
Research Issues in Operating Systems for Reconfigurable Computing

Grant B. Wigley and David A. Kearney
Reconfigurable Computing Laboratory (RCL)

Advanced Computing Research Centre
University of South Australia

Mawson Lakes SA 5095
Grant.Wigley@unisa.edu.au David.Kearney@unisa.edu.au

Focus Session : Operating System Approaches for Reconfigurable Hardware

Abstract
As the number of system gates available on

reconfigurable platforms increase beyond 20 million, the
issue of the management of these resources and their sharing
among may applications and users will become more of a
concern. In this paper we describe the research issues for
managing these resources in an operating system for a
reconfigurable computer. We also detail a feasible set of
components for the operating system and a feasible software
architecture

We show there is no current operating system
implementation with these components. We propose a
number of performance metrics which we believe are
important measures of the quality of an operating system
implementation. These include fragmentation of area,
algorithm performance and application performance. We
complete the paper with a status report on our
implementation of an operating system for a reconfigurable
computer.

1. Introduction

As FPGA density increases with VLSI feature sizes
below 0.15 micron, the need for time and space optimisation
of reconfigurable designs will give way as the major focus of
users to the need for tools to manage the complexity of
systems incorporating in excess of 20 million gate equivalent
designs. This will lead to demand for better design tools but
will also open the way for the introduction of system
software for the management of pre-designed reconfigurable
cores. In the area of traditional computing the latter is the
preserve of an operating system (OS). Therefore OS like
software will be needed for reconfigurable computing (RC).
This transformation is of course nothing new as it mirrors
what has already occurred in the general software area,
where many aspects of software implementation that were
once the preserve of the application programmer have been
transformed to the standard components of system software.
The RC research community thus needs to further
investigate the requirements and technical implementation of

reconfigurable system software and in particular an operating
system for reconfigurable computing.

This paper is organised as follows. Section 2 details
previous work in the area of operating systems for
reconfigurable computing and aims to show that no one has
yet implemented all the components we identified as
essential for an OS for reconfigurable computing. Section 3
will discuss the minimum services that must be provided by
an operating system for a reconfigurable computer. Section
4 will cover the different components of the OS, including
packing, partitioning and routing. Section 5 will discuss a
number of abstractions that impact on an operating system
for reconfigurable computing. Section 6 will discuss the
number of different performance metrics that we will use to
show the benefit of our system. Section 7 will detail our
current implementation details and finally sum up our paper.

2. Existing Research on OS for RC

Operating systems traditionally provide run time support
for applications. Surprisingly in view of the number of
reconfigurable platforms (Wildforce, Splash2) and
architectures (GARP, SCORE, and Morphosys) proposed
and built, very few of these projects have included an
investigation into run time support. Everybody who ever
built a platform has seen the need for a single user loader [1],
often in the guise of interface software between the RC
platform and the host system. Some researchers have seen
the need for a run time environment.

Brebner coined the term virtual hardware operating
system [2]. He explores some of the fundamental issues that
will influence the construction of any operating system for
FPGA’s with dynamic reconfiguration. He proposes that
applications be designed into relocatable cores known as
swappable logic units (SLU) [3]. He identifies the main
responsibilities of an operating system to be placement of
SLU’s and providing for “bus addressable” registers for
communication between SLU’s. The whole system
described by him was in fact simulated in C, including a
simulation of the FPGA.

Shiraz [4] propose a reconfiguration manager which
comprises a monitor which seems to receive interrupt like
requests from applications already running, notifying the
loader to place a new configuration at a particular place on
the FPGA. This paper does not discuss how this new place
is to be found (either in the initial load of the FPGA or
subsequently). It is assumed that the monitor is really just a
mechanism for swapping between a number of different
cores in the same location. Thus there is no allocation in this
proposal. The other elements of this proposal are a
traditional loader and a configuration store.

