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Foreword

After six years of exciting and intensive research, one of the world’s largest and
longest-running programs of research into Reconfigurable Computing is conclud-
ing with the publication of the research papers in this volume. The research was
launched in 2003 by Deutsche Forschungsgemeinschaft, the German Research
Foundation, as “Schwerpunktprogramm (SPP 1148)” under the title “Rekonfigurier-
bare Rechensysteme”. This translates as the Priority Programme in Reconfigurable
Computing Systems. For convenience, we will refer to it here as SPP 1148.

Several aspects of SPP 1148 made it noteworthy from its inception. Beneath the
umbrella of reconfigurable computing systems, several key topics were identified.
These included theoretical aspects, modeling, languages, analysis, design method-
ologies, computer-aided design (CAD) tools, architectures and applications. From
the onset, the scope of the research was deliberately formulated to be as multidisci-
plinary as possible. A national network of excellence was established with the aim of
encouraging participation from as many academics with novel individual contribu-
tions as possible while simultaneously emphasizing and promoting interdisciplinary
collaboration.

The six-year program was organized as three successive funding periods of two-
years each. At each interval, new projects were proposed and existing projects were
reviewed. The two largest project sub-themes were design methodologies and tools,
and architectures and applications. Feedback from graduate students who partici-
pated in SPP 1148 indicates that they felt especially privileged to have been able to
conduct their studies within the framework of this program. In particular, they bene-
fited from the highly collaborative environment that was nurtured by the participat-
ing institutions and the continuity afforded by such a sustained period of research
funding.

Throughout the conduct of SPP 1148, we have had the privilege of interacting
and collaborated directly with many of the research teams. We have become familiar
with the majority of the research projects albeit at different levels of detail. We
have had the opportunity to observe the progress of SPP 1148 as a whole from
our complementary positions in academia and industry. There can be no doubt that
the most immediate impact of the DFG’s (German Research Foundation) foresight
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vi Foreword

was to establish German academia as the foremost group in the world for advanced
research into reconfigurable computing over the last six years.

The legacy of the SPP 1148 in Reconfigurable Computing Systems is that Ger-
many has developed an impressive national capability in precisely those areas that
will be of greatest relevance for the next decade. As we reach for 40 nm integrated
circuits and beyond, it is clear that fewer companies and fewer architectures will
be viable at these ever more advanced process nodes. The successful architectures
will be highly concurrent and will combine programmability and reconfigurability
capabilities.

This book is unique in many different ways. Not only does it provide a structured
compilation for the research resulting from this extensive program, it also gives an
excellent overall insight into various strategic directions in which the entire field of
reconfigurable technologies and systems may be heading. In addition, in the four
separate parts of the book, the coverage of each of the subjects is comprehensive.
Aspects relating to architectures, design methodologies, design tools and a large
number of applications are all included. No other book currently in print has such an
extensive and overall coverage as this. As such, it is equally suitable for supporting
graduate level courses and for practical engineers working in the field of reconfig-
urable hardware and particularly in FPGAs. We are delighted to see the work and
experience of such a large group of researchers and engineers being shared with the
reconfigurable community at large.

Patrick Lysaght, Xilinx Corporation
Peter Cheung, Imperial College London

August 2009



Preface

While the idea of creating computing systems with flexible hardware dates back
to the 1960s, it was the emergence of the SRAM-based field-programmable gate
array (FPGA) in the 1980s that boosted Reconfigurable Computing as a research
and engineering field. Since then, reconfigurable computing has become a vibrant
area with an increasingly growing research community and exciting commercial
ventures.

Reconfigurable computing devices are able to adapt their hardware to application
demands and serve broad and relevant application domains from embedded to high-
performance computing, including automotive, aerospace and defense, telecommu-
nication and networking, medical and biometric computing. Especially in the em-
bedded computing domain with its many and often conflicting objectives reconfig-
urable computing systems offer new trade-offs. Embedded systems are fueled by
microelectronics where one of the currently biggest challenges is the trade-off be-
tween flexibility and cost. Reconfigurable devices, especially FPGAs, fill this gap
since they provide flexibility at both design-time and run-time. Consequently, in the
last years we have seen declining ASIC design starts but continuously increasing
FPGA design starts. Continuing advances in the miniaturization of microelectronic
components have made it possible to integrate systems with multiple processors on a
single chip at the size of a fingernail (system-on-chip (SoC)). Often, the production
volumes for SoCs are rather low jeopardizing their economic benefits. On the other
hand, modern FPGAs are basically complex SoCs integrating embedded processors,
signal processing capabilities, multi-gigabit transceivers and a broad portfolio of IP
cores. Thus FPGAs are positioned to become a real alternative to ASICs and ASPPs.

This book is the first ever to focus on the emerging field of Dynamically Reconfig-
urable Computing Systems. While programmable logic and design-time configura-
bility are well elaborated and covered in various books, this book presents a unique
overview over the state of the art and recent results for dynamic and run-time recon-
figurable computing systems. This book targets graduate students and practitioners
alike. Over the last years, many educational institutions began to offer courses and
seminars on different aspects of reconfigurable computing systems. We recommend
this book as reading material for the advanced graduate level and entrance into own
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viii Preface

research on dynamically reconfigurable systems. Reconfigurable hardware is not
only of utmost importance for large manufacturers and vendors of microelectronic
devices and systems, but also a very attractive technology for smaller and medium-
sized companies. Hence, this book addresses also researchers and engineers actively
working in the field and updates them on the newest developments and trends in run-
time reconfigurability.

The book is organized into four parts that present recent efforts and break-
throughs in architectures, design methods and tools, and applications for dynam-
ically reconfigurable computing systems:

Architectures: Three chapters on architectures discuss different dynamically re-
configurable platforms, including multigrained and application-specific architec-
tures as well as an FPGA-based computing system supporting efficient partial re-
configuration.

Design Methods and Tools—Modeling, Evaluation and Compilation: The first
part on design methods and tools features four chapters focusing on modeling and
evaluation aspects for dynamically reconfigurable hardware, on creating compil-
ers for reconfigurable devices, and on supporting dynamic reconfiguration through
object-oriented programming.

Design Methods and Tools—Optimization and Runtime Systems: The second part
on design methods and tools comprises six chapters that are devoted to resource al-
location in dynamically reconfigurable systems, split into challenging optimization
problems that need to be solved during compilation time, e.g., temporal partitioning,
and online resource allocation which is provided by a novel breed of reconfigurable
hardware runtime systems.

Applications: The last part of the book presents seven chapters with applications
of dynamically reconfigurable hardware technology to relevant and demanding do-
mains, including mobile communications, network processors, automotive vision,
and geometric algebra.

This book presents the results of a six-years research initiative on dynamically
reconfigurable computing systems, initiated and coordinated by Jürgen Teich and
funded by the German Research Foundation (DFG) within the Priority Programme
(Schwerpunktprogramm) 1148 from 2003 to 2009. To make dynamic reconfigurable
computing become a reality this joint research initiative bundled multiple projects
and, at times, involved up to 50 researchers working in the topic.

Equivalently, this book summarizes more than 100 person years of research work
and more than 20 PhD students have already submitted and defended their theses
based on research performed in this initiative. The material presented in this book
thus summarizes the golden fruits, major achievements and biggest milestones of
this joint research initiative.

We are very grateful to the German Research Foundation for funding and con-
tinuously supporting this initiative. We would also like to thank all the researchers
contributing to the programme and to this book, the many national and international
reviewers as well as the industrial companies that have been steadily supporting our
efforts. Additionally, we would like to acknowledge the assistance of Josef Anger-
meier, Martina Jahn, Enno Lübbers, and Felix Reimann in supporting the editorial
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process. Last but not least, we thank Springer for giving us the opportunity to pub-
lish our results with them.

We hope you enjoy reading this book!

Marco Platzner, Jürgen Teich, Norbert Wehn
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Chapter 1
Development and Synthesis of Adaptive
Multi-grained Reconfigurable Hardware
Architecture for Dynamic Function Patterns

Alexander Thomas and Jürgen Becker

Abstract Since the 1980s many reconfigurable architectures have been devel-
oped and explored by the industrial and scientific community. However as long as
Moore’s Law has its validity each technology step forces the developers to rethink
their approaches and even more to develop new ideas to be able to keep up with
current technological challenges. The main goal of this project was the exploration
of existing architectures and development of new ideas and concepts to increase the
functional density and flexibility resulting in the new approach, the HoneyComb
architecture.

1.1 Introduction

Nowadays, state-of-the-art architectures are very impressive and powerful. Current
CPUs with multiple cores on a die are able to reach over 200 GFlops by using
single precision arithmetic [12]. In the field of GPUs (graphics processing unit)
we already crossed the 1TFlops barrier [10]. The integer performance is equally
increased which is more interesting for this project. However, the real throughput of
architectures compared to theoretical performance is highly application dependent.
Nevertheless, the question arises how this performance could be reached. What are
the trade-offs and where are the limits? Are there any alternatives?

The IT industry benefits a lot from Moore’s Law [9]. It predicts every 18 month
the transistor number is doubled. Counting on this certainty the developer can build
even more sophisticated systems and trust in the fact that his technology limit is
increased after every 18 month. But what has changed in the last 20 years? Did we
get new architectural approaches? No, we still have von-Neumann and Harvard con-
cepts working in our computers and mobile devices. Many dedicated units (ASICs)

Alexander Thomas · Jürgen Becker
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are used to increase the performance and extend the battery life for mobile devices
but still there are no really new approaches to find.

Until the year 2004 extra transistors have been used to optimize the execution
flow of the processors. Techniques like branch prediction or out-of-order-execution
have been developed. All this with the intention to increase the performance but
with the prize of many additional gates. Another factor was the maximum fre-
quency which has been raised until technological limits stopped this development
and forced the companies to rethink their strategies. Nowadays, multi core solutions
dominate the market. Since energy is more expensive the customer appreciates low
power solutions and forces the companies to keep the frequencies lower until the
next technology step is reached.

However, the overhead within the CPUs gathered in the last 30 years is still there
and prevents efficient calculation performance. The best performance compared rel-
atively to area/gate count/power consumption is still given by dedicated ASICs.
But the resulting flexibility is very low. An alternative here is given by reconfig-
urable architectures which promise almost ASIC-like performance and low power
consumption with the flexibility of a CPU.

Several architectural concepts are available for reconfigurable systems. One con-
cept is the extension of the von-Neumann or Harvard approaches by introducing
modifiable instruction sets. At runtime the programmer could adapt some of the
instructions to increase the execution efficiency for a given application. However
the memory bottlenecks related to CPUs is also kept in this approach. This limi-
tation can be eliminated by another approach: array-based dynamic reconfigurable
architectures. This architecture type consists of a large amount of processing ele-
ments which are arranged in a two-dimensional field. The big number of processing
units allows very high parallelism and the resulting architecture offers power effi-
cient processing by reducing the voltage and frequency requirements. The problem
is however the programmability. Since array-based architectures lack almost com-
pletely direct memory access (DMA), the application programmer has to rethink his
techniques.

Array-based architectures are divided into two main classes: fine-grained and
coarse-grained approaches. Fine-grained architectures like FPGAs [2, 18] are bit
logic based and very flexible. Nevertheless, the programming is quite difficult and
requires some experience in hardware design. Furthermore, the hardware overhead
for bit level reconfigurability is very high what can be seen in the resulting power
consumption and design size limitations. The hardware overhead here is defined by
the number of required registers or SRAM bits per function.

Coarse-grained array-based architectures are not well explored in comparison to
FPGAs. So, mostly scientific approaches are available in this field [4, 7, 11]. Only
a few architectural exceptions are available for commercial use [19]. Here, the pro-
cessing elements are made up of arithmetic logic units (ALUs). The configuration
granularity of the communication network is a data vector which reduces the recon-
figuration overhead tremendously.

This contribution describes the work of the last six years resulting in a new array-
based dynamically reconfigurable architecture, the HoneyComb architecture. The
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main goal of this project was the combination of advantages of both array-based
reconfigurable classes in one architecture: small reconfiguration overhead and flex-
ibility given by bit logic. Furthermore, a set of new features had to be developed
to increase the flexibility of the resulting approach, which are described in the fol-
lowing sections. Besides the hardware implementation of the architecture, a set of
software tools have been developed to ease the programmability and debugging.

1.2 HoneyComb Architecture

1.2.1 Architectural Considerations

In the first step in the development of a new architecture the determination of a set
of known problems is necessary. This has been done e.g. by evaluation of exist-
ing architectures that were available to the authors like Xilinx FPGAs, XPP. The
following main limitations have been determined which require particular attention:

1. predetermined data types (both)
2. static configurations (coarse-grained approaches)
3. long reconfiguration time (fine-grained approaches)
4. precompiled configuration shapes (both)
5. limited flexibility regarding array fragmentation (both)
6. limited reach ability within the array (both)
7. limited I/O functions (coarse-grained approaches)
8. no power saving support (both)
9. no adaptation regarding application requirements (coarse-grained approaches)

The first point poses some kind of a conflict regarding the array-based architec-
ture classification. Nevertheless, the combination of fine-grained and coarse-grained
data types sounds very interesting. The XPP architecture already contains a fine-
grained event network for transportation of control data. But the XPP-developers
stopped just there and didn’t develop the idea any further. This development had to
be continued by integration of a more flexible control network with support for a
complete set of bit functions and a way to cross the data type domains. By doing so
the second point seems to be already solved. It represents the fact that within a con-
figuration all functional units get precompiled operation assignments and are kept
static within this configuration. This operation stays the same as long as the config-
uration is active. But in combination with our flexible control network fine-grained
signals can be used to influence the functional units directly. If a list of possible
operations is given the fine-grained signals can be simply used to select the next op-
eration and its input and output registers. Dynamically preselected flags (carry, sign,
etc.) can be sent back to the fine-grained domain and influence the programmed con-
trol logic (FSM, transitional logic). This multi-context technique is quite similar to
the way the CPUs are functioning [6].
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The third point targets the reconfiguration time of reconfigurable architectures.
Usually, all fine-grained architectures (FPGAs) share the same dilemma: Bit level
reconfiguration leads to high amount of reconfiguration data. The more reconfigu-
ration data is required to describe an application the longer the reconfiguration will
take. It is quite obvious that high reconfiguration time limits the reusability of flex-
ible hardware even more if real time applications have to be executed. High recon-
figuration time limits the application of configuration sequencing [3]. Furthermore,
most architectures use one single dedicated configuration port to transfer the config-
uration data to the array. This has to do with the fact that mostly dedicated networks
are used for reconfiguration purposes. More ports would lead to higher costs which
is considered a waste of resources in this case. Well, to solve both problems from
above a shared network for data and configurations has been suggested. This would
lead to much higher available bandwidth during reconfiguration and additional re-
sources spent for reconfiguration can be used for application data transfer. Both data
types would benefit from this unification and additional resources can be used for
both transfer types to speed up the reconfiguration process and to gain additional
flexibility for the application routing.

Fig. 1.1 Array fragmentation conflicts: Overlapping communication lines and predefined configu-
ration shapes. Remaining area cannot be used because of not available precompiled configurations.

The next two points target the runtime flexibility on the array level. All known
architectural approaches have the same problem regarding configuration placement
and routing: the configurations are precompiled and predetermine every detail con-
sidering configuration shape and routing. For example reshaping of a configura-
tion structure at runtime is just impossible in case of FPGAs. This would lead in-
evitable to timing problems and cripple the configuration. A required step would
be the re-synthesis of the application which is surely not a runtime feature. In case
of coarse-grained architectures reshaping is much simpler since no timing aspects
have to be considered. But still recompilation is necessary as well. Point five refers
to another limitation for both architecture types. If partially overlapping of config-
urations is required, maybe because of array fragmentation see Fig. 1.1, regarded
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applications have to be aware of each other. Otherwise communication lines could
be disrupted and the applications crippled. This problem would require precom-
pile considerations, unless the hardware offers support. Our suggestion is online-
adaptive hardware-routing. A feature which could establish communication streams
for desired output and input ports at cell level during runtime. This feature would
lead to flexibility on many levels and solve both problems at once.

Fig. 1.2 (Color online) Hexagonal shapes reduce resource requirements in diagonal directions:
Blue route requires 33% less hops. Vertical and horizontal routings keep their reach ability.

Problem six is obvious and quite simple to solve but yet not faced by prior ap-
proaches: rectangular cell structures lead to an overhead for the routing network.
Sure, horizontal and vertical routings are no problem. But if an aberration to the
ideal routing directions is required additional resources will be wasted. The worst
case direction, diagonal routing, leads to increased resource requirements compared
to cells with more than four neighbors [14], see Fig. 1.2. Estimations showed that
cell shapes with six or eight neighbors are quite promising and reduce the resource
requirements by 40% at best. A fact which led to the decision of the six neighbor
shaped cells (hexagonal) and gave the new architecture the name HoneyComb.

Point seven refers to the necessity of an adequate I/O interface. In case of FPGAs
usually enough resources are available to implement required interface protocols
and access patterns. However, in case of coarse-grained architectures using array
resources for I/O issues is a waste of resources and should be implemented within a
dedicated unit. This units would require less area and energy and allow sophisticated
and fast protocols.

Nevertheless the reconfigurable architectures are supposed to be energy efficient.
Current approaches lack additional power saving techniques to disable idle cells
for example. Nowadays VLSI technologies, such as from TSMC Inc. [17], offer a
few ways to reach that goal. Some interesting techniques are: clock gating, voltage
gating and voltage scaling. For the HoneyComb architecture decision has been made
to stick to clock gating at cell and routing level. Other techniques require special
synthesis and layout considerations and will lead to increased area requirements in
the backend.

Point nine regards a particular problem of coarse-grained reconfigurable archi-
tectures: the application dependency. The more flexibility an architecture offers the
more area is required to integrate it on a chip. Even though reconfigurable archi-



8 Alexander Thomas and Jürgen Becker

tectures are meant to be flexible it is still a good idea and in most cases reliable to
limit this kind of flexibility at least to a set of supported applications. Therefore an
appropriate application-tailored method for reduction and configuration of the RTL
model is required.

1.2.2 HoneyComb Overview

Based on considerations discussed above the HoneyComb architecture has been de-
signed: a dynamically reconfigurable runtime-adaptive multi-grained architecture.
A VHDL-model definition that is highly parameterizable on the register-transfer-
level (RTL) implies its hardware-based adaptation to application demands. Appli-
cation requirements like ALU count and integrated operations, LUT count and size,
available connections between functional units, etc. can be satisfied. Furthermore,
the new architecture introduces a set of new features with intention to improve the
flexibility and usability of array-based architectures. The most important features
are the online adaptive routing technique, multi-grained routing support, multi-
grained data paths, multi-context data paths and programmable I/O interfaces. All
data transports within the array are fully synchronized and are handled by a syn-
chronous handshake protocol to keep data consistency, see Fig. 1.3.

Fig. 1.3 Synchronous handshake protocol: Valid data detection if rdy and ack signals are asserted.

The complete array is made up of three different cell types. For data calcu-
lations the data path cells (DPHC) are introduced. These cells are developed to
face the challenges of control-based applications in array-based systems. This is
accomplished by integrating multi-grained and multi-context features so that the
final data path efficiency is raised considerably. Another cell type is the memory
cell (MEMHC), which offers memory space inside the HoneyComb array, so that
the available memory bandwidth can be locally increased and optimized. Therefore
the memory cell offers configurable memory organizations such as random access
memory (RAM), first-in-first-out (FIFO) or last-in-first-out (LIFO). The third and
last cell type integrates the input/output interfaces (IOHC). The I/O interfaces have
been improved by implementing optimized μControllers to provide programmable
interface behavior and to enable so-called configuration-sequencing.

Each cell type has an identical composition of basic blocks consisting of a rout-
ing unit (RU) and a functional module (FU) [16]. By characterizing the functional
module in the RTL specification, the user can decide which cell type he wishes
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to implement. To ease the array parameterization a MS Excel based application has
been developed, which includes the consistency checking and configuration file gen-
eration for the VHDL model as well as the software tools, which will be introduced
later. The following sections describe the online adaptive routing and the three cell
types in detail.

1.2.3 Communication Network and Online Adaptive Routing
Technique

Basically, the global communication network of the HoneyComb array consists of
all available routing units and the buffered multi-grained interconnect links in be-
tween. Therefore, each routing unit uses three different link types to reach the six
possible neighbors according to the hexagonal cell shape. Additionally, all routing
units within a cell are connected to the cell specific functional modules. Since one of
the main design decisions was to support point-to-point connections, the main goal
in this topology is the establishment of communication streams between the outgo-
ing ports of the given functional module and the input ports of the target functional
module. The reason for this decision is the advantage of the guaranteed bandwidth
for the communication, which could not be reached by using packet-based commu-
nication.

Fig. 1.4 Multi-grained routing technique: Pattern matching increases utilization/required CG rout-
ing for current matching pattern transport and source/destination port specification.

The communication network implies three different link granularities, see
Fig. 1.4. The first and main link type is the coarse-grained link. In the current version
its vector width is 32 bits. This link transports application data as well as configura-
tion data.

The other two multi-grained types (MG1 and MG2) transport fine- and multi-
grained application data by composing the desired vector width through a compo-
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sition of these two link types. Therefore these link types have RTL parameterizable
vector widths between n = 1 to N for MG1 links and m = 1 to M for MG2 links.
Preferably, these links should be configured in such a way any vector width between
1 to K bits can be composed. Additionally, a predefined number of given MG1 and
MG2 links are grouped in so called multi-grained groups, which finally define the
maximum size of multi-grained links. For example, a given MG1 size of n = 1 bit
and MG2 size of m = 2 bits and a group size of 4 links each would allow a routable
multi-grained vector of 12 bits = 4 links × 1 bit + 4 links × 2 bits. If the given
MG vector is partially used, it is still possible to use the remaining multi-grained
sub-links to transport multi-grained data. However, this is only possible if the re-
quired vector width does not exceed the width of all remaining multi-grained links.
To increase the flexibility of this concept, each cell edge can contain several multi-
grained groups. The exact number can be configured at RTL by adjusting the given
model parameters.

The main advantage of this communication topology is the ability of the hard-
ware to establish a communication stream during runtime. The architecture is able
to handle this autonomously, since each routing unit contains the logic and infor-
mation about its position and the coordinate system of the array. By knowing the
destination for a given routing process, each routing unit is capable to calculate the
forward direction or to establish a connection to its own functional module if the
destination is already reached. The information whether a routing process is about
to start or not, is encapsulated in predefined routing instructions and can be gener-
ated for coarse-grained streams as well as for multi-grained links. To influence the
quality of the resulting streams, several parameters are defined: optimum path bit,
fast path counters or configuration mode bit. The optimum path bit forces the hard-
ware to find the shortest path between two cells, which can be easily calculated by
considering the current position and the destination. The fast path counter specifies
the distance of the used buffers (in hops) between source and destination cell.

Fig. 1.5 (Color online) HoneyComb coordinate system: black darts indicate main axis of coordi-
nates. Red darts show possible routes for the shortest paths between source and destination cells
(yellow).
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Basically, the routing technique uses the depth-first-search approach and is based
on the given coordinate system, see Fig. 1.5. Thereby, each cell calculates the next
direction based on its own position, the destination positions and considering local
link utilization for each direction. If the routing process ends up in a dead end, a
backtracking algorithm is used to return to the previous cell. This cell blocks the al-
ready rejected direction, recalculates the routing and tries another neighbor. If there
is no path between source and destination available, the source cell generates an
error which can be determined by the host system. The routing algorithm requires
three cycles to calculate and establish the routing for each cell hop. In case of back-
tracking usage an additional clock cycle is required. Once an established stream is
not needed anymore an end packet instruction (EPI) is used to terminate the stream
and release all used resources.

Coarse-grained streams are used for three different purposes: coarse-grained data
stream routing, multi-grained data stream routing and configuration stream routing.
The first two purposes are quite obvious and are used for stream establishment and
the following application data transfer. In case of the multi-grained data stream rout-
ing the coarse-grained stream is only used during the routing process to transport the
routing instructions. Once the multi-grained stream has been established the coarse-
grained stream will be deleted automatically and the used resource freed.

The purpose of the configuration stream routing is the transport of the configu-
ration data from I/O cells to destination cells. The configuration data can be con-
figuration code for the destination functional module or another routing instructions
for the destination routing unit. Since the functional module code and routing in-
structions for the destination cell are following the configuration stream in the con-
figuration process their destination cell is only specified by the routing instruction
for the configuration stream. If the user wishes to move the position of the destina-
tion cell he has simply to adjust the coordinates within the routing instruction. This
task can be carried out by the runtime system. Therefore the runtime system has
to check all available routing instructions within a configuration and adapt the new
positions. Any routing conflicts will be solved by the architecture at runtime. Using
the online routing technique in hardware reduces the configuration size as well as
the reconfiguration time tremendously.

To analyze the runtime progress a set of error messages has been defined. Each
routing unit sends error messages to a global status controller so the host system
will be noticed by an interrupt if any errors occur. The same controller can be used
to deactivate specific cells in case a functional malfunction has been monitored. So,
a kind of fault tolerance can be realized as well.

1.2.4 Datapath Cells (DPHC)

The specification of the functional module as a data path module results in a data
path cell (DPHC), see Fig. 1.6. The data path structure is held quite complex in this
architecture by implementing multiple look-up-tables (LUTs) and arithmetic logic
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units (ALUs) [15]. This way, the data path consists of two data type domains. The
ALUs are part of the coarse-grained domain, whereas the LUTs are used within the
fine-grained domain. The fine-grained signals are gained through the conversion of
the incoming multi-grained streams, which are separated to single bit signals. Both
domains include adequate registers to be able to store generated data, whereas each
register is separately configurable to behave like a FIFO. Required depth value is
configurable at RTL.

Fig. 1.6 Multi-grained multi-context Datapath HoneyComb Cell (DPHC).

The integrated ALU can be configured to include a context list, which contains
alternative configuration parameters, and can be switched at runtime. All ALUs can
also generate status flags, indicating the result’s characteristics (zero flag, overflow
flag, etc.), which could be sent to available LUTs. The addressing of the integrated
context lists is done by a set of signals from the fine-grained domain. On the other
hand, the combination of the LUTs and the fine-grained registers can be used to
program a finite state machine (FSM) with input signals from ALUs, LUTs, regis-
ters or other external signals. The resulting structure is able to react on given ap-
plication’s situations and dynamically changes the behavior of the configuration.
For more complex applications, control data exchange between cells is possible by
using the multi-grained communication network. This feature allows the implemen-
tation of control-driven applications by using application-level control mechanisms
distributed over several cells.

The complexity of the data path is highly adaptable at RTL by choosing the
desired parameters of the VHDL specification. Doing so, the designer can specify
the number of implemented ALUs and/or LUTs. An adequate number of registers
for each domain can be adjusted as well. The interconnect between all these units
is also parameterizable. So, the complete parameter set enfolds about 60,000 single
parameters. To master this complexity a new super-configuration method has been
developed, see Sect. 1.3.5.
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The configurable arithmetic operations within the ALUs are preferably limited
to 32 bit integer or fixed-point operations. But it is also possible to use 32 bit single
precision floating point operations.

1.2.5 Memory Cells (MEMHC)

Memory cells are composed of memory modules and a coarse-grained register set.
The purpose of those modules is to offer memory space within the array, without
the necessity to access external system memory. By using the local memory the
configurations obtain the complete available memory bandwidth and the application
can be processed at full performance. The available memory modes are RAM, FIFO
and LIFO. The Fig. 1.7 depicts the structure of the complete MEMHC module.

Fig. 1.7 Multi-grained Memory HoneyComb Cell (MEMHC) with flexible memory modules.

Each memory module in the MEMHC is separately usable. If larger memories are
required, it is possible to connect two or more modules to a larger logical module.
So, applications can use larger memories than offered by a single memory module.
Primarily, the memory is capable to store coarse-grained data. By leaving some
bits unused, the conversion of the incoming multi-grained vectors to coarse-grained
data allows the storage of this kind of data as well. Therefore fine-grained to coarse-
grained converters (FG2CG) and coarse-grained to fine-grained converter (CG2FG)
are available.

1.2.6 Input/Output Cells (IOHC)

The interfacing of the HoneyComb array to the system is realized by the input/output
cells. The core component of these cells is a μController, which is meant to handle
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interface issues, see Fig. 1.8. The μController is connected to the array by using
dual-clocked FIFOs, which are used to separate the system clock domain from the
inner-array clock domain. It is possible to slow down the array frequency if the
additional speed is not required.

Fig. 1.8 Programmable Input/Output Cell (IOHC) optimized for block transfers with multi-context
capabilities.

The data types of the FIFOs are divided into two groups and are related to the
global communication type within the array. On one hand there are coarse-grained
input/output FIFOs. On the other hand multi-grained input/output FIFOs are used to
transport MG1/MG2 data vectors (see Sect. 1.2.3). From a system point of view the
programmer has the option to use the packed or unpacked modes, which indicates
the way the multi-grained data is stored in or has to be written to the system memory.
It is quite obvious that the packed mode can increase the system memory utilization
tremendously. Both data types can be evaluated by be IOHC internally instead of
being written to the system memory and influence further processing behavior of
the μController.

