nodes with different levels (if they are not connected by
an edge).
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Fig. 5. Design flow for partitioning and FSM synthesis.

Fig. 6. An example design in node and edge format.



All the primary inputs to the design are assumed to
have a size of zero. A conservative approach would be to
execute nodes in increasing order relative to their ASAP
levels; this ensures stable inputs for every node at the
next level. Such an approach would also exploit the
maximum parallelism from the input application and
preserve its acyclic properties.

We have characterized the overheads involved in
executing logic partitions on our configurable computer
model. These overheads are mainly due to the limited
availability of routing resources and the necessity for a data
controller to perform the data transfer across the temporal
partitions. Thus, for a given configurable computer,

Available Area � SRPU ÿ FSMCostÿRCost: �2�
FSMCost is the cost (in terms of the number of

configurable logic blocks) for the data controller logic. RCost
is a constant (characterized for an FPGA architecture) that
ensures the routability of the logic on the FPGA. RCost can
be expressed in terms of the percentage of the logic residing
on the configurable unit.

Our experimental studies (see Section 6.3) have identi-
fied that the size of such an FSM is proportional to the
communication overhead, which depends on the number of
terminal edges of a partition. Terminal edges for a partition
are the collection of the incoming edges and the outgoing
edges for the given partition. We have characterized the
FSMCost for a wide range of terminal edges (see Section 6.3)
and incorporated it in our cost model. Partition�vi� denotes
the partition to which the node vi; 1 � i � N , belongs.
Max Level denotes the maximum level of any node in the
graph.

Algorithm II: Level-based partitioning algorithm

For each node vi with Level�vi� � 0 do
Partition�vi� ( 0

End For Each
i( 2
Lev( 2
Area Filled( 0

While�Lev � Max Level�
For each node vi with Level�vi� � Lev do

e( Identify Terminal Edges�vi�
Total Cost( Calculate FSMCost�e� � Size�vi� �RCost
If(�Area Filled� Total Cost � SRPU� then

Partition�vi� ( i
Area Filled( Area Filled� Total Cost

End If
Else
i( i� 1
Partition�vi� ( i
Area Filled( Total Cost

End Else
End For each
Lev( Lev� 1

End while

The algorithm traverses each node of the graph, level by

level, and assigns them to a partition. All primary inputs to

the design are assigned to the first partition because of

their zero size. The remaining nodes are assigned to

partitions numbered 2 and beyond. All the nodes from

level 2 to Max_Level are traversed. Nodes of the same

level are packed in a single partition and if the available

area is exhausted, then the nodes are assigned to the next

partition. If the nodes in the current level are all assigned

to a partition, then the next level nodes are considered.

To start with, a partition has no nodes and no terminal

edges. Before adding a node, the additional costs

associated with the change in the terminal edges is

calculated using Identify_Terminal_Edges().
When a node is added to a partition, also called as

segment, the size of terminal edges will also change which

will have direct impact on the size of the data controller

FSM. In order to satisfy the area constraints, we need to

correctly estimate the size of the segment. Let X be the

number of terminal edges for the segment prior to adding a

node vi, 1 � i � N , Y be the number of fanin edges to vi that

originate from nodes already in the current segment, and Z

be the fanout edges from vi. Then, the change, C, in the

number of terminal edges due to the addition of vi to the

segment:

C � Z ÿ Y : �3�
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Fig. 7. ASAP Level assignment for the example design.

Fig. 8. Level-based partitioning of the example design.



The total number of terminal edges upon addition of vi to
the segment is given by X � C. Fig. 8a illustrates the
partitions generated from the level based partitioning
algorithm on an example design. Fig. 8b illustrates the
resulting graph evolving from level based partitioning on
the example design. Fig. 8c illustrates the total number of
incoming and outgoing terminal edges resulting from level
based partitioning.

If j V j denotes the size of the node set of the graph and
j E j denotes the size of the edge set of the graph, then the
assignment of primary inputs to the first partition takes
constant time (as the nodes are arranged in a level order).
The nodes are traversed from level 2 to Max_Level and, for
every node, the change in the terminal edges in calculated.
This calculation involves checking of the fanin and fanout
edges of a node. For all nodes, since fanin and fanout are
checked twice (once for the node itself and the second time
while evaluating the node(s) connected to this node), it has

a complexity of 2 j E j . The calculation of the FSMCost and

RCost is a constant time operation performed for all nodes

(i.e., 8vi 2j V j ). Hence, the total complexity of the algo-

rithm is O�j V j � j E j�.