Davis et. al. [5] they have developed a Java runtime
environment for reconfigurable computing. At the top level
is a hardware object scheduler which managers precompiled
cores, in the middle is a place and route layer, and at the
bottom is a virtualization of the FPGA to make the system
portable. The authors miss the need for an allocator. There
is also no evidence in their paper of the authors actually
attempting to implement the layered architecture.

Rakhmatov [6] proposed a runtime environment for their
architecture of multiple microprocessors with attached
FPGA’s. They make mention of many of the components
we discuss in this review however they only deeply explore
hardware clustering and I/O scheduling.

Jean [7] reported a resource manager for reconfigurable
computing. There are difficulties in the published report of
this manager. There are no details provided concerning the
way the algorithm graphs for the applications are
constructed, the allocation is on a per chip basis similar to
our previous work [8]. There is no allocation on an area
basis. The performance figures quoted are of questionable
interest because the initialization time of the platform is
included in the non RC data, even though it seems that a non
RC version with a single initialisation could easily be
constructed. If this were considered then the RC overhead
would be much worse that quoted. In fact the overheads of
the resource manager have not been fully investigated. The
theses from which the paper was developed [9] indicate that
there are significant overheads in data transfer for the
applications concerned. So in summary this paper shows the
possibility of a resource manager for RC but falls short of
either a compelling and well documented implementation or
a deep investigation of the issues involved.

Burns [10] have considered some of the design issues in a
run time system. They point out the need for allocation of
area and suggest that circuits be transformed to fit available
space rather than wasting space to accommodate odd shaped
circuits. They introduced the need for the circuit to interrupt
the OS when it is to be swapped out. They do not consider
any standard representation of the hardware in graph format
and so do not have a concept of partitioning. They make the
good suggestion that the choice of resources shared by the
OS should be motivated by the applications.

In summary we far as we are aware one has actually tried
to build an operating system for reconfigurable computing if

the definition of operating system is to extend to allocation of
area resources and not just to be a loader of applications.
Some suggestions have been made about possible
implementation of OS structures but no one has done an
implementation. However there is agreement in the
literature about some of the general tasks that an OS might
need to perform. As we shall see later, in particular the key
performance issues surrounding the relocating of hardware
cores has received quite a bit of study [11]. We also note
that the issue of resource sharing has been little touched in
the reconfigurable OS research although this is often though
to be a key issue in more traditional OS literature.

3. Services Provided by an OS for RC

Similar to a traditional OS, an OS for RC has a set of core
services that must be provided. These set of minimum
requirements include an application loader, FPGA area
management, resource and application scheduling,
application protection, and IO. Each of these requirements
will be described in detail below.

3.1. Application Loading

A fundamental service provided by a traditional OS is the
loading and initiation of execution of programs. In a
reconfigurable computer this task is a little more complex
because programs can consist of a combination of logic
circuits and memory. Loading a reconfigurable computing
“program” or application means placing the circuit and
embedded RAM on the FPGA and then routing its external
I/O interface to either neighbouring circuits or to a local or
global communications bus. Note that when we use the
words placement and routing we may not mean that this is
done at configurable logic block (CLB) level as is common
for FPGA place and route tools. Rather we assume that
some placement and routing has been done at the low level
and that the module is thus, in the sense of software
technology, both a precompiled and relocatable module.
Note also that the needs of placement and routing of the OS
may be quite different to that normally associated with the
tools used in FPGA logic application development. In
particular, the time available for the place and route in the
context of a reconfigurable OS is a significant constraint on
the types of algorithms used and on the level of optimization
that can be achieved. Another difference with operating
systems for reconfigurable hardware is that loading an
application onto an FPGA implies immediate execution
whilst loading a software program into RAM does not.