The host system interface can be realized by using the AMBA AHB backbone
system. This version is interesting especially if HoneyComb is used as part of a
System-on-a-Chip (SoC). In this case each IOHC implies master and slave interfaces
to have a direct memory access (DMA) to the system memory as well as direct
communication to other bus masters.

Is the HoneyComb architecture used on a single chip solution proprietary pro-
tocols should be used. For the final prototype of the HoneyComb architecture the
internal interface of the IOHC to the system will be used. This interface uses similar
hand shake protocol as described in Sect. 1.2.2. By additional buffering of the I/O
signal the external/internal timing requirements can be easily met.
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1.2.7 Power Saving Techniques

The dual clocked FIFOs of the IOHC allow the adjustment of the clock frequency.
The decrease or increase of the array or I/O frequencies on demand could result in
enormous power consumption decrease. If the highest speed mode is not necessary,
the frequency can be adjusted to the lowest requirements level and save energy. Cur-
rent synthesis results indicate the maximum frequency for the IOHC of 400 MHz,
the array could run at about 200 Mhz. There is enough potential to slow down the
architecture to reduce the power consumption if the maximum performance is not
required.

In addition to frequency adjustments clock gating techniques are used the achieve
further power savings. Therefore each cell is capable to disable clock networks on
two levels. The first level regards the routing units. If no routing activity is deter-
mined the routing unit will be simply “clock gated”. If the neighbor cell decides
to route to this cell the clock will be activated and kept active until all activity is
ceased.

The second clock gating level regards the functional modules and is not gated
if incoming or outgoing data streams to or from the functional module are active.
If the functional module is inactive the second level gate is enabled and the clock
network is disabled.

1.3 Tool Support

Beyond the hardware design further work had to be spent into software tools devel-
opment. First of all an adequate programming interface was required. Therefore, two
programming languages have been defined. The first language is assembler based on
the low-level architecture code (HoneyComb Assembler). The second language is
more abstract and allows using of if-else-structures or for-loops for example (Hon-
eyComb Language). Based on the defined language definitions the HoneyComb As-
sembler translator and the HoneyComb Language compiler have been developed.

Nevertheless the programming interface is very helpful further tools are required
to make debugging possible. Online debugging on array-based architectures would
be too expensive in terms of hardware resources. Since every gate is counting to keep
the architecture small the design decision has been met to abandon online debug-
ging. Instead the HoneyComb Viewer tool has been designed to visualize internal
activities and allow offline debugging.

The HoneyComb architecture is a highly parameterizable model which is coded
in VHDL. Since synthesis tools are not bug free and the parameterization causes
some synthesis problems as well as slows down the simulation yet another tool
(Hierarchy Generator) has been developed to break down the model according to
the given parameter set.

The following sub sections describe the languages and the tools for the Honey-
Comb architecture shortly to give an idea of the functional range.
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1.3.1 HoneyComb Assembler and the Hierarchical Programming
Model

The HoneyComb assembler reflects closely the structure of the hierarchical Hon-
eyComb architecture. The basic structure of the assembler will be explained here
basically. Similar to the HoneyComb structure three completely different hierarchi-
cal sections or layers of the language are specified.

The first part (the transport layer) covers the IOHC programming. Data transfer
optimized functions like block transfers with various access patterns etc. are defined
here. Basic arithmetic and logical operations, program flow instructions, interrupt
control and access to input/output FIFOs allow the programming of powerful control
applications to influence the configuration sequencing in a user-defined way. The
sequence of the configurations in the array are fully controlled by the IOHC. This is
called transport layer.

The second part (the communication layer) concerns the routing network. Its
main function is the establishment of configuration and data routing streams for
coarse-grained as well as multi-grained data types. Therefore just four instructions
with proper parameters are defined to control the routing network functions. Since
the routing influences the placement on the array any changes to the configuration
positions or shapes have to be made by changing this part of the assembler applica-
tion.

The third part (the configuration layer) of the hierarchical assembler actually
includes two parts which cover the programming of the functional modules of the
data path cells (DPHC) and memory cells (MEMHC). The character of this code is
very structural since low level modules like multiplexers, ALUs, LUTs, etc. have
to be specified. Since the data path cells support multi-context functions not only
structural considerations have to be made but also sequence of operations over time
must be taken into account.

Based on the hierarchical definitions of the assembler the hierarchical program-
ming model is shaped, see Fig. 1.9. The programmer on the assembler level must

Fig. 1.9 HoneyComb programming model indicating dependencies of the hierarchical architecture
structure.
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consider the hierarchical influences of the programming model to be able to program
the architecture.

The assembler translator is part of a tool conglomeration integrated into a MS
Excel application which also includes Super Configuration Generator, Configuration
Manager, Configuration Editor and an extended version of the Assembler Translator.
The extended version of the Assembler translator is meant to compensate for minor
changes to the architecture to keep the application compability.

1.3.2 HoneyComb Language (HCL) and Compiler

The definition of the HoneyComb Language has been inspired by VHDL. Similar
to VHDL, HCL contains process definitions, parallel statements and input/output
definitions. The process concept has been enhanced by introducing four different
process types to satisfy the special needs: functional process, memory process, sub-
configuration process and main process. The first two processes are connected to the
DPHC and MEMHC and include definitions to target these cell types. The functional
descriptions in these processes are highly parallel and cover the configuration layer.

The sub-configuration process is meant to define high-level functions by com-
bining several cell processes or other sub-configuration definitions to larger logical
units, including internal communication description and external port definitions.
Doing so, it will become easier to handle the configuration sequencing just by ad-
dressing these logical names and ports.

The main processes describe the I/O behavior of the array. So, generated code
from a main process is directly executed on the IOHCs. The purpose of the main
processes is the transport of configurations for data paths and memory cells as well
as transport of application data. It is also possible to program conditional transports
to allow configuration sequencing (transport layer).

The purpose of HCL is the best possible programming of the architecture by
using all available features. By using this language the user gets a way to formulate
functional descriptions instead of using the also available native assembler language.
Even if high level language support will be developed in the future work the HCL
will be used as intermediate representation.

The HCL Compiler is actually a stand-alone application. It translates the HCL
descriptions into HoneyComb Assembler descriptions. But still there are some limi-
tations which require more attention in the future. For a fully functional application
the compiler requires two operation modes. The first mode is working on a ideal
HoneyComb architecture and maps the HCL descriptions in the best possible way
considering the HCL application demands. The result is the best performance one
can achieve for the given HCL application.

The second operation mode considers a given HoneyComb RTL-configuration
and tries to map the HCL application onto it. The mapping success is not always
guaranteed. If the mapping was a success the maximum reachable performance of
the HCL application may be lower than planned by the programmer which is highly
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RTL-configuration dependant. However, this operation mode is not implemented yet
and need some attention in the future.

1.3.3 Debugging Tool—HoneyComb Viewer

As already mentioned a visualization tool, the HoneyComb Viewer (HCViewer),
for debugging purposes has been developed. Based on the Qt-Framework and the
OpenGL API a quite fast and flexible application has been created. An abstract
class hierarchy of the HoneyComb architecture has been designed. Many classes
have view capabilities and once instantiated they visualize predefined modules of
the architecture. Modules like signal lines, ALUs, LUTs and registers with their
own representations can use tooltip functions which allow the retrieval of specific
debugging information.

To start the debugging work with the HCViewer at first the user has to load the
RTL specific configuration file and configure the HCViewer environment. Next, the
simulation data which has to be generated through simulation of the HoneyComb
VHDL model is loading. Once the simulation data is processed the user can step
through the simulation results and in best case verify the correct application execu-
tion. For HCViewer example see Fig. 1.12.

Since the complete HoneyComb architecture is coded in the abstract classes it
is possible to extend the HCViewer to a fully functional simulator. Therefore the
absent functions within the abstract classes have to be added.

1.3.4 Super-Configuration Generator, Configuration Editor and
Configuration Manager

Since an ideal architecture approach is far too expensive it is mandatory to restrict
the application flexibility to a set of given applications. In most real applications it
is already the case that the amount of applications is limited and should be changed
only rudimentarily. To extract the HoneyComb application requirements out of the
given applications the Super-Configuration Generator has been developed. With this
tool already verified and compiled applications can be analyzed and the least com-
mon denominator for the RTL specification extracted. The resulting three cell spec-
ification templates (DPHC, MEMHC, IOHC) include every component, every fea-
ture and every operation to make it possible to build a complete HoneyComb array
and support the original applications.

Once the templates have been generated the Configuration Editor and Configu-
ration Manager, see Fig. 1.10, can be used to make some user-defined modifications
and create the final HoneyComb array. Final array configuration files for the VHDL
model and HCViewer application can be generated and used for further exploration.
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Fig. 1.10 HoneyComb RTL Configuration Manager including Configuration Editor, SuperConfig-
uration Generator and HC Assembler translator based on MS Excel application.

1.3.5 Hierarchy Generator

As already described above the VHDL model of the HoneyComb architecture is
highly parameterizable. The level of the parameterization even impacts the sim-
ulation performance and cannot be tolerated for long simulation runs. The lack of
support for null-arrays by the ModelSim simulator [8] prevents completely the com-
pilation in this environment, so ActiveHDL simulator from Aldec Inc [1] needed
to be used instead. Furthermore the work with synthesis tools also caused a few
problems. Due to known bugs Synopsys synthesis tools [13] fail to analyze cer-
tain parameterized VHDL expressions which are still static and abort the synthesis
process.

To solve these problems another tool, the Hierarchy Generator, has been devel-
oped. The main objective of this tools is to analyze the given VHDL model, break
down every constant expression including loop unrolling, etc. and finally generate
the static VHDL hierarchy.

Besides the fact that after the static hierarchy generation the synthesis tools
worked quite well the simulation performance took a leap as expected. The sim-
ulation performance accelerated up to a factor ten which is quite impressive. Never-
theless, this acceleration is strong VHDL model dependant and cannot be reached
with an average parameterized design.

1.3.6 Application and Synthesis Results

To prove the concept of this work four applications were selected: AES encryption
algorithm, 1024-point FFT, recursive iMDCT and Wavelet algorithms. Based on
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these applications the complete tool chain (Fig. 1.11) has been worked through and
the presented results were generated. For better comparison each application was
analyzed separately and at the end the complete array with the support for all four
applications was generated. The major design decision to stick to homogeneous
array structure does not deliver the most cost-effective application dependant results.
However, the resulting array allows to reshape and move configurations at maximum
flexibility.

Fig. 1.11 The complete design flow for the applications as well as RTL configurations.

A detailed discussion of the applications cannot be done here so only a short de-
scription will be given. The AES algorithm is a block-based encryption algorithm
which is working on 4 × 4 byte blocks. The mapping of this algorithm (Fig. 1.12)
required every internal cell of the final prototype. Since the AES algorithm is work-
ing iteratively it is not important what the key length for the encryption is (possi-
ble values: 128, 192, 256). Once the loop is implemented it is simply a matter of
control how often the loop is going to be executed. The loop is mapped as a deep
pipeline structure. In addition to the calculation cells (DPHCs) in the pipeline both
memory cells (MEMHCs) have been used not only to store the expanded key and
further necessary look-up tables but also to extend the pipeline depth by offering
FIFO functionality. This way the efficiency of the application could be optimized
because more data (over 500 blocks) can be loaded into the pipeline at once so the
loading/storing phase overhead can be minimized in comparison to complete calcu-
lation time.

The FFT mapping implementation is quite typical to a hardware approach. A but-
terfly is used for calculations, additional memory is required to store the intermedi-
ate results and control logic generates the read and write addresses. The complete
application requires 4 DPHCs and 1 MEMHC, whereas the butterfly operation is
mapped to one single DPHC and requires 2 cycles for one operation.

The Wavelet algorithm works on whole images to filter the high and low fre-
quencies of the color dispersion. E.g. for the JPEG2000 standard this algorithm has
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Fig. 1.12 AES256 application running on the final RTL structure of the HoneyComb prototype.

to be performed in 2D, horizontal and vertical. Nevertheless, the mapping on the
HoneyComb array took in fact only two cells (DPHCs) to achieve the complete
functionality. Because of tight timing constraints between these two cells additional
FIFOs have been used to improve the performance.

Table 1.1 Application results regarding resource requirements, configuration time and maxi-
mum performance evaluated by using the ASIC prototype configuration limited to 11 DPHCs,
2 MEMHCs, 2IOHCs @ 100MHz.

Application DPHCs MEMHCs Configuration
time

Performance

AES256 11 2 6.85 μs 25.6 MB/sec
iMDCT 1 × finger 3 1 24.06 μs 47.6 blocks/sec
iMDCT 7 × fingers 11 2 25.60 μs 333.46 blocks/sec
FFT1024 4 1 7.65 μs 10850 blocks/sec
Wavelet 6 1 3.15 μs 0.6 cycles/pixel

The recursive iMDCT has been implemented according to Nikolajevic/Fettweis
suggestion [iMDCT]. Therefore three data path cells are required: two cells for con-
trol and multiplexing logic and one cell for the iMDCT finger implementation. One
additional memory cell is required for the cosine and spectral values. The perfor-
mance evaluation was done for 1024 spectral values transformed back to 2048 sam-
ple values per block.

All four applications were optimized for integer or fixed-point calculations. The
results were verified versus the outputs of the reference applications, which are
programmed in C/C++. The final performance and synthesis results are given in
Tables 1.1 and 1.2. The ASIC RTL configuration includes all four application re-
sources and represents the prototype configuration. The dynamic power could not
be determined for the prototype since the exact application scheduling is not known.
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Table 1.2 Synthesis results: application dependent and for the final ASIC prototype.

Application DPHC area
(μm2)

MEMHC area
(μm2)

IOHC area
(μm2)

Leakage power
(mW)

Dynamic power
(mW)

AES256 362636 1226638 623680 5.59 146.73
iMDCT 1 × finger 461697 1290972 812529 7.11 66.235
iMDCT 7 × fingers – 180,19
FFT1024 472477 948950 787658 7.26 75,02
Wavelet 250042 1246197 728551 4.20 87,84
ASIC Prototype 652285 1299802 868313 10.76 –

By exploiting these four applications the decision for the RTL configuration
of the prototyping chip was made. The final array configuration will contain 11
DPHCs, 2 MEMHC and 2 IOHCs. The TSMC 90 nm technology within the
mini@sic program from Europractice [5] will be used. The maximum possible area
of 4 × 4 mm2 in this program offers a good opportunity to fabricate a prototype at
low price. Current area results of about 11.5 mm2 offer enough potential for gener-
alization of the array and final layout optimizations.

1.4 Future Work

The most interesting topic for future work would be the extension of the applica-
tion design flow to high level programming languages like C/C++. Until today all
applications for the HoneyComb architecture have been developed in HoneyComb
Language which required additional development efforts. A new application flow
entry point from C/C++ would give an access to already available high level appli-
cations and reduce the application development efforts tremendously.

In this context the development of the HoneyComb language compiler to a full
functional compiler is necessary. As already described the compiler is currently
limited to compilations for ideal HoneyComb configurations. To ensure the reuse
of already built HoneyComb prototypes with new applications the extension of this
compiler to support the predefined RTL configurations is necessary.

The man power invested in this project is over six man years by now which cov-
ers all the developments described above. However by far not every detail has been
analyzed and still much optimization potential has to be explored. In particular new
technology features like voltage scaling and voltage gating need additional consid-
eration in a cell based architecture.

Furthermore, the HoneyComb design offers a lot of potential for future opti-
mizations as well. Starting with routing units which are currently multiplexer based
and could be extended to general fat trees (GFTs) which are expected to result in
a significant area reduction. Other optimization points are the operations within the
ALUs which are currently not optimized and are surely worth a look.
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For a practical application of this architecture an appropriate runtime environ-
ment is required. In cooperation with the ALADYN project (Chap. 12) and based
on HoneyComb requirements many ideas have been discussed and developed. Since
the implementation of the runtime environment could not been done within this
project it remains an important challenge for the future work.

1.5 Conclusion

In the last six years of this project a new innovative highly adaptive dynamic recon-
figurable architecture, the HoneyComb architecture, has been developed. New fea-
tures like adaptive online routing, multi-context data paths, a multi-grained commu-
nication network/data paths and programmable I/O interfaces have been integrated
and explored. The ability to adapt the RTL configuration to application requirements
offers additional potential for area and power savings.
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Chapter 2
Reconfigurable Components
for Application-Specific Processor Architectures

Tobias G. Noll, Thorsten von Sydow, Bernd Neumann, Jochen Schleifer,
Thomas Coenen, and Götz Kappen

Abstract Embedded Field Programmable Gate Arrays feature very attractive prop-
erties for their use as building blocks of future heterogeneous Systems-on-Chip. In
this Chapter strategies are described how to achieve those reconfigurable System-
on-Chip components with high energy and area efficiencies. One of the basic ideas
is to leverage a-priori knowledge about the structures to be implemented on those
arrays to optimize them for classes of applications. This leads to a parameterized
target architecture which allows for dedicated adaptation to certain instances on a
System-on-Chip. A design flow suitable in a research environment is described. For
applications of digital arithmetic, e.g. in digital signal processing, it will be shown
how this approach works. As an especially attractive application the use of those
components as coprocessors to Application Specific Instruction Processors can be
identified. Suitable architectures of such combinations and the resulting features are
investigated.

2.1 Introduction

Today’s implementation styles of digital computing and logic range from software
programming of highly flexible general purpose processors (GPPs) over reconfigu-
ration of field programmable gate arrays (FPGAs) down to the completely inflexible
mapping on physically optimized dedicated circuits. A comparison of these imple-
mentation styles concerning the two top figures of merit energy efficiency and area
efficiency yields in huge differences being as large as several orders of magnitude
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[26]. Figure 2.1 sketches the results (actually in mW/MOPS = nJ/operations and
MOPS/mm2, respectively) from a long term study performed by our group on the
implementation of many applications applying all these different styles [4]. The di-
agram quantitatively proves which is called the “energy vs. flexibility conflict” or
what Bob Brodersen from UCB Berkeley meant by his famous quote “flexibility has
a price tag” [5].

Fig. 2.1 Energy and area efficiency of today’s implementation styles for digital computing and
logic (all entries properly scaled to a 130-nm CMOS technology).

As can be seen from Fig. 2.1 these alternatives span more than five orders of mag-
nitude in energy efficiency, what is crucial in practically speaking every application
today, and in area efficiency, what is crucial as silicon is and will be “not for free”.
Apart from that, the most important observation from this comparison is that re-
configurable FPGAs feature an attractive compromise between flexibility and these
efficiencies (see also [9, 7]). Another important conclusion from Fig. 2.1 is that for
an energy and/or area critical System-on-Chip(SoC) each building block should be
implemented in that style what is just allowing for the minimal degree of flexibility,
resulting in the need for so-called heterogeneous SoC architectures. Consequently,
one of the most challenging issues in today’s SoC design is to predict or estimate
the “right degree” of required flexibility during the specification phase.
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A common false conclusion from that comparison is that reconfigurable imple-
mentations consume factor of tens or even hundreds of the power and area of dedi-
cated ASIC block implementations without taking flexibility into consideration. But
obviously, when it is possible to “freeze” different versions of structures during the
specification phase of a SoC tens or even hundreds of them can be implemented as
dedicated ASIC blocks on the area occupied by an equivalent reconfigurable block.
The potential powering down of all unused blocks allows for a huge increase in
energy efficiency. So, in those cases one should not even think about to use more
flexible building blocks. Naturally except from multiplexing between these ASIC
blocks (i.e. “frozen” block specifications) the flexibility of such an implementation
is practically speaking zero.

From the considerations made so far it immediately follows that it would be
attractive to have reconfigurable building blocks, so-called embedded FPGAs
(eFPGAs), available on-SoC. Moreover that, as the use of building blocks on a SoC
is restricted to a very limited class of application, the question arises whether it
is possible to trade that a-priori knowledge about the structures to be mapped on
those eFPGAs to a further improvement of their energy and/or area efficiency. As
this is very similar to the initial idea leading to application specific instruction set
processors (ASIPs) a consequent application of eFPGAs is their use as coproces-
sors to ASIPs leading to so-called reconfigurable ASIPs (rASIPs) and allowing for
in-field reconfiguration of the ASIP’s instruction set architecture (ISA) [31]. No
matter how, as stand-alone building block of a SoC or as coprocessor to an ASIP,
since arithmetic structures inherently feature special advantageous properties like
iterativity and inherent high locality, eFPGAs appear to be especially attractive as
an implementation platform for number crunching arithmetic e.g. in digital signal
processing [22].

This chapter reports on efforts in and results of our research towards parame-
terized eFPGA architectures allowing for adaptation and optimization to different
application domains. It will be shown that application class specific eFPGAs indeed
close the efficiency gap between conventional FPGA implementations and dedicated
ASIC blocks as ASIPs do for the gap between software programmable processors
and FPGAs (Fig. 2.1). One of the main challenges results from the fact that a very
wide variety of aspects on application, architecture, circuit, and layout level but as
well as design and especially mapping aspects have to be considered. The chapter
is organized as follows: Sect. 2.2 sketches the structure and features of a parame-
terized eFPGA architecture. The physical implementation of application class spe-
cific eFPGAs is described in Sect. 2.3. Section 2.4 is devoted to the Mapping and
Configuration of structures of digital arithmetic onto this architecture. Application
examples and results are presented in Sects. 2.5 and 2.6. Finally a short conclusion
will be drawn.

2.2 Parameterized eFPGA Target Architecture

In general reconfigurable building blocks are to be distinguished into coarse grain
and fine grain architectures (see e.g. [17]). While coarse grain reconfigurable ar-
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chitectures like [28, 21, 16, 30] consist of an array of (very) small and simple pro-
grammable components, and therefore in principle suffer from the same disadvan-
tages, fine grain reconfigurable architectures, like commercial FPGAs [18], are built
from an array of look-up-table (LUT)-based logic elements (LEs) [3, 10]. Conse-
quently eFPGAs belong to the class of fine grain reconfigurable architectures.

The basic idea of application class specific eFPGAs is to optimize or at least to
increase their energy and area efficiency for the structures appearing frequently in
this class without sacrifice of flexibility [23, 33, 24]. I.e. any other structure can be
mapped onto it, too, but that could result in a worse utilization and efficiency. An
obvious initial idea towards application class specific eFPGAs is to optimize the
functionality of the LEs according to the most frequent operations at logic level in
the given class. In [17] research on optimizing LE core logic for arithmetic appli-
cations (e.g. Viterbi decoders) in digital signal processing is described. But having
a look on the typical power breakdown of today’s commercial FPGAs featuring
“conventional” architectures (Fig. 2.2) reveals that the major part of their power
dissipation is burned for communication (interconnect between the LEs) and in the
clock system (clock generation, distribution, and registers). One reason for this is
that conventional FPGAs are optimized for a very wide variety of structures to be
mapped on it, even very irregular (e.g. control oriented) structures with very long
interconnects (requiring many so-called segmented global routing resources).

Fig. 2.2 Typical power breakdowns of commercial FPGAs (a: XC4003, [15] and b: Altera [1]).

Of course reducing the area of LEs by customizing it for an application class
reduces the interconnect overhead, too, but the total gain to be expected is rather
limited. So, in order to attain significant improvements in efficiency the LE and the
communication structure have to be optimized according to the typical needs of the
given class. In the following that is explained for the important and exemplary class
of arithmetic structures as being frequently used in digital signal processing and
other applications of digital computing. Similar optimizations can be done e.g. for
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the application class of protocol processing etc. The most important characteristics
of digital arithmetic structures are, that their data or signal flow graphs inherently:

• contain only a limited set of simple bit level basic operations, e.g. gated full
adders, comparators, shifters, etc.,

• are iterative in time and functionality, leading to highly regular 2D bit-/function-
slice structures, and

• feature a localized connectivity, i.e. in comparison to random or control ori-
ented logic mostly nearest neighbour interconnects, very few medium length
interconnects, and rather few global “broadcast” interconnects (control lines
etc.).

Without going into detail of conventional FPGA architectures here (refer to [3, 10])
we start from a hierarchical architecture with two-dimensional LE clusters (Fig. 2.3).
Obviously this architecture fits well to typical data and signal flow graphs of digital
arithmetic and, as will be seen, allows for exploiting the regularity features of it.
The dimensions of the 2D LE cluster are part of the (many) parameters allowing for
careful adaptation/optimization of this architecture to the requirements of an actual
instance of the eFPGA on a SoC. The same is true for the size of the LUTs inside the
LEs. As the most frequent basic building block of digital arithmetic is a full adder
with some Boolean pre- and/or post-processing a LUT with four inputs (LUT-4) and
one or two outputs seems to be a good starting point.

Fig. 2.3 eFPGA target architecture with two-dimensional LE arrays, local interconnect resources,
and shared configuration storage components; array dimensions, numbers of interconnect (i.e. bus
widths), cross bar switch population, etc. are subject to parameterization.

Like in conventional FPGA architectures the LE arrays are connected to global
interconnect lines by so-called connection boxes (CBs) and the communication on
this global interconnect lines is controlled by so-called routing switches (RSs), too.
As has been already mentioned, with regard to optimizing efficiency, special atten-
tion has to be paid to this communication resources.

Figure 2.4 sketches the schematic of a routing switches. The horizontal and ver-
tical bus widths, the available switching point numbers, their positions as well as
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their connectivity (i.e. the possible ways and directions of interconnect) are param-
eterized in order to allow for adaptation/optimization to the actual application class.
In [23] we have shown that it is not necessary to provide a fully populated rout-
ing switch to achieve a good amount of flexibility. In addition, the segmentation of
the interconnect can be adjusted by assigning each routing track a certain segment
length (corresponding to the number of routing switches that are bypassed before
the line connects to the next routing switch).

Fig. 2.4 Details of the parameterized routing switches and table of connectivity variants for a
single switching point.

Connection box connectivity between the LEs and the global interconnects is
specified by parameters, too. As shown in Fig. 2.5 three types of routing channel
connectivity are supported: not connected, fully connected, and so-called periodic
connectivity. Fully connected tracks offer full population of the connection box, i.e.
each track can connect to each according broadcast line of a cluster. However, they

Fig. 2.5 Examples for the connectivity in a horizontal connection box with exemplary periodic
interconnect patterns.
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have the highest implementation costs. Periodic tracks use a special connection type
best suited for arithmetic datapaths, where signals on a bus are typically ordered
by the weight of their bits. Accordingly, periodic routing channels have a window
of connection points that “slides” across the tracks with a given “velocity”. The
connection box defined in the architecture template can be composed of any mix of
tracks with different channel widths and sliding window specifications.

According to the typical characteristics of data or signal flow graphs of digital
arithmetic enumerated above, additional broadcast interconnects over the 2D LE ar-
rays (red lines in Figs. 2.3 and 2.6 and local interconnect multiplexers in so-called
dedicated routing boxes (DRBs) are supplied. As shown in Fig. 2.6 these DRBs
connect the LE inputs and outputs to the terminals of nearest neighbour LEs and
to broadcast lines via area and energy saving multiplexers. By these additional re-
sources the requirements to the global communication resources are dramatically
relaxed. Again, also the number of broadcast lines as well as the connectivity of the
DRBs are subject to the parameterization.

Fig. 2.6 Dedicated routing block connect the LE in- and outputs to nearest neighbour LEs and to
broadcast lines.

An especially area consuming part of the eFPGA architecture is the configura-
tion storage built up from SRAM like memory cells. The configuration bits stored
in these cells control the functionality of the LEs, the connectivity of the routing
switches and connection boxes, etc. In order to significantly improve the area effi-
ciency the a-priori knowledge about regularity can be exploited to reduce the num-
ber of configuration storage cells: Thereby one storage location is shared by groups
of LEs in a row of the 2D LE arrays and by groups of switching points in the rout-
ing switches as well as in the connection boxes. The size of these groups is another
parameter of the target architecture. Dynamic reconfiguration of the eFPGA can be
simply enabled by doubling the configuration storage cells and using them accord-
ing to a multiplexed shadow register concept; the according parameter is the number
of parallel configurations.
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To conclude Table 2.1 shows the most important parameters of the target archi-
tectures being subject to the adaptation/optimization to the actual application class
of the eFPGA.

Table 2.1 Most important parameters of the target eFPGA architecture

Building block Parameters Number of parameters
LE Number of in-/outputs

Functionality 7
Latches/registers

Cluster Number and alignment of LEs
Number of in-/outputs per LE and direction 6
Connectivity of connection box

Interconnect Number of routing channels
Segmentation length 12
Connectivity of routing switch

Configuration Number of parallel configurations 3
Number of shared configurations

Others Granularity of supply and clock domains 2

The set of all these architecture parameters spans the highly multi-dimensional
design space allowing for very dedicated tuning the eFPGA to the requirements in
an actual instance, e.g. as a reconfigurable SoC block.

2.3 Physical Implementation of Application Class Specific
eFPGAs

All building block components of the eFPGA target architecture were optimized at
logic and circuit level (especially towards high speed, small area, and low power
dissipation). As an example Fig. 2.7 shows the core logic details of a LE containing
three LUT-2, some Boolean post-processing logic, as well as multiplexers.