6.2.2 Clustering Based Partitioning Algorithm

In order to decrease the communication overhead, i.e., the

number of terminal edges resulting from partitioning, we

have developed an algorithm that clusters nodes with

common parent. This has a tendency to assign the common

parent to the same partition, provided area is available, as

rest of the children nodes, thereby decreasing the number of

terminal edges.

Algorithm III: Clustering based partitioning

ReadyList ( ;
For each node vi 2 V

Calculate_successor_id�vi�
End For each
For each node vi 2 V with Level�vi� � 1

Partition�vi� ( 1
ReadyList.update�vi�

End For each

i( 2
While ReadyList is not empty do
ui ( ReadyList.front()
e ( Identify_Terminal_Edges�ui�
Total_Cost ( Calculate_FSMCost(e) � Size(ui) � RCost
If((Area_Filled � Total_Cost � SRPU ) then

Partition(ui) ( i
Area_Filled ( Area_Filled � Total_Cost

End If
Else
i( i� 1
Partition�ui� ( i
Area_Filled ( Total_Cost

End Else
ReadyList.update�ui�

End While

To speed up the search (for nodes with common parents

at a particular level), we store the id of the successor node

with each node. In case of nodes with more than one fanin,

the id of the node closer to this node is stored. Whenever a

node is assigned to a partition, the possibility of assigning

any of its successor nodes to the current partition is also
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Fig. 9. Clustering based schedule for the example design.

Fig. 10. An example dependency configuration file.



checked. Because of the heuristics applied to improve the
speed of the algorithm, this may not result in an optimal
solution, but our experimental results have proved a
substantial improvement in the communication overhead.

In the algorithm, ReadyList represents a queue with the
nodes that are ready to be executed(i.e., all of the nodes in
its FaninSet have already been scheduled in the current or
previous segments). Initially, it consists of only primary
inputs. All primary inputs are assigned to partition 1.
ReadyList.update() adds new nodes that are ready to execute
at the front of ReadyList. The new nodes joining the list are
given more priority by adding them at the front of the list.
This has the potential to decrease the terminal edges. This
algorithm ensures better results in communication over-
head when compared to the level-based scheme.

The application of the algorithm on the example design
is illustrated in Figs. 8b and 9b. These figures illustrate the
newly formed dependencies in terms of the terminal edges
between the partitions. The corresponding number of
terminal edges for every segment is shown in Figs. 8c
and 9c. In the figures, IN represents the set of incoming
terminal edges of a partition and OUT represents the set of
outgoing terminal edges.

The calculation of successor id involves identifying the
fanout nodes for every node, which is proportional to the
number of edges, i.e., j E j . The update function checks if
any of the fanout nodes are ready to assign to a partition.
This is done for every node in the design, once for all the
primary inputs and then for the remaining nodes. This also

requires O�j E j� time. The computational time involved in

identifying terminal edges is 2 j E j and the computational

time for calculating FSMCost and RCost is O�j V j�. Hence,

the total computational complexity of the algorithm is

O�j V j � j E j�.
The data dependencies between the temporal partitions

should be stored in a data format. During the runtime, the

Scheduler handles the data dependencies with the help of

this data and ensures correct execution.
An example configuration file is shown in Fig. 10. The

out-bound terminal edges of a segment are assigned with a

unique order number. The in-bound terminal edge of any
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Fig. 11. Data controller embedded in each segment ensures proper
execution.

Fig. 12. Variation of FSM size with terminal edges.

Fig. 13. Scheduling data flow graphs.

Fig. 14. Sample code for executing a partition on the hardware.



segment can be associated with an out-bound terminal edge
of any of the previous segments. The output data from each
segment is stored according to the unique order number
and retrieved when required by the successive segments.

6.3 Data Controller Synthesis

In Section 6.2.1, we introduced a new cost, FSMCost, that
should be considered while partitioning. The FSMCost
represents the logic utilized for the communication over-
head. We synthesize the FSMs automatically [30] from the
size of IN and OUT and the estimated delay for a segment.
We generate ABEL [47] files representing the data controller
functionality. The functionality of the data controller is
represented as shown in Fig. 11. It loads the input from
memory to the IN edges and then waits until the end of the
execution. Finally, the FSM loads the results, OUT, into the
memory.