3.2. Partitioning and Memory Management

The situation with virtual memory on a reconfigurable
computer is similar to the traditional case. Applications can

be loaded beyond the capacity of the FPGA resources and
the OS can select parts of applications that will be placed on
the FPGA at any time. The difference is that splitting (called
‘dynamic partitioning’ in this paper) the reconfigurable
application to fit into available “page frames” (area on the
FPGA) which are not currently occupied by other circuits is
non-trivial because circuits can not be arbitrarily partitioned.
Making use of locality of reference and locality of time in
reconfigurable applications has not been widely investigated.
Applications of FPGAs are inherently two-dimensional
although it is possible to imagine that they could be treated
as one-dimensional by a restriction on the design, placement
and routing. In this paper we concentrate on the initial issues
of partitioning applications too big to fit on the existing
resources and on loading multiple applications onto a single
FPGA computer.

3.3. Scheduling

A next major issue in a traditional OS is scheduling.
Scheduling reconfigurable applications is different because
there is no obvious ways to pre-empt a reconfigurable
application due to the typical absent of the instruction fetch,
decode, and, execute cycle. Thus there is no predefined
point of completion in a reconfigurable application unless the
designer specifically provides this. As a consequence all
multitasking of reconfigurable applications can be viewed as
cooperative. This seems a serious limitation until it is
realised that reconfigurable platforms are inherently
multiprocessing at the granularity of each application and
perhaps even at a finer granularity. A rogue application in a
cooperative reconfigurable environment may not stop other
applications from being loaded and executed. There is the
ability on most FPGAs to delete an application pre-
emptively. In the development of our OS we assume that the
application designer provides a well-defined completion
signal for their application or alternatively, where
applications are automatically partitioned the partitioning
algorithm inserts these signals at the cut point.

3.4. Protection and IO

Protection is an issue in all operating systems. On an
FPGA, protection implies a bounding box beyond which the
application circuit cannot be interconnected. This is the
approach taken in this early version of the research described
here. Another method of application protection is design
rule checking. This would involve the OS having a set of
rules that each application must conform to before loading it
onto the FPGA surface. This type of protection is yet to be
implemented.

DMA is a natural I/O mechanism for reconfigurable
applications because the DMA hardware can be part of the
application. As noted interrupts have little meaning in
reconfigurable computing because there is no obvious

processor cycle in most applications. Of course this is not to
say that checkpoints could not be added to applications to
make pre-emption possible but this will not be considered in
this paper.

At the most basic level the resources that certainly need to
be shared are the access ports to RAM directly connected to
the FPGA.

4. OS Component Architecture

In this section we introduce what we believe are a
minimum set of components of an OS for RC. Thus we
believe that any implementation must include almost all the
components listed in the next section.

An architecture containing these components is shown in
figure 1. Applications requiring processing on the FPGA
arrive as inputs to the OS. Each of application consists of a
task graph comprising of pre-placed and pre-routed cores as
nodes and communicating arcs representing dependencies.
If the OS determines the application is going to fit
somewhere on the unused FPGA area, then the nodes are
placed in a rectangular bounding box and this box is
allocated to a position on the FPGA. This gives rise to a 2
stage packing component comprising of allocation
component and a placement component. If the OS
determines the application wont fit it is partitioned before the
2 stage packing process.

4.1. Two Stage Packing

In an OS for RC we define a two-stage process known as
packing. Packing by our definition is a process of
determining where on the FPGA to put the application and
how to geometrically arrange the individual cores that make
up the application, according to a set of rules.

Stage one of the packing process is known as allocation.
We define allocation to be the process of determining where
on the FPGA surface to place the application. This will

Figure 1 – Architecture of the OS

INPUT

Partitioning Allocation Placement

OS

FPGA
Hardware

Core Library

Packing

involve the algorithm to query the FPGA surface to
determine where a specific amount of free area might be.
Inputs to the allocator will be the geometry of the free space
on the FPGA (including information about the global
routing) and a pre-packed rectangular area from the placer.
The output of the allocator is a position to place the pre-
packed rectangle so that it does not intersect with any other
exiting bounding box of a core on the FPGA or any global
routing wire.