The required atomic cells required for the LEs, RSs, CBs, and DRBs were layed
out in sub- and deep sub-micron CMOS technologies as so-called leaf cells fitting
well to our datapath generator (DPG) based automatic layout generation approach
[34]. After the parameters for a certain instance of the eFPGA are optimized and
fixed the layout can be generated automatically in any shape (quadratic, rectangular,
L-shaped, etc.). Additionally all hard macro views, like a VHDL model, required
in today’s design flows, are generated in the same step. A more detailed discussion
corresponding to the design flow depicted in Fig. 2.8 can be found in [25].

Figure 2.9 shows exemplarily the layout of an eFPGA macro featuring 192 LEs,
containing about 250,000 transistors and occupying about 0.26 mm2 silicon area in
a 90-nm CMOS technology.

Without going into too much detail here it must be emphasized that in implement-
ing those eFPGAs at deep sub-micron technology physical level the whole palette
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Fig. 2.7 Core Logic and circuit details of a LE containing three LUT-2 some additional glue logic
and multiplexers.

Fig. 2.8 eFPGA design flow including physical implementation, configuration, and model build-
ing.

of today’s best practice low power strategies used in physically optimized (“full
custom”) ASIC design can be applied. These strategies range from clock gating or
even powering down of non-used sub-blocks, automated device sizing down to au-
tomated so-called random modulation (optimal device threshold voltage selection).
Moreover that, further even more attractive low power approaches like energy sav-
ing clock systems with inter-phase charge balancing and reverse back biasing based
leakage current reduction allow for very low power features without compromising
the initial goals of the application domain specific eFPGA concept.

According to the design flow depicted in Fig. 2.8 accurate performance and
power evaluation of a specific structure to be mapped on the eFPGA can be per-
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Fig. 2.9 Exemplary layouts of two eFPGA macros.

formed by circuit level netlist simulation. Clearly this is a very time consuming
process. In order to accelerate the parameter optimization process in the highly
multi-dimensional eFPGA design space it is advantageous to start from analytic
cost models to estimate the required silicon area, power dissipation, and delays ac-
cording to a specific structure mapped to the eFPGA. After RC parasitics extraction
from layout and proper characterization of the leaf cells at circuit level ATE mod-
els were elaborated allowing for quite accurate performance and cost estimation.
From the leaf cell characteristics and the configuration information these models
are generated and evaluated in a model builder; shown in Fig. 2.8 on the right.

Fig. 2.10 Performance of filter implementation on eFPGA and commercial FPGA.
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Figure 2.10 shows the results of a model based parameter evaluation for a 4-tap
FIR filter in the design space of Fig. 2.1 in comparison to a commercial FPGA.
In [22] it has been shown that the model is quite accurate compared to detailed
simulations of layout-extracted netlists.

2.4 Mapping and Configuration

A very challenging task is the mapping of a data or signal flow graph onto the
available core logic and routing resources as well as the transformation of the re-
sulting netlist into the configuration bit stream. Mappers for today’s commercial
FPGAs are highly complex software packages. Most research conducted in the field
of (e)FPGA-architectures is based on the VPR design flow [2] which can only be
used to handle inflexible, rather old-fashioned standard island-style FPGA architec-
tures and supports only simple LUT-based LEs and a very limited choice of routing
switch resources.

Actually for the use with parameterized eFPGA architectures a portable mapper
adaptable to a given set of parameters would be required. In order to keep goals
realistic we decided to head for a flow quite similar to the design process applied
in the DPG based design of dedicated high-performance and low-power arithmetic
ASIC blocks: The allocation of the operators in the data or signal flow graph to
the LEs is performed manually allowing for maximal exploitation of locality and
thereby ensuring lowest possible power dissipation. For an experienced designer
this task appears to be rather easy and for most cases of arithmetic structures the
allocation is quite obvious.

As a first step in the allocation process Fig. 2.11 illustrates the configuration of
the LE core logic shown in Fig. 2.7 for a simple carry-select adder stage.

Fig. 2.11 Configuration of the LE core logic shown in Fig. 2.7 for a carry-select adder.

For frequent basic operations a library of those configurations was elaborated
(see also configuration table in Fig. 2.14). The allocation maps the basic operations
of the structure to be implemented onto such configured LEs. That is exemplarily
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illustrated in Fig. 2.12 for an inner product accumulation of 4-dimensional vectors
(quadMAC operation).

S = (X1 × Y 1) + (X2 × Y 2) + (X3 × Y 3) + (X4 × Y 4) + Z

The result of that allocation process is a connected netlist of the LEs described in a
VHDL model.

Fig. 2.12 Allocation of the basic operations for a QuadMAC operation.

What remains, is to map the according interconnect between the allocated and
functionally fixed LEs to the available routing resources of the eFPGA. In our first
experiments described in Sects. 2.5 and 2.6 we performed that interconnect mapping
manually, but this is a rather cumbersome and very time consuming process. So, we
decided to use the same CAD tools as being used in the DPG based design flow for
dedicated ASIC macros: commercial routing tools.

To use these tools the eFPGA routing problem is mapped to an equivalent VLSI
routing problem. As the LEs including the nearest neighbour connections are al-
ready mapped, they are modelled as black boxes with a given number of input
and output ports. Thus, the only components that have to be modelled are connec-
tion boxes and routing switches. From these components a model of the complete
eFPGA is created using a script. The script includes the most relevant architectural
parameters described in Sect. 2.2. The connections that have to be established be-
tween the ports of the different LE clusters are described in a netlist. Afterwards a
commercial standard VLSI routing tool is employed to find a routing solution using
this netlist and the eFPGA model. The configuration bit stream is then generated by
analysis of the routing solution.

The components are modelled in a way to allow easy extraction of the eFPGA
configuration bits after routing. Bus lines are modelled as metal wires created by
the routing tool. Each bus and broadcast direction is assigned to a specific metal
layer. Thus, configurable connections in switching points and connection boxes are
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represented by vias. To restrict the routing tool from creating busses not present in
the architecture, the metal layers are masked with keepout areas.

Figure 2.13 shows the model of a switching point configured to connect its right
and bottom ports (c). The via created in the equivalent layout represents the estab-
lished connection. Thus the corresponding configuration bit of the actual switching
point is set. Connection boxes are modelled similar to switching points. As metal
layers only represent busses, extraction of the routing configuration is reduced to
analysis of the via positions is the routing solution, provided by the VLSI routing
tool.

Fig. 2.13 Configuration of a switching point.

The result of application mapping and communication routing described above
is a connected “mapped netlist” of the LEs, DRBs, RSs and CBs including their
actual configuration. The last step is the transformation of this mapped netlist into
a configuration bit stream. A “configurator” creates the complete configuration bit
stream based on the mapped netlist, the architecture specifications (parameters) and
basic configuration tables for basic eFPGA elements like switching points within an
RS. It also uses the information from the layout generator to determine the actual
position of all blocks to be configured in the macro. The configuration bit stream
is composed of elementary configuration table entries that must be provided for
the basic eFPGA elements like RSs or LEs. The elementary tables can be created
with small effort, as only few bits are required to configure these basic elements.
The bit stream is then concatenated according to the position of the elements in the
overall macro. This configuration flow is exemplarily illustrated for a routing switch
in Fig. 2.14.

2.5 Examples of (Stand Alone) eFPGAs as SoC Building Blocks

In order to benchmark application class specific eFPGAs against conventional gen-
eral purpose FPGAs frequent tasks of digital signal processing were implemented
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Fig. 2.14 Generation of configuration bit stream.

Fig. 2.15 Core logic of the LEs for eFPGA architectures I and II.
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on different eFPGA architectures as well as on commercial FPGAs. Two exem-
plary differently parameterized eFPGA architectures are considered here: Architec-
ture I consists of LEs featuring core logic with three LUT-2 and some additional
Boolean logic as depicted in Fig. 2.15 and makes use of configuration storage shar-
ing (Fig. 2.16). Architecture II consists of LEs with more complex (dual) core logic
containing two LUT-2, two full adders, additional carry logic, additional multiplex-
ers (Fig. 2.15(b)) and does not make use of configuration storage SRAM sharing for
the sake of more flexibility to irregular logic. Additional broadcast line feed through
stages allow for building up virtual clusters (Fig. 2.15 (b); for more details refer to
[22]).

Fig. 2.16 Simplified schematics of eFPGA architectures I and II.

Figure 2.17 shows the results for the implementation of an 8 × 8 multiplier, a
4-bit MAC unit, a 4-bit butterfly unit, and a 4-tap FIR filter using architecture II
in comparison to an conventional FPGA architecture. As can be seen an increase
of about one order of magnitude in energy and area efficiency is achievable from
application class specific FPGAs.

2.6 Examples of eFPGAs as Coprocessors to Standard RISC
Processor Kernels

As arithmetic oriented eFPGAs based on the architecture are attractive SoC com-
ponents in terms of efficiency and flexibility they were applied for hybrid architec-
tures based on Software-programmable processors coupled with eFPGA accelera-
tors [31]. The main focus was on the coupling mechanisms between the processor
core and the eFPGA as these have crucial impact on the overall performance and
cost (see also Sect. 2.1). For the evaluation of coupling mechanisms standard pro-
cessor architectures rather than dedicated ASIPs were used in a first approach to
take advantage of the existing tool support [32, 24]. After fundamental coupling
concepts were derived refined studies based on an ASIP described using the ar-
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Fig. 2.17 Benchmarking of architecture I for frequent DSP tasks.

Fig. 2.18 Comparison of execution time (T) and energy consumption (E) of a 4-tap 1D-FIR-filter.

chitecture description language LISA [12] were conducted. In contrast to general
purpose FPGAs with embedded processors like e.g. Xilinx Virtex 4, the reconfig-
urable part of the architecture on the one hand is highly optimized for arithmetic
oriented applications. On the other hand the ASIP architecture itself and the cou-
pling between ASIP and eFPGA were tailored in detail to the specific requirements
arisen from considered application domains. In Sect. 2.6.2.2 fundamental concepts
related to novel ASIP-eFPGA architectures will be illustrated.
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2.6.1 General-Purpose Processors Coupled with eFPGAs

For the first approach, two different general purpose processor architectures namely
a processor based on a MIPS IV instruction set [19] and an ARM940T [29] were
used [32, 24, 31]. These were coupled with an eFPGA accelerator based on the in-
troduced eFPGA architecture II. The coupling is based on multiplexer based logic
where the processor has access to dedicated eFPGA resources and the eFPGA com-
municates with the ASIP via the central register file of the ASIP. In contrast to the
ASIP-eFPGA architectures explained in the following subsection the synchronisa-
tion scheme between processor and eFPGA was very rudimentary. For these hybrid
architectures energy, area and timing information have been acquired by application
of appropriate tools. A more detailed discussion can be found in [31, 32, 24]. As
a proof of concept a DES encryption and a median-filter have been mapped to this
hybrid architecture.

2.6.2 ASIPs Coupled with eFPGA-Based Accelerators

After determining that hybrid processor-eFPGA-architectures take an interesting
place within the design space, with the architectures shortly sketched in the pre-
vious subsection, refined studies have been realized, in which coupling mechanism,
ASIP and eFPGA architecture were designed in detail. Thereby the chosen approach
allows for an in-depth design matching of these building blocks.

2.6.2.1 ASIP

In contrast to general purpose processors the utilization of an ASIP yields the op-
portunity to tailor the instruction set to a given application domain. Furthermore the
required enhancements of the processor architecture and the instruction set architec-
ture (e.g. eFPGA custom instructions) necessary to realize an optimum coupling can
be accomplished. The ASIP template which was the starting point for all architec-
ture and instruction set modifications is based on DLX-like processor architecture
[11]. This processor is based on a Harvard concept with a RISC-like instruction
set and a five-stage processor pipeline including enhanced mechanisms like e.g.
operand forwarding (see Fig. 2.19). There are a couple of different design tools
available to realize an ASIP architecture. In this work a LISA-based design flow has
been applied [12, 8]. LISA is a language to realize the processor architecture and
the instruction set architecture within one textual description on a high C-like level.
Based on such a cycle-accurate LISA-description it is possible to build all required
software development tools (Compiler, Assembler, Linker, Simulator etc.) automat-
ically. Furthermore a synthesizable VHDL description of the ASIP architecture is
generated. This VHDL description was used to realize a standard-cell based macro
of the ASIP. Hence detailed cost and performance values could be acquired.
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Fig. 2.19 ASIP-template (LT_RISC).

2.6.2.2 ASIP-eFPGA Coupling Mechanisms

Depending on the characteristics of an application the coupling mechanism between
processor and an eFPGA-based accelerator must be realized carefully. In general it
is useful to map control oriented tasks to the programmable ASIP and parallelizable
data paths based on basic arithmetic operations to the eFPGA. There are a couple of
influencing factors, like e.g. complexity of the eFPGA operators releasing the ASIP,
data requirements of such an operator, etc., which determine the design constraints
of the coupling mechanism.

The approach applied in this work allows for a balanced layout of the whole
ASIP-eFPGA-architecture particularly with regard to the coupling architecture.
There are mainly three different possibilities to realize the coupling architecture:

The control structures are integrated within the control structures of the ASIP
pipeline. As both influence each other a fine grain dedicated realization is possible.
Thereby the number of building blocks is reduced as an explicit coupling block does
not have to be provided. All interfaces are included within the LISA-description of
the ASIP. As the coupling structures are integrated within the LISA-description
they will be synthesized according to the standard-cell design flow applied here. Af-
ter the production phase the coupling mechanism is fixed and can not be modified
at all. The second variant to implement the coupling is to provide a reconfigurable
component beside the arithmetic oriented eFPGA or utilize the eFPGA itself. The
usage of reconfigurable component is attractive in terms of flexibility as coupling
mechanisms can be adapted and modified even after the production phase just be-
fore runtime. Otherwise the cost in terms of energy, timing and area are significantly
higher than the dedicated solution described before particularly with regard to arith-
metic oriented eFPGAs as they are worse for mapping irregular control structures.
The third variant, an attractive alternative, is the combination of both variants and
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design a heterogeneous solution including dedicated and reconfigurable components
thus regarding efficiency as well as flexibility aspects.

In the following the basic coupling concept proposed in this contribution consid-
ering the runtime behavior will be introduced. For the eFPGA all data received at
the interfaces to the outside world can not be differentiated relating to the meaning
of the data. It can not be distinguished if received data words are data samples or
control data words. The meaning of the data words is defined by the configuration of
the eFPGA. This flexibility yields the opportunity to determine the behavior of the
eFPGA just before runtime. To guarantee a high amount of flexibility it is necessary
to provide eFPGA interfaces on the ASIP side which are connected to the global
resources like e.g. the register file, state registers etc. of the ASIP.

In Fig. 2.20 a simplified block diagram of the fundamental heterogeneous cou-
pling concept for hybrid ASIP-eFPGA architectures is depicted. Starting point for
the following considerations is one instruction from the instruction set architecture
of the ASIP which is addressed by the program counter (PC) and loaded from the
program memory. This VLIW-like instruction consists of two atomic parts which
initiate an operation and control flow on the ASIP as well as on the eFPGA. The
atomic eFPGA instruction is just a couple of bits which are interpreted by simple
dedicated structures and structures configured on the eFPGA. In the simplest case
the atomic instruction is just one bit which identifies if an eFPGA operation has
to be initiated or not. If an eFPGA operation is activated by the current instruc-
tion word a global register on the ASIP is set indentifying the state of an activated
eFPGA operation. Further sample or control data words are stored in the register file
or a corresponding data memory section which is controlled by a dedicated mem-
ory controller. Depending on the operation the part of the register file allocated for
eFPGA can be locked for ASIP accesses during the activation of the eFPGA opera-
tion. The delay time of an eFPGA operation is deterministic. Therefore a watchdog
timer is integrated to initiate the unsetting of the activation flag. After this the data
and register file sections allocated by the eFPGA are unlocked and can be utilized
for following ASIP or eFPGA operations. This concept avoids the necessity to stall
the ASIP pipeline. Data dependencies have to be resolved during programming the
ASIP-eFPGA or during compile-time. Thereby resources which have to be exclu-
sively allocated by the eFPGA are determined before runtime. By adding the corre-
sponding resources the described concept has been applied to environments where
more than one eFPGA operation can take place in the same time. Altogether this
concept provides as much concurrency of ASIP and eFPGA as possible and many
options for designing the required coupling mechanism. It is possible to apply a
complex eFPGA operator accessing a data memory section as well as a one-cycle
operation utilizing the ASIP register file.

Different coupling mechanisms shortly outlined in the following are based on
the introduced basic concept and have been implemented to perform an efficiency
and performance evaluation. A common implementation of the basic concept was
not possible due to restrictions of the ASIP development tools. More details for
each implemented coupling mechanism are provided in [31]. The loosely-coupled
(LC) mechanism, which was implemented, is provided for more complex eFPGA
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Fig. 2.20 Fundamental coupling concept for hybrid ASIP-eFPGA architectures.

operators, that consume relatively more runtime on the eFPGA. Data words are
communicated via the ASIP register file. The synchronization is realized by a spe-
cific watchdog based interrupt mechanism. The loosely-coupled mechanism with
access to a data memory section (LC-MEM) is based on the same principles like
the LC mechanism. Instead of using the register file for data communication a ded-
icated memory section is allocated. The tightly-coupled (TC) scheme is used for
less complex eFPGA operations consuming just a few computation cycles. For data
communication the ASIP register file is applied. As the coupling structures are de-
signed rudimentary the ASIP pipeline is synchronized by a stall during an eFPGA
operation.

2.6.2.3 Performance and Cost Evaluation

In the context of modeling the cost and performance of the overall ASIP-eFPGA ar-
chitecture the partial models for the individual building blocks have been integrated
to a comprehensive model. The ASIP has been realized as standard-cell macro in a
90 nm technology based on the VHDL-model generated from the LISA-description.
The physical cost and performance have been acquired by using application depen-
dent switching factors on the terminal interfaces of the ASIP. The switching fac-
tors have been determined by a cycle-accurate simulation of an overall functional
VHDL-model. The overall functional VHDL-model can be constructed by integra-
tion of the functional VHDL-description of the ASIP which also includes a behav-
ioral model of program and data memory as well as the automatically generated
VHDL-models related to the eFPGA. For memory related costs and performance
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the tool CACTI has been applied [6]. The physical cost for the eFPGA accelerator
has been obtained from the eFPGA design flow introduced in Sect. 2.3. The overall
cycle-accurate functional model yields detailed runtime profiles for each mapped
application on one hand. On the other hand the overall efficiency in terms of area
and energy efficiency have been determined by summing up the individual contri-
butions of each building block.

2.6.2.4 Examples of eFPGAs as Coprocessors to Application Specific
Instruction Processors (rASIPs)

This subsection presents a software defined radio (SDR) approach for a Global Nav-
igation Satellite System (GNSS) receiver as another application example which is
mapped to the ASIP-eFPGA architecture. If realized in software the critical com-
ponent of the GNSS receiver is the correlator channel, because of the massive par-
allelism in this block. Generally, the correlator channel is used to generate a local
signal and synchronize it with the incoming satellite signal [13, 27, 20]. If local and
incoming signal are synchronized in frequency and phase of code and carrier, the
receiver can extract two types of data required to estimate the user position. First,
the navigation data broadcasted at a frequency of 50–250 Hz which includes all in-
formation to calculate the position of the transmitting satellite. Second, the flight
time of the satellite signal and thus the distance between satellite and receiver. The
flight time is calculated based on the delay which has to be introduced to achieve
synchronization between local and incoming signal. A standard correlator channel,
analog to digital conversion (ADC) and correlator control are shown in Fig. 2.21.
In a first stage the incoming signal is multiplied with the in-phase and quadrature
samples (I, Q) of the carrier frequency estimate which is generated using a digitally
controlled oscillator (DCO). In the second stage the baseband signal is multiplied
with a satellite dependent pseudo random noise (PRN) code (P) and the difference
of an early and late version (EML) of the same PRN code. Finally, the samples
are accumulated for each path and the result are transferred to the correlator con-
trol which adjusts PRN code generator and DCO to keep incoming and local signal
synchronized.

Fig. 2.21 Exemplary eFPGA operator (right) to realize a part of the GPS-Receiver (left).
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In this application example two main ideas are implemented. First, the ASIP ex-
ploits the parallelism in the incoming data to achieve real-time requirements of the
correlation in software. Therefore, two eFPGA custom instructions (CI) for base-
band mixing and code correlation representing the eFPGA operators have been in-
troduced in the ASIP’s instruction set. They are marked in Fig. 2.21 as 1 and 2.
Second, the implementation using an ASIP-eFPGA architecture allows the trade-off
between sensitivity and the number of channels which can be processed in real-
time. This trade-off is achieved by using a high-precision mode (HP) with an 0.5 dB
increased signal-to-noise (SNR) compared to the low-precision (LP) mode. There-
fore, the LP mode implies a digitized satellite and local carrier signal of 2 bit and
a 4 bit signal at the output. In the HP mode the input signal and local carrier are 4
bit and half the number of samples can be processed in real-time. The mode can be
switched at run-time setting an ASIP general purpose register [14].

Table 2.2 Area, energy and delay comparison for different architectures

LT_RISC LT_RISC ASIP-eFPGA ASIP-eFPGA
with multiplier with multiplier

LP HP LP HP
Area [mm2] 0.633 0.655 0.803 0.914 0.829 0.939
Delay [μs] 9191 2545 237 413 184 322
Energy [μJ] 125.8 50.1 4.77 8.12 4.04 7.66

Table 2.2 summarizes the results derived using the design methodology and
the power estimation flow presented in the preceding sections. The results for the
LT_RISC and the ASIP-eFPGA architecture are derived for a clock frequency of
220 MHz and a 90 nm CMOS technology. Software correlation results are derived
for one PRN code phase and one fixed carrier frequency. It can be seen that the
power consumption and chip area is clearly dominated by the program and data
memory with 8 kB each. For the LT_RISC with multiplier the memory area portion
is 84% of the overall macro area. This amount decreases for an ASIP-eFPGA with
multiplier in HP-mode to 59%, while the eFPGA area contributes with 26%. Fig-
ure 2.22 classifies the derived results in the efficiency diagram. It turns out that the
implementations of the software correlation using the LT_RISC are less efficient
than the realization on a state-of-the-art DSP (Texas Instruments, TMS320C642).
Nevertheless, enhancing the ASIP with an arithmetic oriented eFPGA yield results
which fall right between the DSP and the FPGA cluster and increase the efficiency
about half an order of magnitude, while preserving the flexibility of programmable
solution.

2.7 Conclusion

In this chapter it has been shown how to tailor embedded FPGAs to application
classes in order to achieve improved energy and area efficiencies. A parameterized
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Fig. 2.22 Performance of a eFPGA based GNSS receiver.

target architecture featuring a high degree of flexibility and allowing for dedicated
optimization has been described. Applying a design flow suited to perform research
in that domain it was shown for basic but frequently used structures that the effi-
ciency improvement potential is as high as one order of magnitude. Apart from using
those eFPGAs as stand-alone building blocks of a SoC they appear to be very well
suited to implement coprocessors to software programmable kernels. On exemplary
application vehicles this strategy has been worked out for the case of eFPGA/ASIP
coupling and the feasibility and attractiveness of this concept has been shown. Fur-
ther work has to be performed on the challenging task of implementing a suitable
mapper supporting this approach in practical industrial design.

Acknowledgements This work was supported by DFG grants No 281/9-1 and No 281/9-2, project
Reconfigurable Components for ASIP Architectures, as part of the Priority Programme 1148, Re-
configurable Computing Systems.

References

1. Altera: Altera quartus ii 5.1 handbook, vol. 2. (Dec. 2005). Altera. http://www.altera.com/
literature/lit-index.html

2. Betz, V., Rose, J.: VPR: A new packing, placement and routing tool for FPGA research. In:
Proc. 7th International Workshop on Field-Programmable Logic and Applications (FPL ’97),
pp. 213–222 (1997)

3. Betz, V., Rose, J., Marquardt, A.: Architecture and cad for deep-submicron fpgas. In: Kluwer
International Series in Engineering and Computer Science. Springer, Berlin (1999)



48 Tobias G. Noll et al.

4. Blume, H., Feldkämper, H.T., Noll, T.G.: Model-based exploration of the design space for
heterogeneous systems on chip. J. VLSI Signal Process. Syst. 40, 19–34 (2005)

5. Brodersen, R.: Future system-on-a-chip design issues. In: Short Course on System-on-a-Chip
Design, ISSCC 2003, San Francisco (Feb. 2003)

6. Company, H.P.D.: Cacti 5.0. http://www.hpl.hp.com
7. Compton, K., Hauck, S.: Reconfigurable computing: a survey of systems and software. In:

ACM Computer Survey, vol. 34, pp. 171–210 (2002)
8. CoWare Corporation: Processor designer reference manual (2007). http://www.coware.com
9. DeHon, A.: The density advantage of configurable computing. In: Computer, vol. 33, pp. 41–

49 (2000)
10. George, V., Rabaey, J.M.: Low energy fpgas—architecture and design. In: Kluwer Interna-

tional Series in Engineering and Computer Science. Springer, Berlin (2001)
11. Hennessy, J., Hennessy, J.L., Goldberg, D., Patterson, D.A.: Computer Architecture: A Quan-

titative Approach, 1st edn. Morgan Kaufmann, San Mateo (1996)
12. Hoffmann, A., Schliebusch, O., Nohl, A., Braun, G., Wahlen, O., Meyr, H.: A methodology

for the design of application specific instruction set processors (ASIP) using the machine
description language lisa. In: Proc. IEEE/ACM 2001 (2001)

13. Kaplan, E.D., Hegarty, C.J.: Understanding gps: Principles and Applications, 2nd edn. Artech
House, Boston (2006)

14. Kappen, G., Pieper, V., Kurz, L., Noll, T.G.: Implementation and analysis of an sdr processor
for gnss software correlators. In: Proceedings of the 21th International Technical Meeting of
the Satellite Division of the Institute of Navigation ION GNSS, Savannah, GA, pp. 2258–2267
(2008)

15. Kusse, E., Rabaey, J.: Low-energy embedded FPGA structures. In: IEEE Symp. on Low Power
Electronics and Design, pp. 155–160 (1998)

16. Lange, H., Schröder, H.: Evaluation strategies for coarse grained reconfigurable architectures.
In: Proceedings International Conference on Field Programmable Logic and Applications, pp.
586–589 (2005)

17. Leijten-Nowak, K.: Template-based embedded reconfigurable computing. PhD thesis, Univer-
sity of Eindhoven (2004)

18. Lewis, D., Ahmed, E., Baeckler, G., Betz, V.: The stratix ii logic and routing architecture. In:
Proceedings of the 2005 ACM/SIGDA 13th International Symposium on Field-Programmable
Gate Arrays, Monterey, California, USA (2005)

19. MIPS Technologies Inc.: MIPS R10000 microprocessor user’s manual, version 2.0 (1997)
20. Misra, P., Enge, P.: Global positioning system: Signals, measurements, and performance, 2nd

edn. Ganga-Jamuna Press, Lincoln (2006)
21. Miyamori, T., Olukotun, K.: Remarc: reconfigurable multimedia array coprocessor. In: Pro-

ceedings 6th International Symposium on Field Programmable Gate Arrays. ACM Press,
Monterey (1998)

22. Neumann, B.: Modellierung und analyse arithmetikorientierter eFPGA-architekturen. PhD
thesis, Chair of Electrical Engineering and Computer Systems, RWTH Aachen University
(2008)

23. Neumann, B., von Sydow, T., Blume, H., Noll, T.G.: Design and quantitative analy-
sis of parametrisable eFPGA-architectures for arithmetic. In: Advances in Radio Science-
Kleinheubacher Berichte, Miltenberg (2006)

24. Neumann, B., von Sydow, T., Blume, H., Noll, T.G.: Application domain specific embedded
fpgas for flexible isa-extension of asips. J. VLSI Signal Process. (2008)

25. Neumann, B., von Sydow, T., Blume, H., Noll, T.G.: Design flow for embedded fpgas based
on a flexible architecture template. In: Proceedings Conference on Design, Automation and
Test in Europe, DATE, pp. 125–131. European Design and Automation Association, München
(2008)

26. Noll, T.G.: Application specific eFPGAs for soc platforms. In: International Symposium on
IEEE VLSI Design, Automation and Test, VLSI-TSA, p. 28 (2005)

27. Parkinson, B., Spilker, J.J.: Global Positioning System: Theory and Applications, vol. I. Amer-
ican Institute of Aeronautics and Astronautics, Washington (1996)



2 Reconfigurable Components for Application-Specific Processor Architectures 49

28. Pionteck, T., Staake, T., Stiefmeier, T., Kabulepa, L.D., Glesner, M.: Design of a reconfig-
urable aes encryption/decryption engine for mobile terminals. In: Proceedings International
Symposium on Circuits and Systems, ISCAS (2004)

29. Samsung: Arm940t (sam443). http://www.samsung.com
30. Technologies, P.X.: Smexpp smart media processor. http://www.pactxpp.com
31. von Sydow, T.: Modellbildung und analyse heterogener ASIP-eFPGA-architekturen. PhD the-

sis, Chair of Electrical Engineering and Computer Systems, RWTH Aachen University (2008)
32. von Sydow, T., Korb, M., Neumann, B., Blume, H., Noll, T.G.: Modelling and quantitative

analysis of coupling mechanisms of programmable processor cores and arithmetic oriented
eFPGA-macros. In: Proc. ReConFig’06, pp. 252–261 (September 2006)

33. von Sydow, T., Neumann, B., Blume, H., Noll, T.G.: Quantitative analysis of embedded FPGA
architectures for arithmetic. In: Proceedings International Conference on Application Specific
Systems, Architectures and Processors Conference 2006 (ASAP ’06), pp. 125–131 (Septem-
ber 2006)

34. Weiss, O., Gansen, M., Noll, T.G.: A flexible datapath generator for physical oriented design.
In: Proc. ESSCIRC 2001, pp. 408–411 (2001)



Chapter 3
Erlangen Slot Machine: An FPGA-Based
Dynamically Reconfigurable Computing
Platform

Josef Angermeier, Christophe Bobda, Mateusz Majer, and Jürgen Teich

Abstract Dynamically partially reconfigurable architectures combine high perfor-
mance and flexibility. They offer a novel possibility to dynamically load and execute
hardware modules, previously only known for software modules. In order to real-
ize these promises, the following dilemmas had to be solved: the too often limited
memory of reconfigurable architectures for many data-intensive applications, the
restricted communication possibilities for partial hardware modules, the unflexible
tool flow for partial module design, and the IO-pin dilemma, that the placement of
hardware modules, with requirements for input and output signals to the periphery,
was predetermined to a single position. These were physical restrictions and tech-
nical problems limiting the scope or applicability of dynamically partially reconfig-
urable architectures. This led us to the development of a new FPGA-based recon-
figurable computer called Erlangen Slot Machine, a platform for interdisciplinary
research on dynamically reconfigurable systems. It leverages many architectural
constraints of existing platforms and allows a user to partially reconfigure hard-
ware modules arranged in so-called slots. The uniqueness of this computer stems
from a) a new slot-oriented hardware architecture, b) a set of novel inter-module
communication techniques, and c) concepts for dynamic and partial reconfiguration
management.
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3.1 Introduction

No FPGA-based platform on the market today provides a solution to the problems
of design automation for dynamically reconfigurable hardware modules and their
efficient and flexible relocation. The purpose of the Erlangen Slot Machine (ESM)
[16, 17, 8, 6, 7] is to overcome many of the deficiencies of existing FPGA-based
reconfigurable computers by providing:

• A new flexible FPGA-based reconfigurable platform that supports relocatable
hardware modules arranged in so-called slots.