We have characterized the FSMCost as a function of the
terminal edges, i.e, IN and OUT, as shown in Fig. 12. To
calculate the FSMCost overhead while assigning a node to a
partition, the total size of IN and OUT is calculated and
referred to the cost table to find out the FSMCost.

7 DFG SCHEDULING

Scheduling of the temporal partitions onto the configurable
hardware should satisfy:

1. Precedence relation between the partitions.
2. Data dependencies among the partitions.

The partitions generated from the algorithms explained
in Sections 6.2.1 and 6.2.2 have a uniform interface. A set of
in-bound terminal edges and a set of out-bound terminal
edges are supported by a data controller to perform the data

transfer between logic and memory. The hardware map-
pings are generated using vendor specific synthesis and
mapping tools. Fig. 13 illustrates the flow of events occuring
in scheduling the segments.

We have developed a data structure to manage the data
dependencies between the partitions. The scheduler is a
software program invoking the driver functions to load
configuration memory and data memory on the hardware.
The data structure consists of two three-dimensional arrays:

IN[p][i][w] and OUT[p][o][w]
p - Partition number
i - Incoming terminal edge number
o - Outgoing terminal edge number
w - Width of the terminal edge, expressed in

bytes.

While executing a partition k, the scheduler loads all
IN[k][i][w] and waits until the end of execution to read
OUT[k][o][w] from the data memory. The inputs,
IN[k][i][w], are assigned from outputs of the previous
partitions (i.e., OUT[j][o][w], where j < k). To execute
the partition shown in the Fig. 10, the corresponding
scheduler code is shown in Fig. 14.

8 RESULTS AND ANALYSIS

In order to experimentally verify the concept of temporal
partitioning and scheduling of the applications, we have
designed four benchmarks. MEDIAN is a median filter used
for reducing shot noise in images [36]. BTREE32 is a 32
number binary tree comparator. It compares 32, 8-bit
numbers in parallel and outputs the largest of the inputs.
MATRIX4 is a 4� 4 integer, matrix multiplier completely
implemented in parallel. DCT8 [38], [10] is a one-dimen-
sional discrete cosine transform, implemented completely
in parallel. DCT-based image coding is the basis for all
image and video compression standards [45]. DCT trans-
forms an N �N image block from the spatial domain to the
DCT domain. One-dimensional DCT can be used to
compute a two-dimensional DCT. The number of nodes
and the approximate sizes of these circuits are shown in
Table 1.

The benchmark circuits are executed both on the soft-
ware and hardware and their execution times are com-
pared. The software execution of the benchmarks is carried
out on three different machine configurations and the
execution times are reported in Table 2. In order to
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TABLE 1
Size of the Benchmark Circuits Expressed in XC4000 CLBs

TABLE 2
Software Execution Times on Various Class of Workstations



accurately measure the execution time in software, we make

use of the quantify [31] utility which does execution

profiling and reports real processor cycles spent on

executing a task and its descendants.
The execution times of the benchmark circuits on

reconfigurable hardware with the temporal partitioning

approach is shown in Table 3. The table describes the

number of partitions made for each application and also the

size of each partition. For the tabulated results, the

clustering-based scheduling algorithm is used. Note that there

is a reconfiguration overhead of 242 msec for each segment

configuration. Thus, the total time for executing a bench-

mark would be

Texec � �k � 242msec� � Thardwareexecution; �4�
where k represents the number of temporal partitions and

Thardwareexecution represents the total time taken to execute all

the temporal partitions of a computation on the hardware.
The reconfiguration overhead is dependent on the

architecture of the reconfigurable computer. The experi-

mental setup RACE [34] consists of an overhead of 242

msec. The recent architectures [7], [12] have scaled down

the overhead by at least 1,000 times. We later explain a

methodology to optimize the reconfiguration overheads for

data intensive computations.

8.1 Comparison of the Partitioning Algorithms

Fig. 15 indicates an improvement of at least 30 percent in
terminal edges for the example designs using the clustering
based scheduling algorithm (for SRPU � 576 CLBs). The
number of terminal edges reported in Fig. 15 are averaged
over all the partitions of the application. Fig. 16 indicates at
least 67 percent degradation in the average delay of
execution for a partition from level-based algorithm to
clustering-based algorithm.