The second stage of the two-stage packing algorithm is
placement. Again we define placement to be the process of
determining what cores of the application are to be placed
onto which cells of the FPGA. Inputs to the placer are a
possible partial task graph (of pre-placed and pre-routed
cores) and a target rectangular space slice. The placer
algorithm arranges the nodes of the task graph inside the
given rectangle allowing for their precedence by placing
nodes that need to directly communicate next to one another
(after allowing for the communication buffer area). The
packing process is complete after both processes have
executed. The detailed issues surrounding design choices for
packing deserve more attention from the research
community. Teich, Fekete, and Schepers [12] have made a
good start in solving the placement problem. Whether the
standard allocation algorithm can be used is yet to be
determined.

4.2. Temporal Partitioner

Partitioning is the process whereby a large task graph is
broken down into smaller components, similar to that of
dividing standard programs up into pages. The inputs to the
partitioner are the full task graph and a target node count.
The partitioner returns a subset of the task graph which has
area less than or equal to the target node count. The node
count of the returned task graph may be less then the target if
loops in the graph prevent a partition with the exact node
count. There may be a degenerate case where the node
count of the returned graph is zero. In this case further
iterations of the upper levels of the algorithms may be
needed or the task graph may need to wait for more area on
the FPGAs. In [13] we show how a fixed sized temporal
partitioning algorithm can be modified to suit the variable
partition sized needs of an OS for RC. We the see the need
for further research in efficient handling loops in task graphs
and optimising communication between parts of a
partitioned task graph.

4.3. Global Router

Routing is the process whereby electrical connections are
made between two points by setting the appropriate routing
switches. Traditional routing implies that the complete
application is routed, i.e. at the CLB level. We define global
routing to be the process of routing pre-placed and pre-

routed cores together. Since the applications have been pre-
routed, the only routing required is to externally route these
blocks to either to other communicating modules or to
external IO.

5. Key OS Abstractions

As in a traditional operating system, an OS for RC will
require a number of different abstractions. These will
include such items as a relocatable core library, responsible
for the interface between each of the cores and an application
architecture. Abstractions are also needed detailing how to
communicate between the hardware applications and the
software based operating system. Hardware hardware
abstractions, defining how different application cores with
each other and IO are required. More details of each are
given below.

5.1. Relocatable Core Library

Pre-placed and routed cores will need to have a standard
interface for use in an operating system. At the most basic
level this means a standard format for ports on the hardware.
An example of a static standard is the JBits core library
standard. A more complex requirement is a standard
protocol for each core to interchange with other cores.

5.2. Application Architecture Abstraction

As an OS is by its nature a general purpose tool it would
seem to be unwise to commit its structure too heavily on one
application architecture. However application architecture
choices impact on performance. In the software area of
course the OS runs on the same architecture as the
applications and that architecture is a narrowly defined von
Neumann processor. On an FPGA we expect that the OS
and the applications might want use different internal
structures so the question for the OS designer is just what is a
minimum shared structure for these. The focus on the
application architecture we believe should be identifying
items that are shared between applications either because
they must communicate using the shared resource or because
the shared resource has limited capacity such as RAM
interfaces. The whole issue of the relationship between
application architectures and the OS performance and design
is still an open question since there have been almost no
implementations of an OS at all and what has been
implemented has taken the route of being closely aligned to a
well specified specific architecture.

5.3. Hardware/Software Communication
Abstraction

Unless all the applications running under the OS and the
OS itself are implemented in hardware there will be a need
for a standardized interface between hardware cores and
software threads. We do not expect from experience with
applications that have been published (eg SAT solver) [14]
that it would be wise from a performance and design
complexity point of view to have all the application
functions in hardware. Rarely used functions and complex
control structures may not be the best choice for hardware
implementation. The only published abstractions [8, 15]
have a device driver with a message based socket interface to
the software applications. It is well known that there are
significant overheads in this as compared to an socketless
interface which may be lead to a loss of performance for the
hardware module. The other option is a method call
interface but it is an open question whether this can be
engineered with any better performance that the socket based
one. As the performance of the software hardware interface
is crucial to the any OS which involves software and
hardware components further work on this is important for
the OS research community.