• Tool support for the development of run-time reconfigurable computation and
communication modules using new inter-module communication paradigms.

• A powerful reconfiguration manager which enables various preprocessing stages
for fast bitstream manipulation. We call the preprocessing stages plugins. For
example, a relocation plugin can be selectively activated before a bitstream is
uploaded to the FPGA. As reconfiguration times in the range of seconds [15]
are not sufficient for applications that require a fast reaction to external events,
the ESM provides a hardware reconfiguration manager which is the foundation
for reconfiguration times in the range of milliseconds.

3.2 Drawbacks of Existing Dynamically Reconfigurable Systems

The growing capacities provided by FPGAs as well as their partial reconfigura-
tion capabilities have made them the ultimate choice for many time-constrained and
computationally challenging applications. Xilinx FPGAs [23] are the only devices
on the market with large capacity and the ability to support partial reconfiguration.
The Virtex series offers enough logic for efficiently implementing applications with
high demand of resources, e. g., arising in video, audio and signal processing as well
as in other fields like automotive applications.

There are, however, many problems open concerning module relocation: One
particular problem is, for example, that, in order to connect a module to other mod-
ules and/or pins, signals are often required to pass through other modules. We call
those signals used by a given module and crossing other modules feed-through sig-
nals. Using feed-through lines to access resources has, however, two negative con-
sequences, as illustrated in Fig. 3.1:

• Difficulty of design automation: Each module must be implemented with all
possible feed-through channels needed by other modules. Because we only
know at run-time which module needs to feed through a signal, many channels
reserved for a possible feed-through become redundant.

• Relocation of modules: Modules accessing external pins are no more relocat-
able, because they are synthesized for fixed locations where a direct signal line
to these pins is established.



3 ReCoNodes 53

Fig. 3.1 The feed-through line problem with relocatable modules. Placing a new module B into
slot two requires that the new module provides all feed-through lines needed by slot one and three.
This fact disables any module relocation and makes it impossible to place modules with different
feed-through requirements into the other slots.

Many FPGA-based reconfigurable platforms such as [9, 22, 18, 4, 19, 20] offer
various interfaces for audio, video capturing and rendering and for communication.
However, each interface is connected to the FPGA using dedicated pins at fixed
locations. Modules with access to a given interface such as a VGA (video graphics
adapter, see Fig. 3.2) must be placed in the area of the chip where the FPGA signals
are connected, thus making a relocation impossible. Until now, no platforms on the
market provide a solution to these problems.

Fig. 3.2 Pin distribution of a VGA module on the RC200 platform. It can be seen that the VGA
Module occupies pins on the bottom and right FPGA borders. In consequence, only a narrow part
on the left hand side is available for dynamic module reconfiguration.

Before we present in detail the architecture of the Erlangen Slot Machine and
some required factors for innovation, we summarize the most the important prob-
lems limiting the use of partial and dynamic reconfiguration on current existing
FPGA-based reconfigurable computers:

1. Limitation of partial reconfiguration support on actual FPGAs: Very few FP-
GAs allowing partial reconfiguration exist on the market. These few FPGAs,



54 Josef Angermeier et al.

like the Virtex series by Xilinx [23], impose nonetheless some restrictions on
the least amount of resources that can be reconfigured at a time, for example, a
column-wise reconfiguration.

2. I/O-pin dilemma: Existing platforms include I/O peripherals like video, RAMs,
audio, ADC (analog to digital converter) and DAC (digital to analog converter)
connected at fixed pins of the FPGA device. This has the consequence that a
module cannot be relocated because of these pin constraints or making a relo-
cation very difficult. Another problem related to pins is that the pins belonging
to a given logical group like video, and audio interfaces are often not situated
closely to each other. On many platforms, they are spread around the device.
A module accessing a device will have to feed many signal lines through the
FPGA to many different components. This situation is illustrated in Fig. 3.2:
Two modules (one of which is a VGA module) are shown. The VGA module
uses a large number of pins at the bottom part of the device and also on the right
hand side. Implementing a module without feed-through lines is only possible
on the two first columns on the left hand side. The effort needed for imple-
menting a reconfigurable module on more than two columns together with the
VGA module is very high. This situation is not only present on Celoxica boards
[9]. XESS boards [22], Nallatech boards [18], and Alpha boards [4] face the
same limitations. On the XF-Board [19, 20] from ETH Zurich, the peripherals
are connected to one side of the device. Each module accesses I/Os through
an operating system (OS) layer implemented on the left and right part of the
device. Many other existing platforms like the RAPTOR board [14], Celoxica
RC1000 and RC2000 [9] are PCI systems that require a workstation for oper-
ation. The use in stand-alone systems as needed in many embedded systems is
not possible.

3. Inter-module communication dilemma: Modules placed at run-time on the
FPGA device typically need to exchange data among each other. Such a request
for communication is dynamic due to run-time module placement. Dynamically
routing signal lines on the hardware is a very cumbersome task. For efficiency
reasons, new communications paradigms must be investigated to support such
dynamic connection requests such as packet-based DyNoCs [3] or principles of
self-circuit routing.

4. Local memory dilemma: Modules requiring larger amounts of local memory
cannot be implemented since a module can only occupy the memory inside its
physical slot boundary. Storing data in off-chip memories is therefore the only
solution. However, existing FPGA-based platforms often have only one or two
external memory banks and their pin connections are spread loosely over the
borders of the FPGA.

With these limitations in mind, we designed a new and FPGA-based reconfig-
urable computer called the Erlangen Slot Machine (ESM). Its architecture circum-
vents many of the above problems and was built to ease the research on implement-
ing dynamically reconfigurable hardware modules including their run-time manage-
ment and inter-module communication.
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3.3 The Erlangen Slot Machine

The main idea of the Erlangen Slot Machine (ESM) architecture is to ease the ap-
plication development as well as the research in the area of partially reconfigurable
hardware. The advantage of the ESM platform is its unique slot-based architecture
which allows the slots to be used independently of each other by delivering pe-
ripheral data through a separate crossbar switch as shown in Fig. 3.3. The ESM
architecture is based on the flexible decoupling of the FPGA I/O-pins from a direct
connection to a crossbar interface chip. This flexibility allows to place application
modules at run-time in any available slot independently. Thereby, run-time place-
ment is not constraint any more by physical I/O-pin locations as the I/O-pin routing
is done automatically in the crossbar, and the I/O pin dilemma is thus solved in
hardware.

3.3.1 Architecture Overview

The ESM platform (see Fig. 3.3) is centered around an FPGA serving as the main
reconfigurable engine and an FPGA realizing the crossbar switch. They were sepa-
rated into two physical boards (see Fig. 3.10) called BabyBoard and MotherBoard
and are implemented using a Xilinx Virtex-II 6000 and a Xilinx Spartan-II 600
FPGA, respectively. Figure 3.3 shows the slot-based architecture of the ESM con-
sisting of the Virtex-II FPGA, local SRAM memories, configuration memory and
a reconfiguration manager. The top pins in the north of the FPGA connect to local
SRAM banks. These SRAM banks serve to solve the problem of restricted intra-

Fig. 3.3 ESM Architecture overview. The architecture of the BabyBoard is refined in Fig. 3.4. The
MotherBoard is shown in Fig. 3.5.
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module memory in case of, e.g., video applications. The bottom pins in the south
connect to the crossbar switch. Therefore, a module can be placed in principle in any
free slot and have its own peripheral I/O-links together with dedicated local external
memory. Each slot of up to 6 slots can access each one local SRAM bank.

3.3.2 The BabyBoard

3.3.2.1 Computation and Reconfigurable Engine

The reconfigurable engine of the ESM computer is a printed circuit board that fea-
tures a Xilinx Virtex II-6000 FPGA, several SRAMs and a reconfiguration manager
implemented as well on an FPGA. Due to the restriction1 in the reconfiguration of
Virtex-II FPGAs, we adapted our architecture to match the following properties:

• Solving the I/O-pin dilemma: On-line placement of modules on a reconfigurable
device, in this case the FPGA, is done by downloading a partial bitstream that
implements the module on the FPGA. Relocation, i.e., placing a module into a
location different from the one for which it was synthesized. Relocation can be
done only if all the resources are available and structured in the same way in the
designated placement area at compile-time (e.g., slot 0) and at run-time (e.g.,
slot 3) location. This includes also the I/O-pins used by the module. We solved
the I/O-pin dilemma on the ESM by avoiding fixed connections of peripherals
to the FPGA. As shown in Fig. 3.4, all the bottom pins from the FPGA are
connected to an interface controller realizing a crossbar and implemented itself
using a Xilinx Spartan-II FPGA. At run-time, the crossbar configuration is also
adapted, to connect FPGA pins to peripherals automatically based on the slot
position of a placed module. Notably, this I/O-pin rerouting scheme is achieved
without reconfiguration of the crossbar FPGA. This makes it possible to estab-
lish any connection from one module to peripherals dynamically.

• Solving the memory dilemma: Memory is very important in applications like
video streaming in which a given module often must exclusively access a picture
frame at a time for computation. However, as we mentioned earlier, the capacity
of the available BlockRAMs in FPGAs is limited. External SRAM memory has
therefore been added to allow storage of large amounts of data by each module.
To allow a module to exclusively access its external memory bank, 6 SRAM
banks are located at the north border of the FPGA. In this way, a module will
connect to peripherals from the south, while the north will be used for tempo-
rally storing computation data. According to the 6 memory banks which can be
connected on the top, the device is divided into a set of elementary slots called
micro-slots A to V (see Fig. 3.4). In order to use an SRAM bank in the north, a
module must have at least a width of three micro-slots (creating slots S1 to S6).
The Erlangen Slot Machine owes its name from this arrangement of reconfig-

1 The reconfiguration can be done only in chunks of full CLB columns.
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urable slots. This modular organization of the device simplifies the relocation,
primary condition for a viable partially reconfigurable computing system. Each
module moved from one slot to another will encounter equal resources. The
architecture of the BabyBoard is illustrated in Fig. 3.4 in more details.

Fig. 3.4 Architecture of the ESM BabyBoard. Slots A to V denote micro-slots that provide the
module and reconfiguration granularity. Three consecutive micro-slots define a macro-slot. Each
macro-slot (S1 to S6) can access one full external SRAM bank. In terms of slice count, a micro-slot
occupies 768 slices (4 CLB columns) on the FPGA. Slots A, K, L and V are special micro-slots as
slots A and V interface external pins and slot K, L contain BlockRAM.

3.3.2.2 The Reconfiguration Manager

Apart from the main FPGA, the BabyBoard also contains the configuration cir-
cuitry. This consists of a CPLD, a configuration FPGA (a small Spartan II FPGA)
implementing the reconfiguration manager (Sect. 3.5) and a Flash memory, see also
Fig. 3.4.

• The CPLD is used to download the Spartan-II configuration from the Flash
upon power-up. It also contains board initialization routines for the on-board
PLL and the Flash.

• The reconfiguration management is implemented on the Spartan-II FPGA. This
device contains a circuit to perform module relocation while loading a new
partial module bitstream. Its architecture and functionality will be described in
details in Sect. 3.5.

• The Flash provides a capacity of 64 MBytes, thus enabling the storage of up to
32 full configurations or of a few hundred partial module bitstreams.

3.3.2.3 Memory

Six SRAM banks of size 2 MB each are vertically attached to the board to the
north of the device, thus providing external memory to six macro-slots (denoted
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as S1 to S6 in Fig. 3.4) for temporal data storage. The SRAMs can be also used
for shared memory communication between neighbor modules, e.g., for streaming
applications. They are connected to the FPGA in such a way that the reconfiguration
of a given module will not affect the access to other modules.

3.3.2.4 Debug Lines

Debugging capabilities are offered through general purpose I/O provided at regular
distances between the micro-slots. A JTAG port provides debug capabilities for the
main FPGA, the CPLD and the Spartan-II.

3.3.3 The MotherBoard

Fig. 3.5 Architecture of the ESM MotherBoard. The PowerPC serves as the main controller of
the ESM computer and is running Linux. Its memory bus is connected directly to the crossbar for
memory-mapped communication with the reconfiguration manager on the BabyBoard.

The MotherBoard provides programmable links from the FPGA to all peripherals
for multimedia and communication such as IEEE1394, USB, Ethernet, PCMCIA,
Video and Audio-I/Os. The physical connections are established at run-time through
a programmable crossbar implemented statically on a Spartan-II chip on the Mother-
Board. Video capture and rendering interfaces as well as high speed communication
links also exist on the MotherBoard on which the BabyBoard is mounted through
four connectors (see Fig. 3.5). A PowerPC processor (MPC875) is the core of the
MotherBoard. It is used to control the complete ESM through a software program-
ming interface. In particular, it manages the flow of data on the MotherBoard as
well as provides the interfaces to the external world, e.g., Ethernet and USB. Upon
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start-up, one can log-in into the ESM like a full Linux-based computer system. The
PowerPC of the ESM is used for application development and for testing and ini-
tiating the dynamic hardware reconfigurations. It provides all required operating
system functions for module management.

3.4 Inter-module Communication

One of the central limiting factors for the wide use of partial dynamic reconfigura-
tion not yet addressed is the problem of inter-module communication. Each module
that is placed on one or more slots on the device must be able to communicate
with other modules. The ESM provides and supports four main paradigms for com-
munication among different modules (see Fig. 3.6): The first one is a direct com-
munication using bus-macros between adjacently placed modules (see Fig. 3.6(a)).
Secondly, shared memory communication using SRAMs or BlockRAMs is possible
(see Fig. 3.6(b)). However, only adjacent modules can use these two communica-
tion modes. For modules placed in non-adjacent slots, we provide a dynamic signal
switching communication architecture called Reconfigurable Multiple Bus (RMB)
[2, 1] (see Fig. 3.6(c)). Finally, the communication between two different modules
can also be realized through the external crossbar (see Fig. 3.6(d)). These four com-
munication modes will be explained more closely in the following.

Fig. 3.6 Inter-module communication possibilities on the ESM: (a) bus-macro, (b) shared memory,
(c) reconfigurable multiple bus (RMB), (d) external crossbar.



60 Josef Angermeier et al.

3.4.1 Communication Between Adjacent Modules

On the ESM, bus-macros are used to realize a direct communication between adja-
cently placed modules, providing fixed communication channels that help to keep
the signal integrity upon reconfiguration. Because only four 1 bit signals can be
passed for each bus-macro, the number of bus-macros needed for connecting a set
of n signals between two placed modules is n/4.

3.4.2 Communication via Shared Memory

Communication between two neighboring modules can be done in two different
ways using shared memory: First, dual-ported BlockRAMs can be used for im-
plementing communication among two neighbor modules working in two different
clock domains. The sender writes on one side, while the receiver reads the data on
the other side. The second possibility uses external RAM. This is particular useful
in applications in which each module must process a large amount of data and then
sends the processed data to the next module, as it is the case in video streaming. On
the ESM, each SRAM bank can be accessed by the module placed below as well
as those neighbors placed right and left. A controller is used to manage the SRAM
access. Depending on the application, the user may set the priority of accessing the
SRAM for the three modules. In Sect. 3.6, we will present a video streaming case
study that uses this way of communication.

3.4.3 Communication via RMB

In its first mentioning, the Reconfigurable Multiple Bus (RMB) architecture [12, 21,
2] consists of a set of processing elements or modules, each possessing an access
to a set of switched bus connections to other processing elements. The switches
are controlled by connection requests between individual modules. On the ESM,
an RMB is realized by a one-dimensional arrangement of switches between N slots
(see Fig. 3.7). In our FPGA implementation, the horizontal arrangement of parallel
switched bus line segments allows for the communication among modules placed in
the individual slots. The request for a new connection is done in a wormhole fash-
ion, where the sender (a module in slot Sk) sends a request for communication to
its neighbor (slot Sk+1) in the direction of the receiver. Slot Sk+1 sends the request
to slot Sk+2, etc., until the receiver receives the request and returns an acknowl-
edgment. The acknowledgment is then sent back in the same way to the sender.
Each module that receives an acknowledgment sets its switch to connect two line
segments. Upon receiving the acknowledgment, the sender can start the communi-
cation. The wired and latency-free connection (circuit routing) is then active until
an explicit release signal is issued by the sender module. The concept of an RMB
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was first presented in [21] and extended later in [12] with a compaction mechanism
for quickly finding a free segment. However, it has been never implemented in real
hardware.

Fig. 3.7 FPGA implementation of an RMB (Reconfigurable Multiple Bus) architecture providing
circuit-switched bus connections between individual modules placed in slots {S1, . . . , S5}.

In our implementation [2] of the RMB on Xilinx Virtex FPGAs, we separated
the RMB switches from the modules. In this way, we provide a uniform interface to
designers for connecting modules to the multiple line switches. The implementation
of the RMB structure on an FPGA Virtex II 6000 with four processors and four
parallel 16 bit lines reveals an area overhead of 4% with a frequency of 120 MHz on
the controller [1]. In [1], we have summarized area and data speed numbers in terms
of (a) different numbers of modules, (b) different numbers of parallel bus segments,
and (c) bitwidths of each bus segment. As shown on Fig. 3.7, bus-macros are used
at the boundary of modules and controllers (switches) to insure a correct operation
upon reconfiguration.

We were able to show that a module reconfiguration can take place columnwise
at the same time other modules are communicating on the chip without any signal
interference. This is possible by storing the states of the RMB switches in regions
of BlockRAM that are physically unaffected by partial reconfiguration.

3.4.4 Communication via the Crossbar

Another possibility of establishing communication among modules is to use the
crossbar. Because all the modules are connected to the crossbar via the pins at the
south of the FPGA, the communication among two modules can be set in the cross-
bar as well.
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3.5 Reconfiguration Manager

Each dynamically reconfigurable computer requires an operating system for the ini-
tialization of executable application modules and their run-time supervision. The
main tasks of such an operating system in case of the ESM are (a) scheduling of
application modules, (b) management of free slots including slot segmentation and
partitioning, (c) loading, unloading and relocation of application modules into slots,
(d) configuration of peripheral devices, (e) configuration of the crossbar, and (f) bit-
stream management.

Initial experiments provided evidence that the most-time critical operations must
be executed in hardware in order to keep the reconfiguration time of a minimum.
The loading, unloading and relocation of modules may be considered to be the most
time-critical tasks which have therefore been implemented in a dedicated hardware
reconfiguration manager. All other system tasks can implemented in C and exe-
cuted on the PowerPC embedded processor (see Fig. 3.3) belonging to the ESM
MotherBoard. These two parts of the operating system are linked via a simple com-
munication bus as shown in Fig. 3.3. This hardware/software interface is realized
through a set of elementary reconfiguration instructions passed from the PowerPC
to the reconfiguration manager on the BabyBoard using Memory-Mapped I/O. The
minimal set of basic instructions that the reconfiguration manager implements are
summarized as follows:

• LOAD (load bitstreams to their pre-compiled position)
• UNLOAD (unload bitstreams to deactivate a running module)
• RELOCATE_AND_LOAD (relocate bitstreams to a different slot position be-

fore loading)

In an implementation, the reconfiguration manager was built in hardware and
located in a Spartan-II 400 FPGA which is connected to the main FPGA via the
SelectMAP interface.

During normal operation, the bitstream data will be loaded from the flash mem-
ory located on the BabyBoard (see Fig. 3.4). However, bitstreams must be first
downloaded and stored into the flash memory. Here, two methods are supported.
The first method uses a parallel port interface implemented directly in the recon-
figuration manager to download the configuration data from a host PC to the flash
memory. The second method uses the Ethernet port of the PowerPC processor on the
MotherBoard to download bitstreams from a remote host. In order to support these
and also many other reconfiguration scenarios, we developed a very flexible, plugin-
based reconfiguration manager architecture that will be described in the following.

3.5.1 Flexible Plugin Architecture

Figure 3.8 depicts the flexible architecture of the reconfiguration manager hardware.
It consists of (a) a MicroBlaze microcontroller [23], and (b) a data crossbar switch
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is located between the plugins. The crossbar plugin shown in this figure connects
the reconfiguration manager control implemented in software on the MicroBlaze to
the ESM MotherBoard in order to establish the communication link to the PowerPC
shown in Fig. 3.3.

Fig. 3.8 Flexible architecture of the ESM reconfiguration manager with plugins such as Flash,
ECC, module relocator and other possible plugins.

All plugin modules are connected to two communication interfaces: The con-
trol bus connects plugins to the MicroBlaze for initialization and control. The data
crossbar connects to the data input and output ports of each plugin and its connec-
tion setup is also controlled by the MicroBlaze which is programmed in assembly
language.

In order to upload a hardware module from flash to the FPGA, the following
sequence of steps has to be performed:

• A command is sent from the PowerPC to the MicroBlaze to upload a bitstream
to the FPGA without the use of any other plugins.

• The MicroBlaze connects the output of the flash plugin to the Virtex-II plugin
input through a write into the configuration register of the data crossbar.

• Next, the MicroBlaze initializes the flash plugin with the start address and
length of the bitstream.

• The MicroBlaze then enables the SelectMAP interface in the Virtex-II plugin.
• Then, the MicroBlaze enables the flash plugin to start reading the bitstream.
• The flash plugin sends the bitstream to the Virtex-II plugin byte by byte as long

as its ready signal is true (if not, the flash plugin has to wait).
• While the flash and the Virtex-II plugin are running in parallel, the MicroBlaze

checks periodically if any of the plugins has finished its operation.
• Only if after finishing one command, the MicroBlaze can execute a new com-

mand, and, for example, reinitializes the plugins and the data crossbar.
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If one load command has been executed and another load follows, then the pro-
cedure starts from second step, because the data crossbar has already been set. The
addition of plugins to the reconfiguration manager is simple. Any new module must
have a fixed control bus interface and a fixed data crossbar interface. With these
standard interfaces, the plugin can be directly controlled through the MicroBlaze
assembly program. The data crossbar uses a parametrized HDL description which
can be configured at design-time to the number of actually instantiated plugins.

3.5.2 Reconfiguration Scenarios

Depending on the operating system requirements, different operations need to be
performed on each bitstream in general. Before a bitstream is uploaded to the FPGA,
it can pass through any number of additional plugins. The order in which a bitstream
passes the plugins is configurable at run-time through the setup of the data crossbar
switch. This allows a flexible preprocessing of the bitstream prior to being loaded.
Only the number of available plugins in the reconfiguration manager has to be de-
termined at design-time.

Based on the introduced reconfiguration manager architecture depicted in
Fig. 3.8, several reconfiguration scenarios are possible. Some of these are depicted in
Fig. 3.9. In the first scenario, only a basic upload of a bitstream is performed. There-
fore, the data flows from the flash plugin output directly through the data crossbar
to the Virtex-II plugin input. If an error-correction (ECC) is desired, then the flash
output data can be sent to the ECC plugin before going to the Virtex-II plugin. This
case is shown in Fig. 3.9(b). In the third scenario, the bitstream is read from the
flash, error-corrected and relocated before being sent to the Virtex-II plugin for up-
load (see Fig. 3.9(c)). Here, the crossbar is configured by the MicroBlaze processor
in such a way that the output of each plugin is connected to the input of its neigh-
boring plugin. The fourth scenario depicted in Fig. 3.9(d) shows how the bitstream
data is delivered by the PowerPC through the MotherBoard crossbar. The bitstream
is subsequently error-corrected and relocated prior to its upload.

The plugins that are currently implemented for the reconfiguration manager are:
ECC plugin, decompression plugin and relocator plugin which can translate a bit-
stream on the fly to any slot location on the FPGA by directly manipulating the
address offsets in the bitstream at load-time.

3.5.3 Implementation Results

The reconfiguration manager was implemented including the MicroBlaze micro-
controller, parallel port interface plugin, flash memory interface plugin, Virtex-II
SelectMAP plugin, an OPB (open peripheral bus) interface implementing the con-
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Fig. 3.9 Four different reconfiguration scenarios supported by the ESM reconfiguration manager.

trol bus and the data crossbar. The control bus is a 32 bit OPB bus, while the data
crossbar is an 8 bit full duplex crossbar.

The flash plugin interface is able to sustain a data rate of 10 Mbyte/s in a conser-
vative and tested timing setup. As the SelectMAP interface can upload bitstreams
at a rate of 50 MByte/s, an additional decompression plugin would accelerate the
reconfiguration time when used on compressed bitstreams.

The final board implementation of the BabyBoard and MotherBoard is shown in
Fig. 3.10. The reconfiguration manager has been implemented in the Spartan-II 400
FPGA which is located close to the 64 MByte flash device and the main Virtex-II
6000 FPGA. Technical data sheets as well as software, primer applications, and user
information is available at http://www.r-space.de.

The separation of BabyBoard and MotherBoard was made in order to customize
the ESM architecture to other application domains such as automotive. In order to
do so, a new MotherBoard could be designed to have different peripherals such as
CAN, LIN, FlexRay controllers, and A/D and D/A converters.

3.6 Case Study: Video and Audio Streaming

Video streaming can be defined as the process of performing computations on video
data streams. Many video algorithms process the data stream picture-by-picture.
Usually, a picture frame is transmitted pixel-by-pixel and therefore can be processed
on a pixel-by-pixel basis. However, since a lot of algorithms require the neighbor-
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Fig. 3.10 Implementation of the ESM BabyBoard (left) and MotherBoard (right). Technical data
sheets as well as software and application codes are available at http://www.r-space.de.

hood of a pixel, e.g., for filtering, often at least one complete frame must be stored
and processed before the next one can be accessed. Capturing the neighborhood of
a pixel is often done using a sliding window [6] the size of which varies according
to the size of a neighbor region. A given set of buffers (FIFO) is used to update the
window. The number of FIFOs varies according to the size of the window. In each
step, a pixel is read from the memory and placed in the lower left cell of the window.
Up to the upper right pixel which is disposed, i.e., output, all the pixels in the right
part of the window are placed at the queue of the FIFO one level higher.

In the field of video compression, the processing is usually done in a block-
by-block basis, different from the sliding window concept. However, the overall
structure is almost the same.