We chose the parameters terminal edges and delay to
quantitatively evaluate the partitioning algorithms.
Though these parameters seem to be target configurable
unit model dependent, analogous performance can be
identified in parallel and multiprocessing research areas
[33]. The terminal edges parameter is analogous to the
communication overhead between parallel executing
processes in a multiprocessing environment. The delay is
analogous to the execution delay of each process in a
multiprocessing environment. The partitioning algorithms
proposed in the above sections can be extended to the
parallel processing domain with a slight change in the
performance parameters and cost function. Hence, the
partitioning strategy to be adopted is subjective to the
user constraints and the target architecture of parallel
computer or a configurable computer.

Fig. 17 shows the key functional blocks in a generic DCT
based coding system [45]. The computation pipeline makes
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TABLE 3
Execution Times on Reconfigurable Hardware

Fig. 15. Performance analysis of the partitioning algorithms in terminal
edges. Fig. 16. Performance analysis of the partitioning algorithms in delay.



use of DCT as first block for most lossy image compression
algorithms. Our comparison highlights the first block
(shaded region) of Fig. 17. For software based execution,
the total time for execution is given by

TsoftÿDCT � m

8

h i
� m

8

h i
� TsoftÿDCT8; �5�

where TsoftÿDCT is the time for image transformation to
DCT domain for an m�m image when executed in
software and TsoftÿDCT8 is the time for executing an 8� 8
DCT in software.

In order to gain most by hardware execution, we try to
minimize the need for reconfiguration. If k is the number of
temporal segments, then we require k reconfigurations only
if the ith, 1 � i � kÿ 1, temporal segment executes com-
pletely on entire m�m image and stores temporary results
before the configurable hardware is reconfigured with the
�i� 1�th segment. Thus, hardware-based execution results
in

ThardÿDCT �
Xk
i�1

m

8

h i
� m

8

h i
� T ihardÿDCT8 � k � Treconfig; �6�

where ThardÿDCT is the time for image transformation using
configurable hardware; T ihardÿDCT8 is the time for executing
ith, 1 � i � k, segment for 8� 8 DCT in hardware; and
Treconfig is the reconfiguration time. Clearly, for m as small
as 128, the hardware performance will exceed the software
performance. However, in our case, we can represent an
8� 8, 2D-DCT by 16 executions of 1DCT8. Thus, for very
small values of m, we will see reconfiguration overheads
completely absorbed and, for large images, the performance
of our system will far exceed the software execution of DCT
transformations.

9 CONCLUSIONS

In this paper, we have presented a novel approach to
partition and schedule DFGs in the time domain. The aim of
this approach is to implement very large applications on
small reconfigurable hardware. We have developed a
complete hardware environment and necessary CAD tools
required for processing and synthesizing large applications.
This work also proposes an intermediate format and a
communication protocol for sequentially executing parti-
tions in the time domain. We have also discussed the
overheads involved in the current state-of-the-art configur-
able logic devices and their role on the performance
bottlenecks through quantitative results.

This approach has wide applications in hardware logic
emulation and algorithm acceleration using configurable
logic. The approach to temporally partition and schedule
the application reuses the available hardware, thereby
cutting down the emulation costs as well as making the

emulation system capable of handling large applications
without scaling (i.e., adding new hardware [29]). It also tries
to simplify the complex task of spatial partitioning for
multi-FPGA boards by implementing linear time algorithms
for temporal partitioning. Our approach helps make a
configurable computing board scalable by appropriately
generating the temporal mappings and reusing the hard-
ware. The potential gains are in the hardware costs and
speed. Also, for new and evolving architectures like context
switch-able FPGAs, i.e., FPGAs with more than one
configuration memory bank and an ability to switch
configuration from one to another in almost single clock
cycle, can make use of our methodology for effective
execution of large applications with no reconfiguration
overhead.

With advances in the FPGA technology toward a million
programmable logic gates, programmable logic with em-
bedded memories [50] and the coupling of configurable
logic on the processor core, this approach provides good
applicability for efficient reuse of the hardware and thus
scalability of the available resources. It also opens some
interesting problems that are worthy of further investiga-
tion. For example, as the granularity of the programmable
hardware (SRPU ) increases, an application may not require
any temporal partitioning after certain level of device logic
density. The trade-off between performance and cost for
changing device granularity would be an interesting
relationship that is worthy of further study. In other words,
what is the minimum granularity that is needed to achieve
performance that far exceeds the performance that is
obtainable on a general purpose machine.
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