5.4. Hardware/Hardware Communication
Abstraction

Typically for performance reasons cores will need to
communicate between each other using hardware only
channels. In addition core access to memory will need to be
in hardware. Whilst most of the application architectures
suggested [16] have by necessity a notion of intercore
communication they are very specific to the architectures
which themselves are very prescriptive. Perhaps uniquely
the RAW projects [17] has realised a compiler that generates
interconnection structures. We view this compilation of
interfaces as part of the application as distinct from the OS.
We believe that the OS should also have its own structures
for inter-application communication. This allows you to
have different compilers for the same OS, a situation which
is commonplace in the software arena. If a standardized core
abstraction includes a fixed communication interface then
the intercore communication could be implemented by
abutment. Another possible option for the OS is to have a
bus structure similar to common computing platforms and
some SOC proposals [18]. However we argue that bus
structures are probably a poor choice for reconfigurable
computing since they serialize all communication between
cores. The bus structure also unnecessarily constrains the
layout of cores on the FPGA to bus interface locations. It
would seem that the most promising area of investigation for
interfaces is a paramaterisiable communication core that
allows the OS to generate interfaces for heterogeneous
application cores thus taking advantage of the reconfigurable

nature of the platform and not unduly constrain the layout or
serialize all communications.

Interfaces to fast memory attached directly to the FPGA
are a special case of the hardware to hardware interface and
are likely to play an even more important role in determining
the performance of the many applications that need extensive
off chip storage. There may be a case to have a fixed portion
of this interface to ensure that this performance is achieved.

5.5. Global Routing Abstraction

We call the routing between hardware cores global
routing. Whilst many FPGA platforms have hierarchical
routing resources it would seem to be unnecessarily complex
to have a routing abstraction that exposed these many levels.
Thus a single level of routing could be assumed by the OS
and it could be left to the tools to optimize the routing using
the available resources.

6. Performance Measures

Like any operating system, performance can not be
ignored. But what exactly is performance with an operating
system for reconfigurable computing? As we have shown
there are no implementations of an operating system for
reconfigurable computing according to our definition.
Therefore we are unable to benchmark it against other
working models. We therefore have looked to a number of
performance metrics that we can benchmark our
implementation against.

6.1. Performance Overheads

Probably the most important metric for the OS to be
tested against, is the performance overhead introduced by the
OS. The introduction of any OS to an architecture will
reduce the performance of the complete system. Clearly the
OS on a von Neumann processor reduces the run-time of the
applications. But most users accept this reduction in
performance for an increase in ease of use of the machine.
Computers wouldn’t be in every home and office today if
not for an easy to use OS. The key to the OS is to minimise
the overhead introduced to gain this ease of use.

We intend to do this by selecting and developing fast
algorithms that perform the packing and partitioning.
Although there are a number of different types of algorithms
that have already been developed to solve these problems,
they mostly maximise the quality of result, at a cost of long
run-time. This is the sort of overhead the OS can not afford
to have. Therefore we are working on a number of
algorithms that reduce the quality of result, but substantially
reduce the run-time [13].

6.2. Application Performance

The other type of performance metric that must be
considered is the reduction in application specific
performance due to the introduction of the OS. Although
closely related to performance overhead, application
performance is the reduction in performance due to packing
and or partitioning of the individual application. Since an
OS has to accommodate multiple applications, the
applications may have to be modified to use these
algorithms. The use of these algorithms may introduce
another overhead, which will have to be minimised. If an
OS wasn’t used, the designer would assume they have
exclusive use of the hardware and would design their
application in such a way to gain maximum performance.

6.3. Area Fragmentation

Fragmentation is usually associated in a traditional
software OS environment with a loss of contiguous locations
to store a particular application program. In the two
dimensional environment of a RC there is a need to
generalize this concept.