As shown in Fig. 3.11, the architecture of a video streaming system is usually
built on a modular basis. The first module buffers with the image captured from an
image source. This can be a camera or a network module which collects the picture
data through a network channel, or any other source. The frames are alternately
written to the SRAM banks RAM1 and RAM2 by the capture module. The second
module collects the picture from RAM1 or RAM2 if this RAM module is not in
use by the first module, builds the sliding windows and passes it to the third module
which processes the pixel and saves it in its own memory or directly passes it to
the next module. This architecture presents a pipelined computation in which the
computational blocks are the modules that process the image frames. RAMs are
used to temporally store image frames between two modules, thus allowing a frame
to stream from RAM to RAM and the processed pictures to the output. An adaptive
video streaming system is characterized by its ability to optimize the computation
performed on the video stream according to changing environmental conditions. In
most cases, only one module on the computation chain must be changed while the
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Fig. 3.11 A modular architecture for video streaming as implemented onto the slot-based structure
of the ESM.

other keep running. The video capture module, for example, can be changed if we
want to optimize the conversion of pixels to match the current brightness or the
current landscape. It is also possible to change the video source from a camera to a
new one with different characteristics. In an adaptive system, the functionality of a
module on the computation path should be changed very fast without affecting the
rest of the system. This can be done by providing some parameters to the module
to instruct it to switch from one algorithm to the next one. However, the structures
of the basic algorithms are not always the same. A Sobel filter [13], for example,
cannot be changed into a Laplace filter by just changing the parameters. This is
also true for a Median-operator which cannot be replaced by a Gauss-operator by
just changing parameters. Network and camera require two different algorithms for
capturing the pixels. In many cases, the complete module should be replaced by a
module of the same size, but different in its structure while the rest of the system
shall keep running.

Our ESM architecture fulfills the prerequisites for a modular pipelined and adap-
tive system for video streaming. In the system architecture presented before, we
divided the device into slots, which each of them can implement a given module.
RAMs are provided to the north of the device while the southern pins can be used
by modules to communicate with the rest of the environment.

3.7 Usage of the ESM in Different Fields

Built in order to make partial hardware reconfiguration become a reality, the ESM
platform has shown its benefits as a general interdisciplinary platform already in
several quite different application fields and other research projects as well:
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• Reconfigurable Networks (ReCoNets): In the ReCoNets project (see Chap. 11),
reconfigurable nodes are connected together to form a network of reconfig-
urable computers. Novel procedures for self-repair and intelligent partitioning
were developed to achieve a higher level of fault tolerance. In order to guarantee
short repair times in case of node defects, the placement of tasks is optimized
and replicated nodes are created. The ESM platform has been integrated and
used in this network. According to Chap. 11, applications taken from automo-
tive networking have been shown to provide sophisticated implementations for
hardware and software tasks that may migrate within the network.

• Reconfigurable Operating Systems (ReCoNos): The group of Prof. Platzner de-
veloped new aspects of operating systems for reconfigurable hardware based on
the ESM platform (see Chap. 13). Hereby, it was shown for the first time that
operating system resources could be shared between software programs and re-
configurable hardware modules, e.g. for synchronization.

• Partial Module Visualisation: The group of Prof. Becker is known for their re-
search on dynamic 2D routing and placement (see Chap. 12). The ESM platform
provided here an ideal experimentation platform due to its large FPGA without
integrated processors and the unfragmented resources. The external PowerPC
was applied for on-line reconfiguration of the routing calculations. Furthermore,
a visualizer of reconfigurable modules was developed and demonstrated at FPL
2008:

• Reconfigurable Videoengines (AutoVision): The ESM was also applied to de-
velop a reconfigurable driver assistance system. The group of Prof. Stechele
(see Chap. 18) working on reconfigurable video engines which adopt to the
current driving situation in order to increase driving compfort and prevent car
accidents. The ESM platform was applied because of its flexibility, and the suf-
ficient available memory. Results of joint work have been published in [10, 5].
Notably, partially reconfigurable video engines applied to automotive applica-
tions were demonstrated at the CeBit 2008, see Fig. 3.12.

• Partitioning Strategies: The group of Prof. Merker applied the ESM for the im-
plementation of parallel algorithms, because (1) the FPGA provided sufficient
resources for the implementation, (2) local SRAM allowed the implementation
of tasks, which needed a lot of local storage, and (3) the communication struc-
tures of the ESM offered new opportunities for the exchange of data between
tasks. Furthermore, the ESM was used to develop new partitioning strategies.

• Task Preemption: Despite the possibility to execute several hardware tasks in
parallel on an FPGA, partial reconfiguration runs typically sequential. There
exists only one reconfiguration port which is used exclusively during the recon-
figuration of a task (module) on all available platform. Single processor schedul-
ing algorithms for task reconfiguration with preemption have been evaluated in
a real time application implemented on the Erlangen Slot Machine. Besides
allowing reconfigurable connections of peripherals to pins of the FPGA, the
Virtex-II FPGA of the ESM allows to host applications requiring quite a large
number of slots. This has been used to study and develop preemption in the
reconfiguration phase, see [11].
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Fig. 3.12 The group of Prof. Stechele and Prof. Teich at the CeBIT 2008 demonstrating the par-
tially reconfigurable video modules on the Erlangen Slot Machine.

• Security of ECC implementations: The Erlangen Slot Machine was finally also
used in the project of securing ECC implementations against differential power
analysis by Prof. Huss, see Chap. 19.

3.8 Conclusions

We have presented a new dynamically reconfigurable computer architecture called
Erlangen Slot Machine (ESM) that was built for reasons that many brilliant ideas
for reconfigurable computers and for dynamic resource management cannot be effi-
ciently and directly transfered using currently available technology, mainly because
of I/O-pins, memory, and inter-module communication constraints. Although new
generations of FPGAs do provide new reconfiguration opportunities such as smaller
entities of reconfiguration, the ESM is a unique stand-alone reconfigurable com-
puter that has shown to bridge this gap by providing (a) new architectural concepts
to avoid the above physical problems and restrictions, (b) new inter-module com-
munication concepts, as well as (c) an intelligent module reconfiguration manage-
ment.
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The development of the ESM board was a huge task, and would have been impos-
sible without a tight joint work on different fields, therefore we feel deeply indepted
to the people mentioned in Table 3.1 and would like to thank them for their hard
work.

Table 3.1 List of people involved in the development of the ESM computer.

Person Task
Mateusz Majer Project coordinator, firmware, board design, video demonstrator
Josef Angermeier Operating system, firmware, ESM tutorial, taillight engine demonstrator
Bruno Kleinert Reconfiguration manager driver
Thomas Stark Crossbar driver
Ulrich Batzer Taillight engine demonstrator
Matthias Kovatsch Taillight engine demonstrator
Amouri Abdulazim Main FPGA visualizer
Diana Göhringer RMB communication
Andre Linarth Motherboard PCB
Ding Li Crossbar design
Peter Asemann Programmer’s interface
Christian Freiberger Reconfiguration manager
Jan Grembler Video demonstrator
Felix Reimann RMB communication
Christoph Lauer Module relocator
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Priority Programme 1148, Reconfigurable Computing Systems. We would also like to acknowledge
the DFG for providing monetary support to build 20 prototypes of the ESM boards that are used
today in the above projects but also on a lending base at some universities world-wide. Thanks also
to Patrick Lysaght at Xilinx.
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Chapter 4
Models and Algorithms for Hyperreconfigurable
Hardware

Sebastian Lange and Martin Middendorf

Abstract A new concepts for run time reconfigurable systems called hyperrecon-
figuration is investigated in this project. Hyperreconfigurable architectures can dy-
namically change their reconfiguration potential to adapt to the current needs of a
computation and therefore gauge high flexibility with high reconfiguration overhead
against small flexibility with reduced overhead. Within this concept we also propose
the use of multi-level reconfiguration where higher-level hyperreconfiguration op-
erations define the flexibility of the system for reconfiguration while lower-level
reconfiguration operations alter the system’s functionality within the limits set by
the preceding hyperreconfigurations.

4.1 Introduction

Dynamically reconfigurable architectures or systems can adapt their function and/or
structure to suit the changing needs of a computation during run time (e.g., [1]).
The advantage of run time reconfiguration is that it allows new algorithmic solu-
tions for many applications. A principle problem of such architectures is that the
high flexibility offered by a large number of reconfigurable components leads to a
large amount of information required for reconfiguration. This large amount of data
transfer makes run time reconfigurations time critical operations. Therefore, new ap-
proaches for dynamic reconfiguration have been proposed in the literature in the last
years to cope with this problem. Compression methods for the reconfiguration bit
stream can reduce the amount of data that has to be transferred to the chip [2]. The
compression methods can be enhanced by a reordering of the frames in the con-
figuration data [24] or by considering differential configuration data [5, 23]. Also
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special hardware that allows to address a set of reconfiguration bits that receive the
same value has been designed (an example is the wildcard mechanism of the Xilinx
XC6200 [3]). Computation of the reconfiguration bits directly on the chip can also
prevent long loading time (see [6, 25, 26]). For partial reconfigurable architectures
it is advantageous to reuse certain frames (see Chap. 8).

Another concept to make run time reconfiguration faster has been introduced by
the authors in [10, 13]. It uses the fact that algorithms or computations typically
consist of different phases where during each phase only a fraction of the reconfig-
uration potential of the underlying architecture is needed. The idea is to make the
reconfiguration potential itself reconfigurable, i.e., to adapt the actually available
set of reconfigurable resources (and thus the number of reconfiguration bits that are
necessary to define the state of the architecture during reconfiguration) to the actual
needs during run time. Then the smaller the actual reconfiguration potential of an
architecture is the smaller is the amount of reconfiguration information that has to be
transferred during reconfiguration and therefore the faster is a corresponding recon-
figuration step. Architectures that follow this concept are called hyperreconfigurable
[10, 13]. Since the reconfiguration takes place on different levels in this architectures
they are also multi-level reconfigurable. In this chapter we give an introduction and
overview on some of our work on hyperreconfigurable architectures. Because of
the page limit we can neither give proofs nor algorithms. Also, some topics can
not be covered here. These are hyperreconfigurable architectures with caches for
(hyper-)contexts (for details see [16]), multi-task hyperreconfigurable architectures
(for details see [11, 14]), online strategies for hyperreconfigurable architectures (for
details see [19]), and applications to control systems (for details see [9]).

This chapter is organized as follows. In the next Sect. 4.2 the concept of hy-
perreconfigurable architectures is introduced. Example Architectures and test ap-
plications that are used to obtain experimental results are described in Sect. 4.3.
Section 4.4 discusses the algorithmic problem to decide when hyperreconfiguration
operations should be executed and which hypercontexts should be used. Section 4.5
discusses different levels of granularity for the reconfiguration of multi-level hyper-
reconfigurable architectures. A comparison of partially reconfigurable architectures
to hyperreconfigurable architectures is presented in Sect. 4.6.

4.2 Hyperreconfigurable Machines

In this section we introduce the concept of hyperreconfiguration for reconfigurable
architectures with two levels of reconfiguration. This concept is then extended to
more than two levels of reconfiguration.

2-level Reconfiguration A configurable system is considered here as a parameter-
izable electronic system for information manipulation with a set P = {p1, . . . , pn}
of parameters. We assume that all of the parameters are vital for the system’s opera-
tion. In order to be operational, a configurable system must be given a sequence c̄ of
n parameter values (the ith value assigned to pi). Let C̄ be the set of all sequences
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of parameter values that define a possible state of the system, i.e., they are feasi-
ble. A system is run time reconfigurable when some of the parameter values can be
changed multiple times and at run time. In this chapter we assume that all param-
eters in P are run time reconfigurable. We call a sequence c̄1, . . . , c̄n of parameter
values where c̄i is a possible value for pi a context. The operation that assigns new
values to the parameters is called (ordinary) reconfiguration (operation).

The idea of hyperreconfiguration is to parameterize the reconfiguration poten-
tial of a system itself by introducing a two-level run time reconfiguration scheme.
On the upper level of reconfiguration, the system provides an additional set P ′ =
{p′

1, . . . , p
′
n} of parameters that adapts the reconfiguration potential of the system.

In other words, the upper level of reconfiguration restricts the set of run time pa-
rameters that are available for reconfiguration. On the lower level, only those pa-
rameters of the run time reconfigurable system that were made available by the
previous upper level reconfiguration can be assigned new values during reconfigu-
ration. Systems that provide this capability are called hyperreconfigurable systems.
An operation that assigns new values to the parameters in P ′ is called hyperrecon-
figuration (operation) or upper level reconfiguration. We call a corresponding se-
quence h = h1, . . . , hn of parameter values where hi is a possible value for p′

i

a hypercontext. In this chapter we assume that p′
i is a boolean parameter. If its

value is ‘1’ then pi can be assigned a new value during a reconfiguration and oth-
erwise it is not available for reconfiguration (in this case it might have a default
value or the old value). Hence, a hypercontext h = h1, . . . , hn defines a subset
{pi | hi = 1, i = 1, . . . , n} of P which can be assigned a new value during recon-
figuration. Let |h| = | {pi | hi = 1, i = 1, . . . , n} |. It should be noted that a more
general definition for hyperreconfigurable systems has been given in [10, 13].

Concerning an algorithm or a computation that runs on a reconfigurable sys-
tem we are in this chapter only interested in those aspects of the algorithm that
have to do with reconfiguration. The specific computation operations that are ex-
ecuted between reconfiguration operations are not relevant here. Thus, we assume
that an algorithm that performs m reconfiguration operations is characterized by a
sequence c = c1, . . . , cm of context requirements where a context requirement ci

is a sequence ci = ci1, . . . , cin of boolean values. Hence, for each reconfiguration
operation there exists exactly one corresponding context requirement. If cij = 1 for
context requirement ci then the parameter pj might be assigned a new value during
the corresponding reconfiguration and otherwise it will not be assigned a new value.
Hence, a context requirement defines a subset of parameters from P that might be
assigned a new value during the corresponding reconfiguration operation. Let C be
the set of context requirements that are possible. Often it will not be possible to
determine in advance which parameters an algorithm will assign new values in a
configuration step. This is typically the case when a context depends on data that
are computed at run time. But for the concept of reconfigurable architectures it is
enough when an upper bound on the requirements that will actually be needed dur-
ing run time can be given. For example, it might be possible to know in advance
that the routing requirements will be low during a certain phase of the algorithm
even when the exact routing scheme is not known in advance. Note, that several
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methods for resource estimation on reconfigurable architectures have appeared in
the literature (e.g., see [4]).

In this chapter we consider only one special type of hyperreconfigurable sys-
tems which is called the switch model of hyperreconfigurable systems (for other
models see, e.g., [13]). Such systems are characterized by the following additional
assumptions: (i) every parameter pi ∈ P is boolean, (ii) C̄ = {0, 1}n, i.e., every
sequence of length n with values in {0, 1} is a feasible context, (iii) C = {0, 1}n,
i.e., every subset of P can be specified by an algorithm as a context requirement,
(iv) a reconfiguration operation is possible only if the actual hypercontext satisfies
the corresponding context requirement, i.e., for each i ∈ [1, n] with ci = 1 in the
corresponding context requirement the actual hypercontext has p′

i = 1.

Fig. 4.1 2-level reconfigurable switch box with three reconfiguration chains and memory cells xk
i ,

k ∈ {1, 2, 3, }.

To illustrate the concept of hyperreconfiguration consider the example of a
switchbox for an ordinary reconfigurable architecture (e.g., an FPGA (Field Pro-
grammable Gate Array)) as shown in Fig. 4.1. The switchbox has a set X =
{x1, . . . , xn} of switches. The state of each switch xi is defined by the value of
parameter pi which is stored in a corresponding memory cell x1

i (e.g., an SRAM
cell). During reconfiguration the memory cells are chained sequentially to form a
reconfiguration chain which acts similarly to a shift register, shifting in one bit c̄i

of the new context c̄ and shifting out one bit of the old context at each time step.
This is done until each value c̄i is stored in the memory cell x1

i of its corresponding
switch xi, i = 1, . . . , n. Thus for an ordinary reconfigurable switchbox it is neces-
sary to define the state of every switch, i.e., n values c̄i have to be transferred into
the reconfiguration chain.

For a hyperreconfigurable switchbox it is assumed that a single memory cell x2
i

(hypercontext memory cell) is added to the architecture for each switch xi. Each hy-
percontext memory cell x2

i manipulates two additional switches—one in front and
one behind the corresponding (context)-memory cell x1

i . These switches control
whether the memory cell x1

i is part of the shift register and the reconfiguration bits
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are sent through the memory cell during reconfiguration, or bypass it and thereby
exclude the switch xi from reconfiguration. Loading a new hypercontext is done
analogously to reconfiguration: the (hypercontext) memory cells form a shift regis-
ter and the bits of the new hypercontext are shifted in. In the example of Fig. 4.1 two
of the three shown hypercontext memory cells contain ‘1’ which means the corre-
sponding context SRAM cells are included in the current chain of context memory
cells. The other hypercontext memory cell contains ‘0’ which means the correspond-
ing context memory cell is bypassed and therefore not included in the current chain
of context SRAM cells. Since the number of bits in the hypercontext is always the
same, the time for a hyperreconfiguration step does not change.

To measure the costs (time) for (hyper-)reconfiguration operations two cost mea-
sures are used: (i) init(hprev , h) is the cost of performing a hyperreconfigura-
tion that brings the machine from hypercontext hprev into a new hypercontext h,
(ii) costh(c̄prev , c̄) denotes the cost of an ordinary reconfiguration that brings the
machine from context c̄prev into context c̄ when the machine is in hypercontext h.
For the switch box model the time is measured as the number bits that have
to be transfered, i.e., the time to load the (hyper-)context bits into the (hyper-)
context memory cells (assuming one time unit is the time to load one bit). Thus,
init(hprev , h) = init(hh) = n and costh(c̄prev , c̄) = |h| is the number of context
memory cells that are included into the reconfiguration chain under hypercontext h.

An implementation of an algorithm C = c1, . . . , cm on a hyperreconfigurable
machine is characterized by a partition of C into substrings S1, . . . , Sr (i.e., C =
S1 . . . Sr) and hypercontexts h1, . . . , hr, r ≥ 1 such that each context requirement
in Si is satisfied by hi (because hi is the hypercontext of the hyperreconfiguration
that is executed before the first reconfiguration of Si). The corresponding total re-
configuration costs are r ·n+(

∑r
i=1 |hi| · |Si|) where |Si| is the length of Si, i.e., the

number of context requirements in Si. It is assumed that a hyperreconfiguration is
always performed before the first reconfiguration step. Figure 4.2 shows an example
of an algorithm and its implementation on a hyperreconfigurable machine.

Fig. 4.2 Algorithm as a sequence c1, . . . , cn of context requirements for 20 parameters (switches)
and a sequence of contexts and hypercontexts that would correspond to a valid implementation if
h6 had switch p20 enabled.
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Multi-level Reconfiguration So far we have considered machines with 2 levels
of reconfiguration but the concept can be extended to a higher number of reconfigu-
ration levels [18]. An L-level hyperreconfigurable machines (in the switch model),
L ≥ 2, has a set X(k) = {xk

1 , . . . , xk
n} of memory cells for each level k ∈ [1, L].

Analogously to the 2-level hyperreconfigurable machines, the content of one such
memory cell defines the presence of the corresponding memory cell in the recon-
figuration chain of its subsequent lower level. Thus, a memory cell xk

i is part of
the k-level reconfiguration chain if and only if the content of memory cell xk+1

i is
set to ‘1’. Likewise, the contents of the memory cells in the 2-level reconfiguration
chain define the availability of the corresponding switches for reconfiguration. The
configuration chain of the highest level L always contains all n memory cells. In the
following we call the contents of the memory cells belonging to the k-level recon-
figuration chain the k-level context and denote it by hk, k ∈ [1 : L]. Furthermore,
we refer to the reconfiguration operation changing a k-level context as a k-level hy-
perreconfiguration, k ∈ [2 : L]. Figure 4.2 shows an example of an algorithm and
its implementation on a hyperreconfigurable machine.

The amount of reconfiguration data for a k-level hyperreconfiguration is given by
the number of memory cells in the corresponding reconfiguration chain, determined
by hk+1. A k-level hyperreconfiguration requires also the reconfiguration of all lev-
els i, 2 ≤ i < k. During the execution of algorithm C = c1, . . . , cm, the L-level hy-
perreconfigurable machine performs the sequence of operations H1S1, . . . , HrSr.
Here Hi stands for a sequence of hyperreconfigurations at level ki to level 2,
ki ∈ [2 : L], and Si stands for a sequence of 1-level reconfigurations, which use
only those parts of the system that are made available by the 2-level context as
defined by Hi. The costs of a of a sequence H = hkhk−1 · · · h2 of hyperreconfig-
urations at levels k to 2 are init(H) = init(hk) + init(hk−1) + · · · + init(h2) =
|hk+1| + |hk | + · · · + |h3| (exception: if k = L then init(hk) = n). The total
reconfiguration costs of algorithm C are

∑r
i=1 init(Hi) +

∑r
i=1 |h2

i | · |Si|.
Heterogeneous Multi-level Reconfiguration Multi-level reconfigurable archi-
tectures allow for very flexible control of the reconfigurable resources since the
reconfiguration chains contain a memory cell for each switch at each reconfigu-
ration level. The number of memory cells required to implement the concept of
multi-level reconfiguration thus increases linearly with the number of reconfigura-
tion levels. On architectures where a great number of architectural parameters exist,
the implementation overhead induced by multi-level reconfiguration can severely
diminish the advantage of faster reconfiguration. To address this problem an exten-
sion of the concept of multi-level reconfigurable architectures is introduced which
allows for different numbers of reconfiguration levels for each switch xi ∈ X [15,
17, 18, 20]. Formally, a heterogeneous L-level hyperreconfigurable machine has for
each switch xi a distinct number of Li reconfiguration levels, 1 ≤ Li ≤ L. For each
switch there exists a set of memory cells Yi = x2

i , . . . , x
Li
i . X(k) is the set of mem-

ory cells of the form {xk
i | k ∈ [2 : Yi], i ∈ [1 : n]}. Any subset of X(k) can form a

reconfiguration chain depending on the content of the memory cells on the reconfig-
uration levels above. But memory cells on the highest level (i.e., memory cells xLi

i ,
i ∈ [1 : n] ) are always part of their reconfiguration chain. Costs and hyperrecon-



4 Hyperreconfigurable Hardware 81

figuration operations are defined analogously as for multi-level hyperreconfigurable
architectures.

4.3 Example Architectures and Test Cases

In order to evaluate and validate our concepts fine-granular and coarse-granular hy-
perreconfigurable model machines have been used.

Fine-granular Hyperreconfigurable Machine The fine-granular machine that
has been designed for this evaluation is called Simple Hyper-Reconfigurable Ar-
chitecture (SHyRA). It can be can be seen as a model of a simple a 1-dimensional
FPGA. The SHyRA (see Fig. 4.3) consists of a set of reconfigurable LUTs, a stor-
age for intermediate values is facilitated by a file of single bit registers, which are
connected to the LUTs by a multiplexer (MUX) and a demultiplexer (DeMUX).
These multiplexers are implemented as full crossbars from all registers to all input
ports of each LUT and respectively from each LUT output to all registers for the
demultiplexer. The system interfaces to the outside world through the content of the
register file. The architectural design should be regarded as an architectural tem-
plate, which can be parameterized with the number of registers and LUTs to expose
and the number of inputs per LUT.

Fig. 4.3 Simple Hyper-Reconfigurable Architecture (SHyRA).

The execution of a computation on SHyRA is cycle-based. Each computational
cycle consists of the following two steps:

1. Input stimuli are propagated from the registers through the multiplexer to the
corresponding inputs of the LUTs.

2. A new output value is generated by each of the LUTs.
3. The resulting values transferred to their destination register in the register file

by using the demultiplexer.
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Hyperreconfiguration and reconfiguration operations can be performed before
every computational cycle. The structure of SHyRA prohibits the use of LUTs in
sequence in one cycle. In order to implement complex logic functionality exceeding
the capabilities of single LUTs, multiple cycles are required to evaluate the complete
circuit. Due to this restriction, application processes are forced to make extensive
use of reconfiguration operations.

In order to facilitate an easier access to SHyRA, a compiler tool was imple-
mented. This compiler translates structural VHDL descriptions into reconfiguration
data suitable for SHyRA. The structural VHDL descriptions hereby make use of the
Xilinx simulation primitives found in the SimPrim library. The implementation of
this compiler is based on previous work described in [8].

The reconfiguration data of the SHyRA consist of three parts: (i) data for con-
figuration of the multiplexer, (ii) data defining the truth tables of the individual
memories, (iii) data for configuration of the demultiplexer. The Switch model of
hyperreconfigurable architectures fits well to the SHyRA, because for each of the
three types of reconfigurable resources every reconfiguration bit can be viewed as a
binary switch.

The test cases implemented on the SHyRA consist of an 8 bit ripple carry adder,
an LED decoder, and a 4 bit counter circuit. The resulting reconfiguration data de-
scribe 79 reconfigurations for the adder circuit, 224 for the LED decoder and 48
reconfigurations for the counter. The sequences of context requirements were ex-
tracted as follows: if a bit changes its value between subsequent reconfigurations is
included in the corresponding context requirement. In order to determine the context
requirement of the first reconfiguration operation, it was assumed that all parame-
ters (reconfiguration data) have been set to zero prior to the first reconfiguration. The
resulting sequences of context requirements for the counter is presented in Fig. 4.4.

Fig. 4.4 Sequence of context requirements for the counter application.

Coarse-granular Hyperreconfigurable Machine For a coarse-grained example
of reconfiguration, a VLIW processor is seen as a hyperreconfigurable machine
where the functional units are the reconfigurable resources. A reconfiguration step
takes place every clock cycle. Executing an algorithm on a VLIW processor thus
closely resembles a rapidly reconfiguring system. Because of the high number of
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functional units a VLIW code word frequently encodes idle operations for units
currently not usable due to a lack of parallelism in the algorithm. The concept of
hyperreconfigurability can be employed to limit the effect of these idle operations.

The TMS320C6201 signal processor from Texas Instruments was used for the
experiments. It features four types of functional units (L = logic, M = multiply,
D = load/store, S = shift) with two units of each type. The functional units are di-
vided into two sets, with each set containing one of the two units of each type. Each
set of units uses its own file of registers. The sharing of data between functional units
of different sets is implemented through cross-connection circuitry, which allows
only one unit of a set to read data from the register file of the other set. The proces-
sor is accompanied by a C compiler framework, which produces highly optimized
and parallelized code. The compiler flow also allows for an output of the assem-
bly code which includes the assignment of instructions to corresponding functional
units. This assignment provides information about the usage of individual functional
units and thus their need for reconfiguration.

As test cases two algorithms, a Finite Impulse Response (FIR) filter and a vector
summation, were implemented in C. The compiler framework was used to obtain
parallelized VLIW code. The resulting code, which essentially represents the re-
configuration data of the processor, was then executed. During execution, the state
(idle or busy) of each functional unit was recorded at each clock cycle, yielding an
8-bit vector for every clock cycle. The sequence of these vectors for each execu-
tion of the algorithms can be viewed as a sequence of context requirements for a
hyperreconfigurable system that functions according to the Switch model. The se-
quence of 63 (44) context requirements was obtained for an execution of the FIR
filter (respectively vector summation) on a data set of 124 (respectively 62) values.

4.4 The Partition into Hypercontexts Problem

An important problem that emerges for a hyperreconfigurable machine and a given
algorithm (i.e, a sequence of context requirements) is to define when hyperreconfig-
urations should be done and how corresponding hypercontexts are defined such that
the context requirements of the algorithm are satisfied and the total hyperreconfig-
uration costs are minimized [12, 13]. Formally we define (the definition for L-level
reconfigurable machines can be done analogously).

Partition into Hypercontexts (PHC) problem: Given a hyperreconfigurable ma-
chine and a sequence C = c1 · · · cm of context requirements. Find a partition of
C into substrings S1, . . . , Sr (i.e., C = S1 · · · Sr) and hypercontexts h1, . . . , hr,
r ≥ 1 such that every context requirement in Si is satisfied by hi and the total
reconfiguration costs are minimal.

Theorem 4.1. The PHC problem is NP-complete for general 2-level reconfigurable
machines [13].
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Theorem 4.2. The PHC-problem can be solved on heterogeneous L-level reconfig-
urable machines in the switch model in time O(m3 + m2(m2 + n)(L − 2) + m2n)
[18, 7].

It should be noted that for L = 2 the run time can be improved to O(m2n). For
a given algorithm it is also interesting to find the optimal number of reconfiguration
levels so that the reconfiguration costs become minimal. Formally, we define

Reconfiguration Level (RLP) problem: Given a hyperreconfigurable machine and
a sequence C = c1 · · · cm of context requirements. Find a number L of reconfig-
uration levels so that the solution of the corresponding PHC problem for L-level
reconfigurable machines is minimal.

The corresponding problem for heterogeneous machines is to find for each switch
the best number of reconfiguration levels, given that L is the maximum number of
reconfiguration levels, L ≥ 2. This problem is called the Heterogeneous Reconfigu-
ration Level (H-RLP) problem.

Theorem 4.3. The RLP problem is solvable for multi-level reconfigurable machines
in the switch model in polynomial time O(nm5 + m6) [18].

Theorem 4.4. The H-RLP problem is NP-hard for heterogeneous multi-level recon-
figurable architectures in the switch model even when the maximum number of re-
configuration levels is only 2 [18].