We introduced two types of fragmentation in [13].
Partition internal fragmentation was defined as the amount
for free space located within one partition, caused by the
placement and partitioning algorithms inability to utilize the
free space, thus leaving gaps between cores. External
fragmentation was the amount of free space not used
compared with the space used on the FPGA surface. As
applications arrive and leave the OS, the free space would
become fragmented and potentially less useable as there
would be more and more small free space partitions created.
Clearly, the less fragmented the surface of the FPGA is the
better the OS has performed. The worst case scenario would
be every second CLB is used (in a checkerboard pattern),
thus producing 100% fragmentation. The best case scenario
would be all the applications be packed into a rectangle with
no free space between them.

6.4. Other Metrics

Two other important metrics to benchmark the OS against
are ease of application porting and ease of platform porting.
Even if the OS doesn’t reduce the performance of the
application or introduce large overheads, it would be
unworkable if application porting was made difficult. The
OS has to have the ability to be able to take already designed
applications and port them so they can be used by the
system. This process doesn’t have to be completely
automated but certainly can not be a long and difficult
process, otherwise designers wont use the system and see its
potential benefit. Like a traditional OS, the system has to be
easily ported to different architectures. This is especially true
for an OS for RC as there are several different architectures

of FPGAs. The OS has to have a small layer of FPGA
dependent code which can be easily modified as to target a
different architecture.

7. Our Implementation of an OS for RC

After a successful simulation of the operating system
[19], we have decided to implement such a system using a
real hardware platform. The reconfigurable platform chosen
is an RC1000-pp reconfigurable development board from
Celoxica [20]. It was chosen above other platforms because
one, Xilinx completely supports the board with their
software JBits, the board supports configuration via
SelectMap, which results in being able to partially
reconfigure the FPGA, and the board has a high speed PCI
based connection and 4 banks of 2 Mb each of on-board
RAM.

Our implementation of an operating system for a
reconfigurable computer is Java-based and is integrated with
Xilinx JBits. It has three major components, the loader, the
packer and the partitioner. The loader accepts incoming
applications from users and parses the input files into the OS
format. The packer contains the allocation and placement
algorithms and it modifies the bitstream according to its
location on the FPGA. The final process is the partitioning
and this divides the application into any number of partitions
depending upon the area distribution of the FPGA. There is
one final component of the OS which is responsible for the
communication of the cores. When an application is
partitioned the OS has to create routes between these cores in
order to allow the data to correctly pass through the complete
application. The OS also has a small component that
interfaces with the target hardware which passes the
bitstream and memory contents between the OS and the
hardware. The OS is currently under development with the
first complete prototype expected to be completed late 2002.

8. Conclusion

In this paper we have examined research issues of an
operating system for a reconfigurable computer. We initially
identified the previous work in this area and shown that there
is no ready complete implementation of an OS for RC. We
then detailed a set of core services that an OS must provide.
These included application loading, partitioning and memory
management, scheduling, protection and IO. We also listed
a set of component for an OS. One such component is
known as packing, defined as a process of determining
where on the FPGA to put the application and how to
geometrically arrange the individual cores that make up the
application. Two, temporal partitioning defined as the
process of dividing the application into smaller portions and
three, global routing defined as finding a connection between
two point by setting the appropriate routing switches. We

then introduced the concepts of abstractions including
application architecture, hardware/software thread, and
hardware/hardware intercore communication abstraction. As
our OS is the first implementation of an OS for RC we have
had to develop a number of performance metrics including
performance overheads, application performance and area
fragmentation. We then concluded with brief details on our
current implementation of the OS.

9. Acknowledgements

The authors would like to acknowledge the support of the
Sir Ross and Sir Keith Smith Fund.

10. References

[1] B. Gunther, "SPACE 2 as a Reconfigurable Stream
Processor," In 4th Australasian Conference on
Parallel and Real-time Systems (PART'97),
Singapore, 1997.

[2] G. Brebner, "A Virtual Hardware Operating
System for the Xilinx XC6200," In 6th
International Workshop on Field-Programmable
Logic and Applications (FPL'96), Darmstadt,
Germany, 1996.

[3] G. Brebner, "The Swappable Logic Unit: A
Paradigm for Virtual Hardware," In IEEE
Workshop on Field Custom Computing Machines
(FCCM'97), Napa Valley, CA, USA, 1997.

[4] N. Shirazi, W. Luk, and P. Cheung, "Automating
Production of Run-time Reconfigurable Designs,"
In IEEE Symposium on FPGAs for Custom
Computing Machines (FCCM'98), Napa Valley,
CA, USA, 1998.

[5] D. Davis, M. Barr, T. Bennett, S. Edwards, J.
Harris, I. Miller, and C. Schanck, "A Java
Development and Runtime Environment for
Reconfigurable Computing," In Workshop on
Parallel and Distributed Processing,
(IPPS/SPDP'98), Orlando, Florida, 1998.

[6] D. Rakhmatov, S. Vrudhula, T. Brown, and A.
Nagarandal, "Adaptive Multiuser Online
Reconfigurable Engine," in IEEE Design & Test of
Computers, vol. 17, 2000, pp. 53-67.

[7] J. Jean, K. Tomko, V. Yavagal, J. Shah, and R.
Cook, "Dynamic Reconfiguration to Support
Concurrent Applications," IEEE Transactions on
Computers, vol. 48, pp. 591-602, 1999.

[8] O. Diessel, D. Kearney, and G. Wigley, "A Web-
based Multi-user Operating System for
Reconfigurable Computing," In IPPS/SPDP'99

Parallel and Distributed Processing, San Juan,
Puerto Rico, USA, 1999.

[9] V. Yavagal, "A Resource Manager for
Configurable Computing Systems," Wright State
University, 1998.

[10] J. Burns, A. Donlin, J. Hogg, S. Singh, and M. Wit,
"A Dynamic Reconfiguration Run-Time System,"
In IEEE Symposium on FPGAs for Custom
Computing Machines (FCCM'97), Napa Valley,
CA, USA, 1997.

[11] O. Diessel and H. ElGindy, "Run-time compaction
of FPGA designs," In 7th International Workshop
on Field-Programmable Logic and Applications
(FPL'97), Berlin, Germany, 1997.

[12] J. Teich, S. Fekete, and J. Schepers, "Optimizing
Dynamic Hardware Reconfigurations," University
of Paderborn 97.288, 1998 1998.

[13] G. Wigley and D. Kearney, "The Management of
Applications for Reconfigurable Computing using
an Operating System," In Seventh Asia-Pacific
Computer Systems Architecture Conference,
Melbourne, Australia, 2002.

[14] P. Zhong, M. Martonosi, P. Ashar, and S. Malik,
"Accelerating Boolean Satisfiability with
Configurable Hardware," In IEEE Symposium on
FPGAs for Custom Computing Machines
(FCCM'98), Napa Valley, USA, 1998.

[15] S. Guccione and D. Levi, "XBI: A Java-based
interface to FPGA Hardware," In Configurable
Computing Technology and its uses in High
Performance Computing, DSP and Systems
Engineering, Bellingham, WA, 1998.

[16] S. Cadambi, J. Weener, S. Goldstein, H. Schmit,
and D. Thomas, "Managing Pipeline-
Reconfigurable FPGAs," In 6th International
Symposium on FPGAs (FPGA97), Monetery, CA,
USA, 1997.

[17] A. Agarwal, S. Amarasinghe, R. Barua, M. Frank,
W. Lee, V. Sarkar, D. Srikrishna, and M. Taylor,
"The RAW Compiler Project," In Second SUIF
Compiler Workshop, Stanford, CA, 1997.

[18] B. Cordan, "An Efficient Bus Architecture for
System-on-aChip Design," In IEEE Custom
Integrated Circuits Conference, 1999.

[19] G. Wigley and D. Kearney, "The Development of
an Operating System for Reconfigurable
Computing," In IEEE Symposium on FPGAs for
Custom Computing Machines (FCCM'01), Napa
Valley, 2001.

[20] Celoxica, "RC1000-PP Hardware Reference
Manual," 2000.