Since the H-RLP is NP-hard a polynomial time heuristic Het_Rlp_Heur has
been developed. As a starting point, consider a homogeneous L-level reconfigurable
machine with n switches and an algorithm C = {c1, . . . , cm}. As a first step, the
PHC problem is solved which results in a cost minimal assignment of upper level
contexts to context requirements. Keeping the context assignment fixed, the change
of reconfiguration costs when decreasing the number of reconfiguration levels Li for
a single switch xi by 1 is determined. Observe that lowering the number of reconfig-
uration levels has two effects: (i) the overall reconfiguration costs are decreased by
the number zi of Li-level hyperreconfigurations, (ii) the overall costs are increased
by the number of (Li − 1)-level hyperreconfigurations wi during which the mem-
ory cell xLi −1 is not part of the (Li − 1)-level reconfiguration chain. Therefore, it
is only advantageous to decrease the number of reconfiguration levels Li of switch
xi if zi ≥ wi. After the numbers of levels have thus been adjusted for all switches
the PHC problem is solved again. The heuristic strategy repeats these steps until no
further reduction of the number of reconfiguration level can be achieved.

4.4.1 Experiments and Results

In the following, we experimentally evaluate the merits of multi-level reconfigurable
architectures. The minimum total reconfiguration costs of the five sample applica-
tions (described in Sect. 4.3) have been computed for homogeneous and hetero-
geneous multi-level reconfigurable architectures and compared to standard 1-level
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reconfigurable machines. Note, that the results for the heterogeneous machines have
been obtained by using heuristic Het_Rlp_Heur whereas the other results are ex-
act solutions. Furthermore, the number of reconfiguration levels yielding overall
minimal reconfiguration costs are determined by solving the RLP problem for ho-
mogeneous architectures and for heterogeneous architectures.

The results presented in Table 4.1 show that the introduction of multi-level re-
configuration strongly reduces the reconfiguration costs for all test applications. The
cost reduction compared to standard 1-level reconfiguration ranges for the homoge-
neous case from 21.3% for the vector sum to 87.0% for the LED decoder. Already,
the introduction of one additional reconfiguration level leads to a reduction between
21.3% for the vector sum to 80.1% for the LED decoder in the homogeneous case.
The optimal number of reconfiguration levels is between 2 and 4 in the homoge-
neous case. Adding more reconfiguration levels than optimal leads to a linear in-
crease of the reconfiguration costs in all five test applications.

Table 4.1 Minimal total reconfiguration costs obtained for the five test application an architecture
using full reconfiguration (1-level) and on homogeneous (Hom.) and heterogeneous (Het.) multi-
level reconfigurable architectures with numbers of reconfiguration levels ranging from 2 to 8; costs
of the RLP and Het-RLP-Switch solutions are printed in bold.

8-Bit Adder Counter LED Decoder FIR LMS Vector Sum
Hom. Het. Hom. Het. Hom. Het. Hom. Het. Hom. Het.

1 level 4424 5280 34720 504 496
2 level 1458 1458 3761 3761 6898 6898 397 397 281 281
3 level 1254 1244 3479 3442 5010 4994 405 397 276 270
4 level 1245 1184 3516 3442 4527 4485 413 397 280 268
5 level 1291 1184 3553 3442 4550 4351 421 397 286 268
6 level 1345 1184 3590 3442 4619 4347 429 397 292 268
7 level 1399 1184 3627 3442 4773 4347 437 397 298 268
8 level 1453 1184 3664 3442 4930 4347 445 397 304 268

The introduction of heterogeneous multi-level reconfiguration leads in four of
the five tests cases to a small (less than 5%) further reduction of the reconfigura-
tion costs compared to the homogeneous case. This holds also when the maximum
number of reconfiguration levels is the same as for the best homogeneous case. It
should be noted, that in the latter case (and often also in the former case) an addi-
tional advantage of the heterogeneous machines that they need less memory cells.
Moreover, the cost reduction for the heterogeneous machine might become larger
using an improved heuristic for the RLP problem.

In order to study the impact of individual reconfiguration levels on the total re-
configuration costs the portion of the reconfiguration costs caused by each individ-
ual level k, k ∈ [1 : L] is depicted in Fig. 4.5 for the 8-bit adder. The figure shows
clearly that the lowest reconfiguration level generates the largest portion of the total
reconfiguration costs (this holds also for the other four test applications). This result
is to be expected as the lowest reconfiguration level provides the actual data of the
architecture’s reconfigurable units. Mostly the higher-level reconfiguration opera-
tions are less often performed because each k-level hyperreconfiguration requires a
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reconfiguration of all lower levels. On the other hand the number of memory cells
which are included in the reconfiguration chain can only decrease for lower levels.
Therefore, it is possible that a higher level has a larger part of the reconfiguration
costs as a lower level. An example is the 8-bit adder in Fig. 4.5 on a homogeneous
machine with L = 15. In this case, the accumulated costs for the 15-level hyper-
reconfigurations is 79 whereas for it is only 54 for the 14-level hyperreconfigura-
tions. It can also be seen that the higher levels have smaller reconfiguration costs for
the heterogeneous machines compared to the homogeneous machines.

Fig. 4.5 Reconfiguration costs on different levels for the 8-bit adder on homogeneous multi-level
reconfigurable machines (left) and heterogeneous multi-level reconfigurable machines (right).

4.5 Diverse Granularity in Multi-level Reconfigurable Systems

Whereas multi-level reconfigurable systems significantly reduce the costs, they re-
quire a large number of additional memory cells to store upper level contexts. When
looking at the reconfiguration behavior of individual run-time parameters, there typ-
ically exist groups of parameters, which are always changed together. For example,
all reconfiguration bits of a single LUT or the switches of a switchbox change their
values together because they are functionally linked. The availability for reconfigu-
ration of such a group of parameters can therefore be controlled by a single memory
cell in the hypercontext. This reduces the number of necessary memory cells. Fur-
thermore, as hypercontexts contain less memory cells, the cost of a hyperreconfig-
uration operation decreases as well. Because the number of parameters controlled
by an individual memory cell can differ between cells, we call this approach diverse
granularity.

A possible disadvantage of diverse granularity is that it reduces the flexibility of
reconfiguration of the system. The entire group of parameters controlled by a single
memory cell must be reconfigured, even if only one parameter requires new data.
Hence, the design of the architecture is a trade-off between high flexibility of recon-
figuration, which requires many memory cells and a more efficient implementation
with less memory cells but also less flexibility. Thus, during the design of a multi-
level reconfigurable architecture with diverse granularity, two main questions have
to be answered: How many memory cells should be used for each level and which
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memory cells (or switches) should a memory cell control? This problem is called
the Hypercontext Design (HD) problem, formally defined as follows.

Hypercontext Design (HD) problem: Given an algorithm as a sequence of context
requirements S = c1, . . . , cm for a set of n switches with memory cells X(1) =
{x1

1, . . . , x
1
n} and an integer L. Define an L-level reconfigurable machine in the

switch model with sets X(k) = {xk
1 , . . . , xk

nk
}, k ∈ [2 : L] of memory cells for

chosen numbers n ≥ k2 ≥ · · · ≥ kL ≥ 0, and define a partition πk of X(k), k ∈
[1 : L − 1] into nk+1 sets X

(k)
1 , . . . , X

(k)
nk+1 such that the total reconfiguration cost

for the given algorithm are minimized, when executed on the defined architecture.
The partition of X(k), k ∈ [1 : L − 1] into nk +1 subsets defines then an assignment
of the jth memory cell on level k + 1, j ∈ [1 : nk+1] to all memory cells in the jth
subset of the partition. This assignment means that either all cells in the jth subset
of the partition are included in a context (when the jth memory cell on level k + 1
is set to 1) or all are excluded (when the jth memory cell on level k + 1 is set to 0).

The above definition of the HD problem allows resulting architectures to con-
tain memory cells that control an arbitrary subset of lower-level memory cells. We
therefore call this the set model of granularity. For many systems, grouping arbi-
trary sets of memory cells is not desirable (e.g., because the wiring becomes too
complex). Therefore we introduce a variant of the HD problem where it is required
that all memory cells (or switches) which are controlled by a single memory cell
must form a consecutive subchain of their corresponding reconfiguration chain on
the level below. The resulting problem that is analogous to the HD problem is called
the Interval Hypercontext Design (I-HD) problem.

Fig. 4.6 Switch box with different granularity; full model (left), interval model (middle), set model
(right).

Theorem 4.5. The HD problem in the switch model is NP-hard for 2-level reconfig-
urable architectures [20].

Theorem 4.6. The I-HD problem in the switch model is NP-hard for 2-level recon-
figurable architectures [20].

We consider a special case of the I-HD-Switch problem, where suitable hyper-
contexts and the time steps for all hyperreconfiguration operations have been pre-
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determined for the given sequence of context requirements. This special case is
called the I-HD with Fixed Hypercontext Assignment (Fixed-I-HD) problem. The
corresponding problem for the HD problem is called HD with Fixed Hypercontext
Assignment (Fixed-HD) problem.

Theorem 4.7. Given an algorithm as a sequence m context requirements and an
L-level reconfigurable architecture, L ≥ 2 with n switches. An exact solution to the
Fixed-I-HD problem in the switch model can be found in polynomial time O(mn2 +
n2(n + m)(L − 2)) [7, 20].

Theorem 4.8. The Fixed-HD-Switch problem is NP-hard [20].

As simple observation for the Fixed-HD problem is that the memory cells of a
given solution can be conceptually permuted for each level. This observation has
been used in [18] to develop a polynomial time heuristic for the Fixed-HD prob-
lem that uses the exact algorithm for the Fixed-I-HD and heuristically finds a good
permutation of the memory cells so that the corresponding Fixed-I-HD is good.

So far it was shown that the two subproblems of I-HD, the optimal partition-
ing of a sequence of context requirements into hypercontexts and the definition of
an optimal architecture, can be solved exactly and efficiently in the switch model.
However, this does not contradict the NP-hardness of the I-HD problem. Each op-
timal solution to either subproblem presumes the previous optimal solution of the
other subproblem. The partitioning into hypercontexts assumes an optimal architec-
ture has been defined whereas the Fixed-I-HD-Switch problem requires an optimal
partitioning into hypercontexts to generate it. Heuristic strategies for finding a good
solution in polynomial time which are based on solving both subproblems exactly
have been designed in [18]. A similar strategy has been used to develop heuris-
tics for the HD problem. A difference is that the second subproblem, the Fixed-HD
problem, is NP hard and can therefore not be solved optimally within a polynomial
time heuristic (if NP �=P). Therefore, the polynomial time heuristic for solving the
Fixed-HD problem is used to solve this subproblem. The heuristic has a parameter
ξ which gives a weight to the reconfiguration costs corresponding to all levels ≥2.
For a large values of ξ the benefit of reducing the number of memory cells increases.
Thus, it is possible to get architectures with a different number of memory cells for
different values of ξ.

The results for the I-HD and the HD problem are shown in Table 4.2 for the
five test applications and are compared with 1-level reconfiguration and multi-level
reconfiguration in the full model, i.e., the number of memory cells on all levels is n.
It can be seen that (with one exception) the concept of diverse granularity reduces
both the total reconfiguration costs as well as the number of memory cells used. The
set model shows better results than the interval model for all test cases. However,
this is not surprising, because the set model provides more flexibility in choosing
which switches are grouped together. Note also that the cost reduction achieved
for the two coarse-grained test samples is smaller than for the fine grained samples.
One reason is that often in the fine grained applications switches have a more similar
usage pattern.
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Table 4.2 Number of switches (#Switches), number of reconfiguration operations (#Reconfigura-
tions), average switch use, (minimal) total reconfiguration costs (Costs) with associated number of
reconfiguration levels (in parenthesis) for the five test applications: 8 bit ripple carry adder, counter,
LED decoder, FIR filter and vector summation.

Adder Counter LED Decoder FIR LMS Vector Sum
#Switches 79 48 224 8 8
#Reconfigurations 56 110 155 63 62
Average switch usage in % 6.3 30.3 2.4 38.7 29.6

1-level reconfiguration
Costs 4424 5280 34720 504 496

PHC multi-level reconfiguration
Lowest cost (# rec. levels) 1245 (4) 3479 (3) 4527 (4) 397 (2) 278 (3)
#memory cells 237 96 652 8 16

I-HD (interval model)
Lowest cost (# rec. levels) 1175 (4) 3351(4) 3968 (5) 386 (3) 268 (3)
#memory cells 136 34 390 7 13

HD (set model)
Lowest cost (# rec. levels) 1042 (2) 2620 (3) 3774 (3) 390 (2) 269 (3)
#memory cells 16 13 123 9 7

The results of the heuristic for different values of ξ which result in different total
numbers ncell of memory cells on reconfiguration levels ≥ 2 are shown in Fig. 4.7
for the adder. Note that the extreme cases for ncell are (L − 1) × n, when each
level ≥2 has n memory cells, and L − 1 when each level ≥2 has only 1 memory
cell. The figure shows that the use of a small number of memory for a 2-level-
reconfigurable architecture already can reduce the reconfiguration costs strongly.
Architectures with more reconfiguration levels that have been constructed by the
heuristic need more memory to cells to obtain the same total reconfiguration costs
as for lower levels. Note, that it can occur that the minimum reconfiguration costs
are lower for a higher number of reconfiguration levels (e.g., in the interval model
in the left part of Fig. 4.7).

Fig. 4.7 Number ncell of memory cells on all reconfiguration levels ≥2 and reconfiguration costs
for architectures as found by the heuristic for the adder; interval model (left), set model (right).
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Comparing architectures for the full model and the interval model with similar
reconfiguration costs it can be seen that ncell is for the adder (counter, LED de-
coder, FIR LMS, vector sum) by a factor 2.6 (respectively 2.6, 7.2, 2.7, 1.1) larger
for interval model than for the full model (when both models have 2-levels of re-
configuration). This factor is 3.6 (respectively 3.4, 4.2, 1.2, 1.9) for 4 levels of re-
configuration. Note, that in all cases the cost difference is less than 1% (with one
exception where it is 6%) but the costs of the interval model are never larger than
for the full model. Thus, the relative advantage of the interval model depends on the
test application and on the number of reconfiguration levels.

We have assumed here that an architecture is designed for a single given algo-
rithm. This might not be realistic for some practical cases. But in that case it is also
possible to use our methods for a set of typical algorithms (further discussion [7]).

4.6 Partial Reconfiguration and Hyperreconfiguration

Current partially reconfigurable FPGAs define atomic groups of reconfigurable re-
sources, which can only be reconfigured together: we call them frames similar to the
notation used by Xilinx Virtex FPGAs (see also Chap. 3). Each of these frames con-
sists of a number of reconfigurable resources such as logic blocks and interconnect
resources. The size of a frame (i.e., the number of reconfiguration bits) is constant
for all frames in the architecture. In order to initiate a reconfiguration during run-
time, the reconfiguration subsystem of the FPGA is first given the location of the
frame at which to start reconfiguring and the number of frames for which new data
will be provided. Then, the corresponding data for the specified frames are transmit-
ted. If frames that are not adjacent in the reconfiguration chain must be reconfigured,
several separate reconfiguration operations have to be performed. This greatly adds
to the reconfiguration costs because a reconfiguration operation requires additional
padding data to be transmitted before the data of the first frame to ensure the correct
operation of the reconfiguration subsystem. Furthermore, the control data necessary
for addressing the sought frames induces a substantial overhead as these addresses
grow with the number of addressable frames and have to be specified at the start of
each partial reconfiguration operation.

Clearly, complex systems such as FPGAs provide trade-offs with respect to many
aspects of their design. Due to the topic of this project we will focus on the recon-
figuration overhead and consider partially reconfigurable FPGAs from an abstract
point of view to compare it to multi-level reconfigurable architectures (see also [21,
22, 7]).

4.6.1 Frame Model of Partially Reconfigurable Architectures

Partially reconfigurable architectures in the frame model comprise of an ordered set
of n reconfigurable units X = {x1, . . . , xn} where the order is according to the
sequence on the reconfiguration chain. A context requirement c ∈ C is defined as
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c ⊂ X , the subset of units that have to be reconfigured during a reconfiguration op-
eration. The architecture partitions the set of units X into a set of k non-overlapping
intervals F = {f1, . . . , fk }, which are the frames of the architecture. Given a con-
text requirement c ∈ C and a frame f ∈ F , all units x ∈ f have to be reconfigured if
f ∩ c �= ∅ and none of them is reconfigured otherwise. A context c̄ describes the re-
configuration data for those frames that receive new reconfiguration data. Partially
reconfigurable architectures can be modeled formally as two-level reconfigurable
architectures. The lower reconfiguration level comprises the transfer of the actual
data for reconfigurable units as defined by the context. The information of the upper
reconfiguration level designates which reconfigurable units receive data. In the case
of partially reconfigurable architectures, this consists of the initial padding data, the
number of frames to send and the address of the first frame. Conceptually, we have
thus assigned the transmission of the reconfiguration data to the lower reconfigura-
tion level, whereas the upper reconfiguration level describes the parameters of the
reconfiguration operation.

The cost model for this architecture is called frame cost model and is described
in the following. The cost cost(c̄) involved with the reconfiguration of a single con-
text c̄ (lower-level reconfiguration) is given by the sum of the sizes of the frames that
are reconfigured. The cost cost(c̄) of reconfiguring the upper level context encom-
passes the cost for initiating new reconfiguration operations, the address of the first
data frame and the number of consecutive frames to reconfigure. Here we propose
to ignore the costs for initiation because they are not necessary conceptually and
therefore might lead to an unfair evaluation of the partially reconfigurable model.
A reconfiguration operation is initiated for the first frame of a context that requires
new data. Further reconfigurations have to be performed when two frames must
be reconfigured in sequence but are not adjacent in the reconfiguration chain. The
frame address and the number of consecutive frames are both binary values of length
log2|F |. Formally we have

cost(c̄) =
|F |∑

i=1

{
|fi| fi ∩ c̄ �= ∅
0 otherwise

cost(c̄) =
|F |∑

i=1

{
|fi| + 2	log2|F | 
 (c̄ ∩ fi �= ∅) ∧ (c̄ ∩ fi−1 = ∅ ∨ i = 1)
0 otherwise

The total reconfiguration costs for sequence S are then given by cost(c̄) =∑
c̄∈S(cost(c̄) + cost(c̄)). Similar to the concept of diverse granularity for multi-

level reconfigurable architectures, it is worthwhile to investigate the effect of using
heterogeneously sized frames.

Interval Hypercontext Design in the Frame Model (I-HD-Frame) problem: Given
an algorithm A as a sequence of context requirements S = c1, . . . , cm for a ordered
set X = {x1, . . . , xn} of reconfigurable units. Find a partition π = {f1, . . . , fk } of
X with 1 ≥ k ≥ n where each fi is a subinterval of the reconfiguration chain. The
partition is chosen in such a way, that the execution of A on the corresponding par-
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tially reconfigurable architecture with heterogeneous frame sizes produces minimal
total reconfiguration costs according to the frame cost model.

Theorem 4.9. The I-HD-Frame problem can be solved in time O(log n · n4m) [21].

The frame cost model allows for a formal treatment of the reconfiguration ap-
proach taken by partially reconfigurable FPGAs. The distinction that is made be-
tween upper and lower-level reconfiguration costs highlights the conceptual sim-
ilarities of partially reconfigurable FPGAs and hyperreconfigurable architectures.
A difference is that hyperreconfigurable systems can employ patterns in the recon-
figuration usage spanning multiple reconfiguration operations, partially reconfig-
urable architectures are confined to achieve a reduction of the reconfiguration cost
based on the patterns found within a single frame.

4.6.2 Results

Figure 4.8 shows the reconfiguration costs of a 2-level hyperreconfigurable machine
with diverse granularity in the interval model and of a partially reconfigurable ma-
chines in the frame model for an 8 bit ripple carry adder ((similar results have been
obtained for other test applications)). For both types of machines the reconfigura-
tion costs are given for the homogeneous and the heterogeneous version. In addition,
the figures shows the reconfiguration costs of a stochastic model which assumes that
each reconfigurable unit has a certain probability to be reconfigured. This model has
been investigated theoretically in [7] with respect to optimal frame size and mini-
mal reconfiguration costs for the partially reconfigurable machines. The stochastic
model uses the same parameters as the adder application, i.e., the same number
of reconfigurable units, same number of context requirements, and the same prob-
ability for a reconfigurable unit to be reconfigured (for the adder this probability
is 0.063).

The results show that hyperreconfigurable systems produce less reconfiguration
costs than partially reconfigurable FPGAs for the test applications. This holds for the
homogeneous and the heterogeneous architectures. The difference increases with a
larger number of frames (i.e., group of switches). The reconfiguration cost is high
when only one frame is used, in which case both hyperreconfiguration and partial
reconfiguration perform a full reconfiguration of the system. For both types of ar-
chitectures there exists an optimal number of frames and the cost increases when
more frames are used. This increase is strong for partial reconfiguration and small
for hyperreconfiguration. This steep increase in the reconfiguration costs of partially
reconfigurable architectures is due to the overhead caused by addressing individual
frames.

The graphs pertaining to partially reconfigurable architectures contain several
points at which there is a sudden increase in the reconfiguration costs. At these
points, where the number of frames equal powers of two, the size of a frame address
increases by one, accumulating to the aforementioned increase.
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Fig. 4.8 Total reconfiguration costs for the adder on different reconfigurable architectures: frame
model (stochastic, homogeneous, heterogeneous) and 2-level reconfigurable machine in the inter-
val model (homogeneous = equal lengths intervals, heterogeneous = different lengths intervals).

It is evident from the figure that the stochastic cost model projects higher recon-
figuration costs. The reason is that the assumption that the reconfigurable units have
independent probabilities to be reconfigured represents an unfavorable for frame-
based partial reconfiguration with homogeneous frame sizes.

4.7 Conclusions

We have given an introduction and overview to hyperreconfigurable systems. Such
systems have several layers of reconfiguration operations which are used to re-
duce the reconfiguration overhead in order to make dynamic reconfiguration faster.
Higher-level hyperreconfiguration operations define the flexibility of the system for
reconfiguration while lower-level reconfiguration operations alter the system’s func-
tionality within the limits set by the preceding hyperreconfigurations.
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Chapter 5
Evaluation and Design Methods
for Processor-Like Reconfigurable Architectures

Sven Eisenhardt, Thomas Schweizer, Julio Oliveira Filho, Tommy Kuhn, and
Wolfgang Rosenstiel

Abstract This chapter focuses on the utilization of fast reconfiguration to optimize
area, performance, and power. The results are quantified by a synthesizable archi-
tecture model. In order to assure good applicability of the research, a C-compiler is
co-developed with the architecture. This chapter provides an overview of the opti-
mization techniques and a summary of current evaluation results.

5.1 Introduction

Reconfigurable systems provide the ability to reuse architectural resources over
time. Especially for applications which require frequent adoptions during execu-
tion it is beneficial to use dynamically reconfigurable fabric. Such an application,
for example, is the physical layer of the WiMax [24] standard. This layer defines
the scalable OFDMA digital modulation scheme. Scalable means that each chan-
nel bandwidth may vary between 1.25 MHz and 20 MHz depending on the de-
manded traffic. Due to this, the scalable OFDMA requires its underlying hardware
architecture to support fast Fourier transforms (FFTs) with a high throughput rate
and adaptable to an input vector size varying between 128 and 8192 points. This
adaption to the required input vector size can be accomplished by dynamic recon-
figuration whereas interruptions of the data stream due to reconfiguration have to
be avoided. Therefore reconfiguration time becomes a crucial factor in choosing a
suitable target architecture for an application.
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Applying dynamic reconfiguration to traditional FPGAs is a difficult task. Their
fine granularity induces an extensive size for configuration data and exchanging only
parts of the circuit usually results in fragmentation.

Newly developed reconfigurable architectures can be reconfigured within one
clock cycle. We call such architectures processor-like reconfigurable architectures.
They usually have a coarser granularity and require less configuration data than
traditional FPGAs so that multiple configuration contexts can be stored inside the
reconfigurable array and reconfiguration keeps pace with execution.

As illustrated in Fig. 5.1, the ability for fast reconfiguration involves both, ben-
efits and costs. The main benefit of a processor-like reconfigurable architecture is
its flexibility. If the application’s functionality or its requirements change over time,
the corresponding configurations can be loaded with low latency. Processor-like re-
configuration allows to instantiate and to execute within one clock cycle exactly that
part of circuit that is needed in this cycle. An additional benefit is a better tradeoff
between area requirements and performance.

Fig. 5.1 Optimizing benefits and costs of processor-like reconfiguration.

However, these benefits are achieved at cost of additional hardware. But the costs
of processor-like reconfiguration are not only to be considered from a financial point
of view. We look at costs such as the increased power consumption that drains the
battery of a mobile device. Also by the term costs we refer to the additional delay
induced by processor-like reconfiguration for loading contexts in each clock cycle.

Costs for processor-like reconfiguration should be minimized during the architec-
ture design phase whereas its benefits can be maximized after production. Architec-
ture optimizations during the design phase can reduce the extra hardware overhead.
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And novel compiler techniques must consider reconfiguration during the application
mapping phase.

To achieve both goals, minimize costs and maximize benefits, a general model
for processor-like reconfigurable architectures is necessary—the CRC model (Con-
figurable Reconfigurable Core, CRC). This model can be adapted to the require-
ments of the compiler and an application domain. Synthesizing instances of the
CRC model enables a detailed evaluation, which cannot be accomplished with com-
mercial architectures.

The remainder of this chapter is organized as follows: The CRC model as well
as benefits and costs of processor-like reconfiguration are discussed in Sect. 5.2.
Techniques to optimize the design of processor-like reconfigurable architectures are
demonstrated in Sects. 5.3 and 5.4. Methods to optimize switching between different
applications are presented in Sect. 5.5.

5.2 Benefits and Costs of Processor-Like Reconfiguration

The ability to reconfigure within one clock-cycle provides an additional degree of
freedom that can be exploited for optimization. However, processor-like reconfigu-
ration comes with additional costs.

As described in the previous section, configuration memory is required to store
multiple contexts and a control unit has to select the active context for execution.
Configuration memory is expensive in terms of area and reading the configuration
memory in each clock cycle increases the delay. Two issues are important to quan-
tify these benefits and costs: The architecture that provides all elements required to
support processor-like reconfiguration. And a compiler capable of using this form
of reconfiguration. Before we address these two issues the CRC model is presented.

5.2.1 CRC Model

The CRC model was developed to represent a wide range of processor-like recon-
figurable architectures. In its most general specification, only a few features are
defined. As depicted in Fig. 5.2, it consists of a rectangular array of processing el-
ements (PE) that are connected by a reconfigurable interconnect network. Each PE
consists of a functional unit (FU) for word-wide arithmetic and logic operations, a
register set, and a context memory that defines several configurations for the PE. At
the beginning of each clock cycle, a context is selected by a control unit that can
vary significantly for the various architectures. Since the interconnect network also
varies, it is not further specified in the general CRC model.

Instances of the CRC model are specified by refinement of the general model.
The instances are described as a transaction-level model in SystemC, and at the
register-transfer level in Verilog. We use the SystemC implementations for system-



98 Sven Eisenhardt et al.

Fig. 5.2 General specification of the CRC model [21].

Fig. 5.3 A PE of a possible architecture instance. D denotes the width of the data path that can
vary for different implementations [20].

level evaluations. The Verilog implementations are synthesized using commercial
tools, and they are simulated and analyzed at the gate-level for detailed evaluations.

Figure 5.3 shows the PE of a possible instance of the CRC model that implements
a nearest neighbor interconnect network and includes a control unit that implements
an finite state machine (FSM). By doing so, arrays of arbitrary sizes can be created
easily. However, we can also create instances of PEs that share one control unit.

The configuration memory is subdivided into context memory and memory in
the control unit that stores the state transitions of the FSM. Both memories are con-
figured from outside the reconfigurable fabric when the device is booted or when
required by the application which is called external reconfiguration.
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The output of the FSM selects an entry in the context memory. The output of the
context memory selects the operands for the FU. The operands can come from the
ports north, east, south, or west (N, E, S, W) or from internal registers of the PE.
Ports can be connected to a neighboring PE or they can be ports of the device if the
PE is located at the border of the array. The context memory also determines the
operation performed by the FU and destination registers for the data and 1-bit status
outputs of the FU if the result is to be stored in a register of the PE. The status output
is used for carry signals and for the results of compare operations. To determine the
next state, the status output of the FU, the output of the status registers, and the
status signals of the four ports are connected to the FSM. The FSM and the register
are synchronized by a common clock. If the control unit is shared among a number
of PEs, the according lines are connected to the external FSM and the same context
is selected for all PEs sharing the FSM.

The lower part of Fig. 5.3 shows the port S module of the PE in detail; the port
N, E, and W modules are equivalent. The data and status input is routed directly to
the inside of the PE.

The context memory determines what data and status signals are available at the
output ports. This is done for data and status signals independently. The source for
the output ports can be the output of the FU, the output of any of the registers,
and the input port of any of the other ports. The output of one of the other ports
is used to implement the nearest neighbor interconnect network. A PE is able to
simultaneously execute an operation in the FU and to route data and status signals
from one neighbor to another.

The CRC model is very flexible and can be modified by setting various parame-
ters. By resizing configuration memory, specifying the capabilities of the FU, chang-
ing the data path width etc. a great variety of model instances can be designed. In
order to facilitate the generation of CRC model instances, an architecture descrip-
tion language (ADL) was defined. It comprises key features to allow fast modeling
and analysis of such architectures, namely: representation of processing element ar-
ray (ir)regularities, flexible and concise description of interconnection network, and
connection to the external environment. Based on the ADL it is possible to auto-
matically generate a SystemC based simulator or a Verilog architecture template.
Based on such templates it is possible to synthesize instances which can be used to
estimate the required area, power, and performance for sample applications.

5.2.2 Compiler

Similar to the architecture, also the compiler has to support processor-like reconfig-
uration. If the compiler does not make use of this ability to switch contexts within
one clock cycle, the result might be suboptimal in respect of area, performance and
power. Therefore we had to develop a compiler that can be adjusted to possible ar-
chitecture instances of the CRC model. We use applications described in C as input
of the compiler. The application mapping process of our compiler resembles that of
the high-level synthesis. It comprises two phases: scheduling and binding.
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Scheduling partitions the application’s description into control steps such that all
operations in a control step execute in the same clock cycle. In our case the schedul-
ing must also consider the partitioning in different contexts, for example, control
steps can be merged together into one context to meet performance constraints.

The binding task assigns the operations within each clock cycle to available hard-
ware units. A resource such as functional, storage, or interconnection unit can be
shared by different operations or data transfers if they are mutually exclusive. For
example, two operations assigned to two different contexts are mutually exclusive
since they will never execute in parallel. We consider two different binding subtasks:

operation binding assigns each operation in a context to a processing element.
interconnection binding assigns a data transfer to interconnection resources such

as multiplexer, bus, port, etc.

In the remainder we also refer to interconnection binding as routing.
In cooperation with the research group of Prof. Fekete (priority program project

ReCoNodes, see Chap. 10), techniques for simultaneous scheduling, placement, and
routing are developed on the basis of integer linear programming [5].

5.2.3 Evaluation

To quantify the area trade-off between statically and processor-like reconfigurable
architectures, we used one statically reconfigurable architectures and different in-
stances of the CRC model. The statically reconfigurable architecture was generated
from the CRC model by removing the control unit and the configuration memory.
In this case each PE features only one data and one status register.

We synthesized the PEs using a commercial synthesis tool targeting a 130 nm
standard cell technology. For all PEs a target clock speed of 200 MHz was specified.
The area of a PE is estimated as the cell area of the resulting gate-level netlist.
To obtain area estimations for an architecture instance being composed of several
identical PEs, we summed up the area of all PEs being part of the instance.

To specify a performance constraint for the evaluation, we use the initiation in-
terval (II), i.e. the number of clock cycles that are available to consume a set of input
values.

Table 5.1 shows the results of mapping four example applications to both, stat-
ically and processor-like reconfigurable architectures. For each application/II pair,
the area of a customized IP-core featuring exactly the required number of FUs is
provided in the table. The number of contexts provided by the core, and with it the
number of states and registers, is rounded up to the next power of two. The intercon-
nect network and register requirements are not considered and we set the number of
PEs equal the number of required FUs. The last column in the table compares this
IP-core to a customized statically reconfigurable architecture that uses the same II
but does not reuse the FUs.
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Table 5.1 Area results for example applications.

Application II FUs Contexts Area of IP-core Area compared
with min. # FUs to static arch.

rgb2yiq 1 21 1 0.610 mm2 100.0%
rgb2yiq 3 7 3 0.322 mm2 52.7%
ellipf 1 26 1 0.756 mm2 100.0%
ellipf 2 13 2 0.468 mm2 61.9%
ellipf 4 7 4 0.322 mm2 42.6%
ellipf 8 4 8 0.280 mm2 37.0%
rgb2cmyk 1 9 1 0.262 mm2 100.0%
rgb2cmyk 1 7 3 0.322 mm2 132.0%
resampling 1 39 1 1.134 mm2 100.0%
resampling 1 28 2 1.007 mm2 88.9%

For deep sub-micron process technologies, the interconnect delay contributes sig-
nificantly to the overall delay of digital circuits. In addition to the metal wire delays,
the reconfigurable routing switches contribute to the interconnect delay of reconfig-
urable architectures.

Processor-like reconfiguration allows it to utilize reconfiguration as a third di-
mension for routing by redirecting communication through the time domain. By
doing so, the connection lengths may be reduced as illustrated in Fig. 5.4 for an
8-point fast Fourier transform (FFT) implementing the Cooley-Tukey algorithm.
When moving from II = 1 to II = 2, the longest connections can be reduced to
nearest-neighbor connections by executing the upper and the lower half of the graph
in different contexts.

Fig. 5.4 Reduction of an 8-point FFT’s interconnect requirements by redirecting communication
through the time domain [19].

By doubling the number of contexts again (II = 4), the connections in the mid-
dle of the graphs can also be reduced to nearest-neighbor connections. Due to the
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regularity of the Cooley-Tukey algorithm, the same considerations hold for n-point
FFTs at different IIs in general (with n and II being powers of two).

Our experiments demonstrated that redirecting communication through the time
domain can compensate for the performance overhead imposed by processor-like
reconfiguration or even outperform a statically reconfigurable architecture [19].

In the following sections we discuss several approaches to optimize the cost-
benefit ratio of processor-like reconfigurable architectures.

5.3 Specialization/Instruction Set Extension

Processor-like reconfiguration implies extra area, performance and power costs, as
discussed in Sect. 5.2. The configuration memory increases the architecture area and
the static power consumption. Reconfiguration at a cycle-by-cycle basis increases
the clock period and dynamic power consumption. One way to decrease these extra
costs is to specialize the architecture based on a set of representative applications
called an application domain. Specialization changes the number of FUs and their
instruction set, the size and number of storage resources, and the topology of the
interconnection network to better perform some specific tasks required by the target
domain. For example, a special interconnection network may provide routing paths
only between critical resources; such network requires less configuration bits than a
generic one because there are less routing paths available. Specialization leads fre-
quently to less architecture flexibility, which is reflected in a smaller configuration
memory area footprint. The final product of specialization is a domain specific ar-
chitecture, which addresses more efficiently the requirements of its target domain at
a lower configuration cost.

There are several approaches to design domain specific reconfigurable archi-
tectures. The first approach formalizes the problem as a design space exploration
(DSE) [17, 16, 3, 14]. As a starting point, a template is used in which architecture re-
sources, such as interconnection topology and datapath width, are easily configured
by setting parameters. Specialization consists then in finding the parameterization
that optimizes the architecture to the application domain. An extensive DSE exam-
ple can be seen in, applied to the development of the ADRES architecture. Mei [15,
4] shows that DSE methods expose several design trade-offs, such as the size versus
complexity of network interconnection, and distributed versus local register alloca-
tion. DSE methods allow to quickly check different architectural options; however,
finding a good architecture instance requires an efficient method for pruning the
huge search space.

The second approach consists in allocating customized processing units as pe-
ripheral components to the array. The work in [10, 11] suggests (1) to share critical
functional resources that occupy large area, such as multipliers, and (2) to pipeline
performance critical functional units. Bansal et al. [2] evaluates the impact of using
several and different functional units within the PEs. They showed that, in coarse
grained reconfigurable architectures, better performance may be achieved by in-
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creasing the number of FUs in individual PEs compared to architectures where each
PE has only one functional unit.

Within our work, specialization means extending the functional units with cus-
tom modules. These modules—called custom instructions—have been successfully
employed in the industry [23] and academia [9] for the specialization of general
purpose and VLIW processors. The following example shows how clusters of oper-
ations within the applications can be used to specialize the FUs. Figure 5.5 shows the
data flow graph (DFG) of a real world application—the trilinear interpolation filter
kernel—used in the resampling phase of the ray casting algorithm. This application
can be mapped in a CRC instance using a pipeline of processor elements. During
the mapping, each operation in the DFG is assigned to one PE in the architecture;
that requires a total of 28 PEs organized in a 12 stages pipeline.

Fig. 5.5 Trilinear Interpolation mapping on architectures with (a) standard and (b) customized PEs
[18].

A closer observation of the trilinear interpolation DFG reveals a very regular
structure, where some subgraphs corresponding to similar clusters of instructions
emerge frequently. Three examples of such clusters (IPa, IPb, and IPc) are stressed
in the depicted DFG. We call these subgraphs instruction patterns. If the PEs are
extended with custom instructions to execute the instruction patterns IPa and IPc,
the mapping of the trilinear interpolation requires only 14 PEs.

Table 5.2 depicts the costs for area and power of the two architectures after syn-
thesis in a 130 nm technology. The PEs of the specialized architecture requires more
area. However, the overall necessary area and consumed dynamic power are 49%
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and 48% smaller, respectively. That is explained by the fact that only half the amount
of PEs is necessary. In some cases, the whole instruction pattern may be imple-
mented with an execution delay shorter than one clock period. For example, the
shift (�) operation in the instruction pattern IPc can be eliminated. IPc can then
be implemented using a subtractor with one shifted input. For these cases, we also
have significant performance improvement. While the throughput is still the same,
the number of necessary pipeline stages (latency) drops from 12 to 9.

Table 5.2 Impact of instruction specialization.

#PEs PE area Total area Dynamic power
(μm2) (mm2) (mW)

Standard PEs 28 96.42 2.70 177.64
Customized PEs 14 97.14 1.36 91.39

5.3.1 Methodology

In our research, we use instruction patterns to extend the instruction set of PEs. As
discussed previously, instruction patterns are clusters of operations that frequently
appear in the set of applications representing one target domain. These applica-
tions or some of their computing intensive loop kernels are described using a data
flow graph (DFG). We formalize the DFGs representing each application as a graph
G(V, E), where nodes V correspond to primitive operations or input/output data,
and edges E represent data dependencies between them. Each vertex v ∈ V rep-
resents an operation with a corresponding hardware implementation cost C(v) and
an execution delay δ(v). The DFG allows a systematic extraction of instruction pat-
terns in three steps: operation cluster identification, instruction pattern evaluation,
and instruction pattern selection. We detail these phases in the following. The oper-
ation cluster identification phase lists all subgraphs in the DFG that present all the
following characteristics:

• number of input nodes smaller or exactly equal to a maximal constraint Nin

• number of output nodes smaller or exactly equal to a maximal constraint Nout

• an accumulated implementation cost smaller or equal to a maximal cost con-
straint Cmax

• a critical path delay smaller or equal to a maximal execution delay constraint
δmax

• convexity

Nin , Nout , Cmax , and δmax guarantee that the listed operation clusters meet the
design constraints for new custom instructions. Convexity is an important property
to make sure that, when executing one operation, all input values will be available
to the FU.

The instruction pattern evaluation phase groups the previously listed operation
clusters, such that clusters in the same group have the same subgraph structure.
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We say that all the clusters in one group follow or implement the same instruction
pattern. The representativity of each instruction pattern is then assessed according
to its recurrence and possible conflicts. Recurrence is the number of clusters in
the DFG that follow the instruction pattern. Two distinct instruction patterns are in
conflict, if any of their instances in the DFGs have a common vertex. Figure 5.5
helps understanding these definitions. Assuming that the set of extracted instruction
patterns is Φ = IPa, IPb, IPc, we can observe the pattern IPa can be found seven
times in the DFG, and thus the recurrence of IPa is seven. Patterns IPa and IPc

are not in conflict, because none of their instances share a common operation in the
DFG. On the other hand, IPb is in conflict with all other patterns. It makes no sense
to simultaneously select two patterns for implementation if they are in conflict.

The instruction pattern selection phase selects a small number of patterns which,
together, maximize the reuse of specialized instructions when mapping the targeted
applications (DFGs). The idea is to concentrate the execution within a minimal, or at
least a few, number of specialized units, and thus to reduce the number of required
PEs. The output of the selection phase is a set of instruction patterns that will be
implemented as customized instructions.

5.3.2 Study Case: Multipoint FFT for Scalable OFDMA Based
Systems

We present our results using one real world application domain: the multipoint FFT
processors used in scalable OFDMA systems.

We use the physical layer of the WiMax [24] standard as a real world use case
scenario to introduce our results. This layer defines the scalable OFDMA digital
modulation scheme. Scalable means that each channel bandwidth may vary between
1.25 MHz and 20 MHz depending on the demanded traffic. Due to that, the scalable
OFDMA requires its underlying hardware architecture to support fast Fourier trans-
forms (FFTs) with a high throughput rate (up to 480 MSamples/s), implemented in
a stream oriented way, and with a input vector size varying between 128 and 8196
points. Such set of FFT algorithm constitute here the target domain.

To provide high throughput rates, we mapped the FFT in the pipelined scheme
as depicted in Fig. 5.6. We partitioned the algorithm in two parts or Fields. Field A
is a pipelined implementation of the radix-8 FFT algorithm. The purpose of Field
A is to diminish the storage demand dividing the further FFT processing into 8
N
8 -point-FFTs. Each one of this smaller FFTs are processed 8 stripes of PEs called

Field B. These fields realize a radix-22SDF algorithm proposed in [8]. Each one
of the Fields B are attached to one output of the Field A. They receive one sample
per cycle and process the stream of samples in sequential and pipelined way. Each
operation represented in the DFG of Fig. 5.6 correspond to a complex arithmetic
operation.

The starting architecture instance was dimensioned to meet the constraints of
the WiMax standard. We started with PEs designed to support complex addition
and subtraction arithmetic, and storage units dimensioned for complex numbers. To
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Fig. 5.6 FFT mapping [18].

guarantee a future fair evaluation when comparing with the specialized instances,
we dispensed unnecessary units, such as logical and comparison operations. We
also embedded multipliers on PEs only when necessary. The Field A required then
37 PEs, where only 13 of those comprised multipliers. Each one of the Fields B
has 29 PEs, where 9 of them have multipliers. Field B is also attached to a bank of
FIFOs, but we do not consider them when presenting our results because they are
a particular requirement for the implementation of the R22SDF algorithm, which is
not altered after we specialize the PEs. Additionally, seven contexts are considered
in each field. They provide the necessary flexibility when considering different input
vector sizes and for particularities during the mapping of the R22SDF algorithm.

We identified two promising instruction patterns using the methodology dis-
cussed in Sect. 5.3.1. They are depicted as IP1 and IP2 in Fig. 5.6. For that, we
considered operation clusters with a maximum of three input and two output ports,
and containing up to 2 functional units, as a PE hardware cost constraint. The in-
struction pattern IP1 offers an alternative implementation which throws out the
multiplier because the multiplication term is always one of the complex numbers
(−j)k, k = 0, 1, 2, 3. It can be implemented as a subtraction followed with some
possible exchange of real and imaginary terms and their signals. The instruction
pattern IP2 corresponds to the so called FFT butterfly. The pattern can be found
spread along all the DFG and covers a large number of operations. We specialized
the architecture in two steps to allow a progressive and detailed analysis. In the
first architecture instance we implemented only IP1 as a customized instruction. In
the second and final architecture instance, we include special instructions for both
patterns.

We described all three architecture instances in Verilog, using the CRC Model.
Where necessary, custom instructions and the corresponding modification on the
context memory were added manually to the PEs. All other hardware resources
within the PEs, such register banks and routing multiplexers were not modified. Ta-
ble 5.3 shows the comparison between the three architecture instances considering
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the overall number of PEs, total silicon area, the number of configuration bits for
each context, and the area per operation. Results for area are obtained after synthesis
and using a commercial tool.

Table 5.3 Impact of instruction specialization—FFT

#PEs Total #Config- Area per Dynamic Leakage
area uration operation power power
(mm2) bits (μm2) (mW) (mW)

Arch0 269 7.09 4104 26.35 750.13 1.44
Arch1(IP1) 226 5.64 (−20%) 3502 20.96 627.61 (−16%) 1.12 (−22%)
Arch2(IP1 and IP2) 133 4.12 (−41%) 2686 15.31 534.42 (−28%) 0.84 (−41%)

The insertion of IP1 as customized instruction eliminates 43 PEs with multipli-
ers. That alone accounts to a reduction of 20% in area. When the FFT butterflies
(IP2) are embedded in the instruction set of the PEs, the number of necessary PEs
falls to the half. That is easily explained. Each butterfly concentrate in one PE the
execution of two basic operations and they cover 100% of the DFGs. The simulta-
neous adoption of these two instruction patterns as customized instructions leads to
an architecture instance with up to 41% less area.

The adoption of instruction patterns as customized instructions not only decrease
the number of necessary PEs, but also improves the efficiency of architectural re-
source usage. We use the number of configuration bits per context to demonstrate
that. This metric is used in the literature [15] to assess the complexity of control
resources in CGRAs. Our initial architecture spent 4104 configurations bits per con-
text, which corresponds to about 15 bits/operation. The final specialized architecture
needs only 2686 bits per context, improving the efficiency to only 10 bits/operation.
The same conclusion can be obtained if we observe the silicon area used per exe-
cuted operation. The initial architecture uses 26 μm2 per operation. This area usage
is improved up to 15 μm2 per instruction in the final instance.

It is also important to compare the final architecture instance obtained using our
method with state-of-art FFT designs proposed in the literature. Table 5.4 depicts
this comparison using design silicon area, throughput and power consumption. All
designs present similar operating frequency (∼200 MHz).

Table 5.4 Comparison with state of the art FFT designs [18].

ASIC1 ASIC2 Altera Arch2
[13] [12] FPGAs (IP1 and IP2)

Area (mm2) 1.25 3.09 n.a. 4.12
Throughput (MSamples/s) 160 1000 195 1600
Power consumption 0.33 @ 8196 points
(mW/MSample) 0.34 0.175 n.a. 0.26 @ 1024 points

0.16 @ 128 points
Clock frequency (Mhz) 250 250 220 200
Technology 180 ηm 180 ηm Stratix III 130 ηm
Input vector size 1024 128 256, 1024, 4096 256–8196



108 Sven Eisenhardt et al.

The design of Liu et al. [13] proposes an array with few complex elements
strongly connected among each other. It was optimized for a low memory finger-
print. They achieve the smallest area usage, but due to their sequential execution
they only achieve 160 MSamples/s. Lin et al. [12] uses the same algorithm we use.
They propose a high throughput design (up to 1 GSamples/s) for a 128 points FFT.
Both designs have their input vector size fixed at design time. The third design is
proposed by Altera for FPGAs [1]. They are more flexible and can be customized
for calculating 256, 1024 or 4096 points FFTs. They achieve a throughput of around
200 MSamples/s. Unfortunately, no numbers for overall area were available. Our de-
sign has a larger silicon area usage due to the high hardware parallelism, but it is still
comparable with the realistic designs. Due to the massive hardware parallelism we
achieve up to 1.6 GSamples/s and our design is flexible enough to accept all input
vectors between 128 and 8196 points.

5.4 Optimizing Power

As discussed in Sect. 5.2 processor-like reconfiguration causes additional power
consumption. We propose two architecture improvements to reduce the power con-
sumption: instruction set extensions and dual supply operating voltages.

5.4.1 Optimizing Power by Instruction Set Extensions

The instruction set extension methodology presented in Sect. 5.3 not only decreases
the total implementation area, but also improves dynamic and static power con-
sumption. Table 5.3 presents the dynamic and static power consumption for the
FFT example. The insertion of customized instructions accounts to a reduction of
16% in dynamic power and 22% in static power due to leakage currents. When the
FFT butterflies are embedded in the instruction set of the PEs, gains in dynamic
and static power are 28% and 41%, respectively. Results for estimated power are
obtained after synthesis and using a commercial tool.

5.4.2 Optimizing Power by Dual-VDD Architectures

Dual supply operating voltage allows to exploit the slack time between different
operations to reduce the power consumption by executing the faster operations on
lower voltage. To realize the proposed approach we extended our CRC model with
voltage islands. For that purpose we partitioned a processing element (PE) of this
model into different voltage regions. Our approach is similar to the clustered voltage
scaling technique used at gate level. However, we apply that idea to the functional
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unit (FU) of dynamically reconfigurable processor architectures at operation level.
In our approach no frequency adaption is necessary. Therefore, we improve power
and energy consumption [22].

5.4.2.1 The Dual-VDD Architecture Model

We augmented the CRC model with dual-VDD capabilities as depicted in Fig. 5.8.
We used a commercial tool targeting a 90 nm multi-voltage standard cell technol-
ogy to synthesize and analyze the two different PE types considering the following
design aspects.

Fig. 5.7 Standard processing element (PE_H). Fig. 5.8 Dual-VDD processing element (PE_L).

The PE_H type, displayed in Fig. 5.7, is much like the original processing el-
ement of the CRC model. Its functional unit is designed to operate in the same
voltage level (1.0 V) as its neighboring elements within the PE. Therefore, no ad-
ditional components such as level shifters are necessary. PE_H is meant to execute
operations in the critical path or operations that would violate our timing constraints
if executed on lower voltage. The PE_H type typically consumes more power, but it
is faster.

The PE_L type is a dual-voltage module where all the components are supplied
with 1.0 V except the functional unit which is supplied with 0.7 V. We altered the
design of the PE to accommodate a low voltage FU without violating the design
timing constraints of the PE of PE_H type. First, we redesigned the FU with a new
supply voltage. The multiplier module was left out because it did not meet the tim-
ing constraints when executed in 0.7 V. Multiplication must then be always executed
in the PE_H type. Second, we built in a level shifter at the output of the functional
unit. At this point, the signal voltage level must be converted back to 1.0 V in order
to appropriately stimulate the register bank and output multiplexers. A level shifter
preceding the input ports of the functional unit is not necessary because the higher
voltage from the environment is already an adequate input stimulus for the FU mod-
ified circuit. As a result of these modifications, PE_L is functionally and structurally
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(except for the multiplier) equal to the PE_H type. However, their circuit netlists dif-
fer from each other because the synthesis tool tries to keep the timing constraints
while considering the new power supply conditions.

These two PE types may now be used to compose dual voltage instances of the
CRC array. The number and spatial distribution of each PE type is decided at the
architecture design time. Such design decisions are highly dependent on the target
application and its mapping strategy.

5.4.2.2 Delay and Area

To present our results, we estimate the execution delay as indicated in Figs. 5.7
and 5.8. This delay consists of the time for a given operation to be executed in the
FU (tOp). For PEs of PE_L type, it must be considered that the delay also includes
the time spent on the voltage level shifter (tLS). Table 5.5 compares the delay of the
data path section composed of operation and level shifter delay on a PE of PE_L
type with the delay of operations running on the FU of PE_H type. The state-reg
column denotes the time from the rising clock edge until the result is available to be
stored in one of the registers. The corresponding paths, being composed of the FSM,
the context memory, and the operation, are subject to a timing constraint during
synthesis.

For both PE types, a timing constraint of 3.75 ns was specified for synthesis. One
can see that this timing constraint can be met for all operations executed on the PE
of PE_H type. As indicated in Table 5.5, the multiply operation is the critical com-
ponent and only this operation yields a violation of the timing constraint on the PE
of PE_L type. It is obvious that the multiplication is the slowest operation executed
on the PE of PE_H type. This means that we can execute the other operations on
lower voltage, because the timing constraint is not violated by the additional delay
due to level shifters and increased delay on lower voltage. All in all, 33 level shifters
(32 at the data output, 1 at the flag output) are inserted at the output of the FU in a
32-bit PE. This leads to an area increase of 4.5%.

5.4.2.3 Power Estimation

The mapping of applications onto dynamically reconfigurable processor architec-
tures can be done in different ways. To validate our approach and to obtain the
power estimations, we mapped the luminance calculation (xy = (c1 ∗ xr + c2 ∗
xg + c3 ∗ xb + c4) � c5) of the RGB to YIQ conversion from the Embedded
Microprocessor Benchmark Consortium (www.eembc.org) Consumer Benchmark
under two different mapping strategies. Applying the multi-context pipelined exe-
cution power consumption of a PE of PE_L type compared to a PE of PE_H type
is reduced up to 13.3% in this example. Our experiments show that for a chained
execution, the power consumption of a FU plus level shifter power reduces up to
39% compared to a FU on high voltage level and thereby the power consumption
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Table 5.5 Comparison of delay of operations performed on a Dual-VDD processing element and
a standard processing element [22].

PE_L PE_H
Op. FU LS FU + LS state-reg FU state-reg

(ns) (ns) (ns) (ns) (ns) (ns)
∗ – – – – 2.67 3.61
+ 2.25 0.31 2.56 3.44 0.99 2.27
− 2.23 0.29 2.52 3.44 0.94 2.26
� 2.09 0.31 2.40 3.48 1.36 2.49
== 1.74 0.20 1.94 2.81 0.74 1.90
! = 1.66 0.20 1.86 2.73 0.58 1.86
> 1.71 0.20 1.91 2.78 0.75 1.91
>= 1.56 0.20 1.76 2.64 0.68 1.84
< 1.33 0.20 1.53 2.63 0.53 1.84
<= 1.33 0.20 1.53 2.63 0.53 1.84
and_d 0.78 0.31 1.09 2.19 0.26 1.52
or_d 0.77 0.31 1.08 2.19 0.26 1.52
xor_d 0.78 0.31 1.09 2.19 0.26 1.56
not_d 0.34 0.33 0.67 1.67 0.26 1.39
and_s 0.58 0.20 0.78 1.64 0.57 1.39
or_s 0.98 0.20 1.18 1.97 0.57 1.39
xor_s 1.30 0.20 1.50 2.38 0.59 1.41
not_s 0.31 0.20 0.51 1.38 0.25 1.07

of a PE of PE_L type reduces up to 22.1% compared to a PE of PE_H type. The
total power consumption of the dual-VDD architecture instance decreases by 10.5%
compared to a single voltage architecture instance performing a chained execution
of the luminance calculation.

5.5 Optimizing External Reconfiguration

The previous sections focused on processor-like reconfiguration which is performed
by switching between contexts in each clock cycle. This kind of reconfiguration is
only possible if these contexts have been previously loaded into the configuration
memory within the reconfigurable array. Since the configuration memory is lim-
ited and the actual applications are not known at design time, it is likely that an
application’s resource demand exceeds the resources provided by the target archi-
tecture. This requires external reconfiguration, i.e., writing into the context memory
from outside the reconfigurable array. Usually external reconfiguration is performed
when the device is powered up and initialized. In order to allow temporal partition-
ing of an application, however, external reconfiguration has to be performed during
execution and therefore becomes a time critical process. Without optimizations ex-
ternal reconfiguration causes a suspension of processing. The higher the frequency
of external reconfiguration the more crucial is the optimization of reconfiguration
time.
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External reconfiguration is typical for single-context devices like FPGAs. In this
book several approaches are demonstrated for the optimization of dynamic recon-
figuration of FPGAs. Since FPGAs provide reconfiguration on bit-level, the config-
uration size for an FPGA is considerably larger than for coarse grained reconfig-
urable architectures, a fact which eventually results in longer reconfiguration times.
The configuration overhead can be reduced if the reconfiguration times are masked
through configuration prefetching. Configuration prefetching can be performed on
single-context architectures by partitioning the fabric into reconfigurable areas of
which some areas are being executed while others can be reconfigured. This, how-
ever, has the drawback that not all computation resources can be used at the same
time. For the processor-like reconfigurable architectures the availability of multiple
contexts allows a different approach to configuration prefetching.

Processor-like reconfigurable architectures are not intended to execute entire ap-
plications but to accelerate data- and computation intensive parts of streaming ap-
plications. In the remainder of this section such application parts are referred to as
kernels. Naturally such kernels have to be computed in a sequence that depending
on the application is previously known or unknown. Therefore the reconfiguration
of one kernel to a successive kernel is considered.

5.5.1 Multi-Context Configuration Prefetching

Depending on the kernel currently being executed on the processor-like reconfig-
urable architecture, a number of contexts remain inactive during execution. The
corresponding entries of the configuration memory can be changed without interfer-
ing with the execution of active contexts. It is therefore not necessary to partition the
fabric into reconfigurable areas, since inactive contexts can be reconfigured while
other contexts are being executed. In this way, the functional units of all PEs remain
available for processing. To ensure that enough contexts remain inactive during pro-
cessing in order to allow prefetching, the number of contexts available for one kernel
can be constrained easily through according compiler settings.

The two graphs depicted in Fig. 5.9 illustrate the principle of multi-context con-
figuration prefetching for a reconfiguration between two kernels K and K ′. The
graphs show the state of the 32 contexts of a sample architecture over time whereas
the light shade illustrates execution and black shade signals reconfiguration activity.

In the upper graph the execution is suspended until kernel K ′ has been config-
ured. In the lower graph the inactive contexts are used for prefetching. After kernel
K ′ has been configured into a subset of the inactive contexts it can be activated
within one clock cycle by switching contexts. Thereby the reconfiguration time is
masked and suspension is avoided.

Even though the effective reconfiguration time is eliminated in the example, the
output data stream of the reconfigurable device is still interrupted for the latency of
kernel K ′. The interruption can be further reduced by stage-wise reconfiguration if
the kernels are executed in a pipeline.
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Fig. 5.9 External reconfiguration performed without (upper graph) and with configuration
prefetching (lower graph) [6].

5.5.2 Speculative Configuration Prefetching

The prefetching method presented in the previous section requires knowledge about
the execution sequence of kernels. However, it is possible that the selection of the
subsequent kernel depends on user interaction or on the result of the kernel be-
ing currently executed. If the subsequent kernel remains unknown, one possible
approach would be to configure a random kernel speculatively and then hope that
actually it will be selected. To increase the probability of the right kernel being
prefetched, for each kernel that is executed the remaining inactive contexts could be
configured with a set of candidate kernels. We refer to this method as speculative
configuration prefetching.

Fig. 5.10 Example for speculative prefetching of configurations.

Figure 5.10 illustrates a sample execution with applied speculative configuration
prefetching. In this graph the gray shaded areas identify for each context the kernel
that has been configured. The kernels labeled as active are currently being executed
whereas the black shaded contexts are being reconfigured. In the beginning ker-
nel K1 is being executed. This execution time is used to prefetch a set of kernels
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{K2, K3, K4}. At time t1 the subsequent kernel K3 is disclosed. Since this kernel
has already been speculatively prefetched the contexts can be switched with no time
overhead. During execution of K3 kernel K1 remains in the contexts but kernel K5

is being prefetched. At time t2 kernel K4 is required by the system. This time, how-
ever, the needed kernel was not prefetched. Therefore it has to be reconfigured and
execution is suspended until the according contexts have been configured.

The longer the reconfiguration time of a kernel the greater is the profit of
prefetching this kernel if it is actually selected. We have developed an approach
that optimizes the expected profit of prefetching. The kernel selection is based on
the kernel characteristics and also takes into account a previous knowledge of the
developer about kernel selection probabilities.

5.5.3 Experimental Results

The presented methods were evaluated using the fast fourier transform (FFT) ker-
nels which were discussed in Sect. 5.3.2. One characteristic of scalable OFDMA
is the frequent change of kernels with different vector input sizes. Therefore the
experiments considered changing FFT kernels.

Each kernel mapping was based on an implementation of the Cooley-Tukey al-
gorithm. Table 5.6 shows the characteristics of the different kernels: the number of
samples, the number of required contexts, and the configuration time for loading the
kernel into the configuration memory.

Table 5.6 Characteristics of the different FFT mappings.

FFT Size Contexts Config. time (clock cycles)
8 1 1440
16 1 1440
32 2 2880
64 4 5760
128 8 11520
256 16 23040
512 32 46080

The first experiments were based on known kernel sequences. For each possible
kernel combination a cycle accurate reconfiguration schedule was generated based
on the kernel characteristics. During runtime, depending on the upcoming kernel the
according schedule was used as basis for a stage-wise configuration prefetching. The
interruption of the output data stream during kernel reconfiguration highly depended
on the two kernels that were reconfigured and varied between 0 and 954 clock cycle.
In average, however, the interruption was reduced by 48% [6].

In the second experiment, the subsequent kernel was selected randomly. Two
simulation runs of one second were performed based on the same random kernel
sequence, once without and another run with speculative configuration prefetching.
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For each simulation the ration of reconfiguration time to processing time was deter-
mined. These two ratios were then compared to evaluate the effectiveness of spec-
ulative prefetching. As a result the reconfiguration time overhead could be reduced
by 38% in average [7].

5.6 Conclusion

In this chapter we have evaluated the benefits and costs of processor-like reconfigu-
ration. To enable this research, we have created the CRC model as a general model
for processor-like reconfigurable architectures. Furthermore a compiler was devel-
oped that takes advantage of fast reconfiguration and that can be adapted to different
model instances. In this way the CRC model facilitates the exploration of architec-
tural alternatives paired with novel compiler techniques. Based on a practical exam-
ple we demonstrated how to take advantage of processor-like reconfiguration.

We also would like to highlight the industrial usability of such architectures. Re-
cently, first commercial products that include processor-like reconfigurable devices
were introduced to the market. These processors already exploit some of the opti-
mization potential that was evaluated in this chapter.
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Chapter 6
Adaptive Computing Systems and Their Design
Tools

Andreas Koch

Abstract While reconfigurable adaptive computing has many proven advantages
over conventional processors, in practice, it is often limited to niche applications.
This situation, which we aim to resolve with our research, is often linked to the
lack of programming languages for adaptive computers that are familiar to software
developers. We present a compile flow capable of translating general-purpose C
programs to hybrid hardware/software applications for execution on an adaptive
computer and give an overview of the required advances in compiler technology as
well as in computer architecture and operating system design.

6.1 Introduction

As demonstrated numerous times, reconfigurable computing can have significant
advantages over conventional processors for a wide range of applications [28]. De-
spite these advantages, however, it is only rarely employed outside of academic
settings.

One of the key reasons for this discrepancy is the difficulty of actually program-
ming a reconfigurable computer. Most commonly, this is done by designing a com-
pute architecture for the algorithm from scratch, which is then described in a hard-
ware design language such as VHDL or Verilog.

While this approach can result in very high-performance implementations, it re-
quires programmers to be experienced in computer architecture, digital logic design
and hardware design languages. Only very few software developers actually have
these skills. Thus, the power of reconfigurable computing remains unavailable to
most potential users.

Andreas Koch
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In recent years, many attempts have been made to close this gap and lift the
abstraction level of reconfigurable computer programming to that of conventional
software-programmable processors.

To this end, we have been working on Comrade, a compiler for automatically
translating general-purpose ANSI C programs for computers containing both a con-
ventional and a reconfigurable processor. As we will describe below, the choice of
C with its pointers and possibly irregular control flow has significant effects on both
the compile flow as well as the target computer architecture and its operating system.

Our DFG-funded project “Adaptive Computing Systems and their Design Tools”
was initiated prior to the DFG Priority Program 1148, but has been associated with
the Program right from the start due to the thematic closeness. Since the schedules
of our on-going project and the concluding Priority Program are thus out-of-phase,
this report will concentrate on the major results achieved during the era of the SPP.
Section 6.7 will give some perspective on the issues we are addressing in our current
research.

6.2 Execution Model

In contrast to traditional research on High-Level Synthesis (HLS) [8] our target ar-
chitecture is assumed to always contain a conventional software-programmable pro-
cessor (SPP) in addition to a reconfigurable processor. While the compute-intensive
parts of a program can be implemented in a spatially distributed fashion for high-
performance, other parts of the program that are either unsuitable (e.g., I/O using
printf or similar functions) or that are only used rarely and would not justify the
permanent allocation of computing area (e.g., error handling) are left in software on
the SPP.

This target architecture also avoids a basic problem of High-Level Synthesis,
which aimed to translate the entire program into hardware: If the input program
contained a construct (e.g., function calls, irregular control flow, dynamic memory
allocation, etc.) that the specific HLS algorithm could not handle, the translation
was aborted completely. While we also intend to translate our input language to
the widest practical degree, our flow can always fall back to the SPP to execute
program parts that the flow cannot process yet due to implementation limitations, or
that would exceed the capacity of the reconfigurable device. This allows incremental
development of the compiler, with increasing parts of the profitable computations
of a program being moved for acceleration to the reconfigurable device.

We call such an architecture an adaptive computer system (ACS). To be more
precise, we differentiate between the underlying reconfigurable device (RD), which
can be an either an FPGA or a coarse-grained reconfigurable array (CGRA), and the
reconfigurable compute unit(s) (RCU) that can be mapped to it.

When combining multiple processing elements (such as the SPP and RCU of
an ACS), the manner of their interaction must be specified. This is done by the
execution model (discussed in greater detail in [22]).
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Different ACS compilers employ different models, which differ mainly in the
granularity of the SPP/RCU partitioning.

The ASH system [1] can switch between the SPP and a hardware accelerator
(note: not an RCU, ASH targets ASICs) only at procedure boundaries. This rather
coarse granularity leads to an entire procedure being ineligible for hardware acceler-
ation even if only a single non-compilable construct is present. ASH exceeds classic
High-Level Synthesis by allowing software functions to be called from the hardware
accelerator, however.

Other systems, such as GarpCC [2], Nimble [27] and our own Comrade, allow a
finer-grained partitioning within of functions. For the following discussion, consider
the sample program shown in Fig. 6.1.

Fig. 6.1 Example in the Comrade execution model [22].

The program contains a typical hardware kernel (a loop) which is surrounded by
code with a low degree of instruction level parallelism (ILP) statements. For this
example, we assume that the functions sqrt and printf are not efficiently compilable
to an RCU. Thus, they, as well as the rest of the low-ILP code, should be left on the
SPP.

All three of these finer-partitioning compilers can successfully perform this op-
eration. However, they differ in their handling of the RCU-unsuitable code within
the loop kernel. Using dynamic profiling, they might discover that the condition
v > 10000 occurs only rarely, and thus moving the loop to the RCU is profitable
despite the infrequent switches to the SPP (for the printf and the floating-point mul-
tiplication). Such a switch requires exchanging the live variables between the two
processors and can have a significant overhead. After a switch to the SPP, GarpCC
and Nimble then execute the entire remainder of the current loop iteration in soft-
ware (they generate both hardware and software versions of each kernel). Only when
re-entering the loop for another iteration is the decision made whether to continue
on the SPP or switch back to the RCU.

The model we use in Comrade (shown in Fig. 6.1) is even more fine-grained: We
can now switch between individual statements, moving just the printf and the float
multiplication to the SPP as a so-called software service. After completion of the
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service, execution switches back to the RCU immediately. Note that, with the finer
granularity, fewer live variables need to be transferred between the two processors.
In this fashion, a single hardware kernel can access multiple software services, each
with just the code for the requested function.

The exchange of live variables has far-reaching architectural consequences when
pointers are to be supported (as we have to do for C in Comrade). In this case, ad-
dress arithmetic performed on the SPP and RCU must be compatible, and both pro-
cessors must share a coherent view of memory (reads and writes can be performed
by both sides). This will be discussed in greater detail in the next section.

6.3 ACS Architecture

The Comrade model of execution requires a number of capabilities from its under-
lying computing platform to be practical. As explained above, our model requires
low-latency SPP-RCU communication for the exchange of the live variables. Note
that this does not have to be a high-bandwidth link, since generally only very few
variables have to be exchanged (due to the small scope of our software services).
Pointer addresses must be freely exchangeable across the SPP-RCU boundary, and
both processors must have high-throughput access to a shared main memory, possi-
bly in the presence of virtual memory (e.g., when running the ACS under a full-scale
Linux OS). For security reasons, the RCU must of course respect the access permis-
sions imposed by memory protection. If these apply at the process level (the general
case for Unix variants), the code of the SPP software within the hybrid SPP/RCU
process should also be inaccessible to a possibly rogue RCU. Furthermore, the RCU
must be prevented from interfering with OS scheduling decisions, e.g., by denying
other processes (or the OS itself) access to main memory. Finally, the software part
of a hybrid SPP/RCU process should execute at full speed, without slow-down due
to the RCU.

A much more detailed discussion of these aspects can be found in [21–23].

6.3.1 Reconfigurable System-on-Chip Architecture

To achieve these goals and actually make the Comrade execution model feasible
on real hardware, we implemented suitable ACS architectures as reconfigurable
systems-on-chip (rSoC), at first using the Xilinx Virtex II Pro-based ML310 plat-
form. The II Pro FPGAs embed SPPs (300 MHz PowerPC 405 CPUs) into a recon-
figurable logic array suitable as RCU. Since the interfaces, both between SPP and
RCU as well as the rest of the system (memory, I/O, etc.) are mainly realized us-
ing reconfigurable logic, they can be changed to fit the requirements we formulated
above.
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Fig. 6.2 RCU integration techniques.

The default system-on-chip architecture supported by Xilinx EDK design tools
is shown in Fig. 6.2(a). Note that both SPP-RCU communication as well as memory
accesses from the RCU have to pass through the single Processor Local Bus (PLB).
While the multi-purpose use of such standard busses allows the flexible composition
of SoC architectures, the performance suffers: The standard approach achieves a
transfer rate of just 213 MB/s (of the theoretically possible 1600 MB/s) for RCU
memory accesses while the SPP executes a (mostly idle) Linux.

To improve RCU-to-memory bandwidth, we developed the FastLane+ architec-
ture (Fig. 6.2(b)): Now, the RCU is attached directly to main memory using a ded-
icated 128b wide bus. This increases the bandwidth available to the RCU signifi-
cantly (now to 1424 MB/s, again, while Linux is idling on the SPP), fulfilling one
our requirements stated above. But in addition, FastLane+ ensures that the SPP has
override priority when accessing memory and can even terminate RCU-initiated
transfers. This guarantees that the OS (and programs chosen by the OS scheduler)
are never starved by lack of memory bandwidth (a critical aspect for OS operations
such as interrupt handling or time-critical disk or network I/O).

Since the RCU, acting as a slave, can be accessed from the SPP via the PLB,
SPP-RCU transfers (such as the live variable exchange required when starting the
RCU, or performing a software service on the SPP) can also be performed quite
quickly (just 20 ns/40 ns per 32b variable read/written).

6.3.2 Operating System Integration

Improving the data transfer between SPP, RCU and memory is necessary to imple-
ment our execution model in a real system, but does not suffice on its own. To also
operate securely under a protected virtual memory scheme while exchanging point-
ers, running software applications at full speed (unhindered by the presence of an
RCU), and allowing low-latency RCU-SPP switches (for performing software ser-
vices), the purely hardware architectural measures described above are inadequate:
We now need support from the operating system. To demonstrate the feasibility of
our approach even when running a full-scale OS, we chose Linux (which continues
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to grow market share in the embedded systems area) over a less demanding, but
functionally more limited real-time kernel.

6.3.2.1 RCU-SPP Signalling

Normally, the RCU raises an interrupt to get the attention of the SPP (e.g., to provide
a software service). Even in a Linux version patched for low-latency responses, the
processing of such an interrupt takes 62 μs on the ML310 platform. The normal
path (labeled as such in Fig. 6.3) sketches how an interrupt passes through numerous
layers in the Linux kernel, before it finally reaches the handler in the software main
thread of the hybrid HW/SW user program.

Fig. 6.3 RCU-SPP Signalling [23].

Our FastPath approach takes a number of measures to improve the interrupt re-
sponse latency. First, a dedicated interrupt vector on the PowerPC 405 is assigned
the RCU, allowing the bypassing of the kernel interrupt processing layers. Then,
instead of handling the interrupt in a device driver and using mechanisms such as
file descriptors or similar to forward it to the user program, FastPath can jump di-
rectly to a previously registered callback function which executes in context of the
user program (has access to global variables and is subject to access limitations).
The callback is executed in a separate thread in parallel to the existing threads of the
user program. As usual, execution can be synchronized using a semaphore. But in
FastPath, this semaphore is realized using a dedicated special SPP register (instead
of an in-memory data structure that would also cause bus traffic). By proceeding
in this fashion, we can reduce software service latency down to the 9.6. . . 2.7 μs,
an improvement of 6.5× to 23× over the original implementation. The FastPath
latency on the comparatively slow 300 MHz PowerPC 405 outperforms even spe-
cial sub-kernel facilities (such as RTAI and LXRT) running on multi-GHz desktop
CPUs [26].

The accelerated RCU-SPP signalling has a tremendous effect on the practical
partitioning granularity for SPP-RCU execution (shown in Fig. 6.4). To give an
example interpretation: Assuming the RCU executes an algorithm HW accel =
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10 times faster than the SPP, requires an average toverhead = 6.15 μs for the RCU-
SPP signalling, and disregarding the time for the software service itself (which
would also need to be executed when running only on the SPP), we can accept a
switch to a software service every tSSW = 55.4 μs and still achieve an effective ac-
celeration of 9× over the SPP. With FastPath, the quick SPP-RCU switches required
by our execution model are demonstrated to be achievable on real hardware/software
platform.

Fig. 6.4 Effective speed-up vs. RCU-SPP signalling delay [23].

6.3.2.2 Shared Virtual Memory

Fast SPP/RCU accesses to a shared physical memory (as described in Sect. 6.3.1)
can be implemented purely in hardware. But for safety and security reasons [31],
protected virtual memory is becoming more common even in traditional embed-
ded OS such as LynxOS, VxWorks, and of course embedded Linux. To support our
model of execution even when running the ACS under such an OS, RCU memory
addressing and accessing must be coordinate with the SPP-side memory manage-
ment unit (MMU). We have implemented and evaluated two significantly different
solutions to this problem.

Fig. 6.5 Conventional and AISLE Program Layouts [22].
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Figure 6.5 shows the simpler of the two approaches, the Accelerator-Integrating
Shared Layout for Executables (AISLE) [22]. In this model, we map all data re-
gions (uninitialized, initialized, heap, and stack) into a so-called DMA buffer by
modifying the ELF program loader [34]. A DMA buffer is a contiguous address
range accessible to the RCU that is locked into physical memory (not subject to
being paged to and from disk). This also ensures that the same virtual address will
always map to the same physical address. Thus, virtual ↔ physical address trans-
lation consists of just adding/subtracting constant offsets. Analogously, addresses
generated by the RCU can easily be constrained by a simple bounds check to al-
ways lie within the buffer, protecting other processes from a potentially rogue RCU.
AISLE also protects the executable code (the so-called .text segment) of the user
program itself from the RCU by keeping it outside the buffer. In this fashion, both
SPP and RCU operate on the same virtual addresses and can transparently process
data stored in the shared memory (no inefficient copying between SPP- and RCU-
accessible memories is required). Reference [22] explains AISLE in greater detail,
also covering topics such as cache coherency between SPP and RCU, and size man-
agement of the DMA buffer.

Fig. 6.6 SPP-RCU shared virtual addressing with PHASE/V [23].

While AISLE provides the desired functionality in a very efficient fashion (as
will be shown below), it does have a number of limitations: Once the DMA buffer
is allocated, it can be resized only with considerable overhead. In many cases, this
will lead to the maximal size buffer being allocated to the RCU. Since, by its very
nature, the DMA buffer does not participate in paging, it will always occupy its full
size in physical memory.

As a second, potentially more flexible approach, we implemented the Processor-
Hardware Accelerator Shared Environment with Virtual addressing (PHASE/V,
shown in Fig. 6.6) [23]. Here, the RCU fully participates in all virtual memory
operations, including demand paging, variable virtual-physical mappings, and dis-
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contiguous physical memory ranges. With demand paging now supported, physical
memory is only allocated when needed and released when required otherwise (in
contrast to the statically pre-allocated DMA buffer of AISLE). Analogously to the
SPP, the RCU uses a translation-lookaside buffer (TLB) to cache virtual-physical
translations (taking only a single clock cycle for a translation), but is fully capable
of performing a walk of the page mapping tables itself to determine as-yet unknown
mappings on a TLB miss. If no physical page is found, the RCU uses the FastPath
signalling scheme to request the SPP to handle the page fault (e.g., load the missing
page from disk). In the reverse direction, the OS on the SPP informs the RCU when
it alters the mappings (e.g., when a memory page is swapped out to disk), causing
the RCU to synchronize its TLB with the one in the SPP.

6.3.3 Evaluation

To stress-test the performance of the different schemes, we use the traversal of a
linked-list, randomly distributed in memory [23]. AISLE and PHASE/V have sim-
ilar performance, until the number of virtual pages in the working set exceeds the
RCU-TLB capacities (which occurs between 16 K and 32 K list elements). Then,
PHASE/V begins to slow down (e.g., taking 2.3× the time of AISLE at 128 K list
elements). However, even in this extreme case, the RCU remains 23% faster than a
pure-software version running of the SPP. Thus, the often quoted maxim that recon-
figurable computing is mainly useful for stream processing has been invalidated by
our research: RCUs can also be faster than SPPs even for highly irregular pointer-
chasing applications. In such scenarios, performance will be limited by the memory
bandwidth, which we can fully exploit with FastLane+ on the RCU.

More detailed evaluations are presented in [22, 23]. On of the experiments also
demonstrates that an active RCU only marginally slows the pure software processes
scheduled by the OS to execute on the SPP. In summary, by taking the appropriate
architecture and OS measures, we have now created an environment which enables
the practical use of the compute model of Sect. 6.2.

6.4 Hardware/Software Co-compilation Flow

Now that we have defined and implemented a suitable reconfigurable target architec-
ture, we can examine the programming tools we developed to make the technology
accessible to software developers.

6.4.1 Overview

The heart of the flow is the Comrade compiler. As usual for modern compilers, it is
organized in a multi-pass manner. First, common compiler operations are performed



126 Andreas Koch

(lexing, parsing, machine independent optimization). At this step, the intermediate
representation (IR) of the compiler front- and middle-end is exported from the sys-
tem (as a C program) and subjected to dynamic profiling. As a result, actual execu-
tion frequencies can now be back annotated into the IR to guide further processing.

Based on the profiling data, program is partitioned for SPP and RCU execution
(see Sect. 6.4.2 for more details). The software part destined for the SPP is en-
riched with interface code (to exchange the live variables at SPP/RCU execution
boundaries and start the RCU), exported as a C program and fed into a conventional
software C compiler.

The part to be executed on the RCU needs to be processed further by Comrade.
It is first transformed into a control flow graph (CFG) in Static Single Assignment
form, which forms the base of Comrades hardware-centric intermediate representa-
tion, the Control Memory Data Flow Graph (CMDFG, see Sect. 6.4.3). Hardware-
specific optimizations (e.g., parallelizing memory accesses) are then performed by
transforming the CMDFG. The hardware for the RCU is finally generated from the
optimized CMDFG as separate data path and dynamically scheduled controller (see
Sect. 6.4.4) in the form of RTL Verilog netlists. These are then synthesized together
with the fixed rSoC architecture of the ACS (Sect. 6.3.1), and handed to the FPGA
vendor tools for implementation (map, place, route, bitstream generation).

6.4.2 Profile-Based Inlining and Partitioning

Dynamic profiling data is gathered early in the compile process after some machine
independent optimizations (e.g., goto removal) have already been performed. This
profile is first used to inline only the most heavily used functions. In this way, we
avoid the code size explosion (specifically, the associated area requirements on the
RCU) that can occur when inlining indiscriminately.

For partitioning, multiple versions of the loops making up the potential RCU
kernels are created. This is done in an inside-out fashion, starting with just the in-
nermost loop(s) and then widening the scope (possibly merging formerly separate
loops into one kernel candidate) until the RCU area is exceeded. Figure 6.7 shows
an example of this for two loops: The CFG shown in (a) is expanded into a CFG that
has the entire loop nest executing on the SPP (left), the outer loop on the SPP and
the inner on the RCU (middle), and the entire nest executing on the RCU (right).

We then examine each of these candidate RCU kernels by building valid paths of
operations that can be natively executed on the RCU. These will generally bypass
external I/O and all functions which were not inlined (either due to adverse profiling
data or lack of source code). Such operations will be marked as potential software
services. Valid means for path that it will pass through the candidate region (enter
and leave it). Path construction first constructs a valid path and then expands it,
adding rejoining sub-paths in order of decreasing execution frequency. This is done
until the entire candidate is covered by RCU-suitable paths and software services, or
the RCU area is exhausted. More details on these steps can be found in [11, 12]. As
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Fig. 6.7 Generating alternate SPP-RCU partitionings [13].

Fig. 6.8 RCU path construction [13].

examples, 80% of the instructions of the Versatility wavelet image [30] compressor
and the ADPCM audio coder can potentially be moved to on the RCU in this fashion.

6.4.3 CMDFG Intermediate Representation

We experimented with a number of intermediate representations for hardware/softw-
are co-compilation. This included various SSA forms, such as plain SSA [4], ar-
ray SSA [16], and our own initial attempt for a data-flow controlled form heavily
emphasizing parallel execution [14] (DFC-SSA, which later proved too difficult to
schedule). None of these proved sufficiently expressive.

To fill this need, we developed Control Memory Data Flow Graphs (CMDFG),
described in greater detail in [6, 7]. The CMDFG expresses control flow (extracted
from the intermediate SSA-CFG created during compilation), inter-operator data
flow (as a classical data flow graph) and memory dependencies (such as those com-
puted by alias analysis). It is somewhat similar to the Program Dependence Web
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[3] and Program Dependence Graph [5], which are also low-level fine-grained in-
termediate representations. However, they do not express memory dependencies at
all and rely on constructs such as γ and β functions or data-flow switches to guide
computation. The CMDFG is closer to the actual hardware: It employs distributed
multiplexers for this purpose, with control edges running from a condition to the
multiplexer input nodes to determining the selected data.

Fig. 6.9 (a) Sample program, (b) SSA-CFG, (c) CMDFG [6].

Figure 6.9 shows a very simple example of such a CMDFG (for simplicity, with-
out memory edges). For the source code shown in (a), the SSA-CFG is shown in
(b). The body of the loop is represented by the CMDFG shown in (c). For clarity,
this omits the increment of the index variable and the test of the loop condition.
Note that the true condition of n13 controls both the nested if statement as well as
the assignment to s at the same level. In contrast to many previous hardware com-
pilers, Comrade can easily handle even complex nested control structures in loops
(including other loops!) using the CMDFG.

Figure 6.10 shows a simple example how memory edges explicitly express mem-
ory dependencies. In the CDFG without memory edges (b), the load and store of
the sample program (a) could execute in arbitrary order and potentially violate the
write-after-read requirement. The CMDFG (c) enforces correct execution, with the
aid of two additional constructs: A Memory Forwarder (MF) executes if allowed
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Fig. 6.10 (a) Sample program, (b) CDFG, (c) CMDFG.

by the incoming control edge, and allows execution of its successor memory nodes.
The memory merge node allows execution of its successor memory nodes if at least
one of its direct memory predecessors was executed. In this fashion, the write a[i]=0
will only execute if c was true, and the load in x=a[i]+2 has already completed, or
c was false, and the MF node executed, leading to the execution of the memory
merge node, which in turn allows the store node to execute.

By selectively modifying the memory dependence graph, we can easily express
parallel memory accesses once we have proven their independence, e.g., by alias
analysis methods. The memory aspects of the CMDFG are discussed in greater de-
tail in [7].

6.4.4 CoCoMa Controller Model

Another core result of our research was creation of new dynamic scheduling se-
mantics for the CMDFG. Beyond the capabilities of traditional dependency graphs
(e.g., control data flow graphs), which have a node execute and produce a result as
soon as all of its operands are available (and a possibly incoming control edge is
also valid), we can now express the deletion of results. This can extend to stopping
a calculation already in progress once it has been determined that the result will not
be needed. Since this relation is transitive, an entire chain of unneeded calculations
can be stopped, and the operators be made available for the next set of operands.

These semantics are defined by the Comrade Controller Micro-architecture (Co-
CoMa), which also describes their mapping into hardware. At the abstract level, we
now a structure similar to a Petri net with two kinds of tokens: Activate Tokens (AT)
indicate the presence of data at the source of an edge, Cancel Tokens (CT) erase
an AT (and its associated data item) when they meet. ATs generally move in the
direction of data flow, while CTs move in the opposite direction.

A simple example for the inner if of the Fig. 6.9(a) is shown in Fig. 6.11 for three
successive clock cycles (assuming the addition operator has a latency of one cycle,
and the division takes longer). In cycle 0, the values for s_2_0 and i_2_0 have been
computed (both of this happens in block N2 of the SSA-CFG). Thus, ATs are present
on all outgoing edges of the associated multiplexers n6 and n2. Both the addition
and division operators in CMDFG nodes n29 and n19 now start to compute (since



130 Andreas Koch

Fig. 6.11 Interaction of Activate and Cancel Tokens [6].

all of their operands are available). But the condition i == 5 is assumed to have
evaluated to false in this example. Thus, only the operator associated with this state,
namely the addition, is allowed to complete (an AT travels along the control edge
labeled false to node n29). On completion, the operator consumes its operands (and
their associated ATs) on the incoming data edges from n6 and n2, and produces
the result and an AT at its output in cycle 1. The other branch of the condition
i == 5 is handled as follows: The division node at the destination of the control
edge also receives an AT in cycle 0. However, since the condition state false does
not match the true requirement on the control edge, the AT is turned into a CT at
the output of the unneeded division operator in cycle 1. Note that the division has
been started in cycle 0 (the same as the addition), but is now canceled in cycle 1.
In cycle 2, the addition result and its AT travel downward through n21 for use
in further computation. The CT at the division operator has now traveled upwards
and erases the incoming operands (and their ATs) which were not consumed by the
terminated division. Thus, the entire CMDFG subgraph is now available for the next
loop iteration. In static scheduling, this would only happen after the division could
be completed (even though its result would not be needed).

From this basic scheme, more complex behaviors can be derived. For example,
the CMDFG memory dependencies (described in Sect. 6.4.3) are also modelled as
ATs travelling along memory edges. Also, more complex transition rules are re-
quired when describing deeply nested structures, especially loops. The best formu-
lation of these is still the subject of active research.

Despite its complexity, CoCoMa scheduling, which described in greater detail
in [6], can lead to significant speedups, even when compared with other more ad-
vanced dynamic schemes such as lenient execution [1]. It does have additional cost
when compiled into hardware, though: Each data register now requires an additional
two bits to hold an AT and CT each. Furthermore, the token transition rules need
to be implemented as logic networks, also requiring RCU area. As shown in [7],
the CoCoMa overhead for realistic applications is in the range of 600–1700 slices,
which should be considered acceptable given current RCU device sizes.
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6.5 Infrastructure

Beyond the execution model, an appropriate practically realizable ACS architecture
and the core compile flow, we developed a number of adjunct technologies.

6.5.1 Parametrized Module Library

Many steps of the Comrade compile flow need target hardware-specific data. This
ranges from area/delay estimates for specific operations to information about their
physical and logical interfaces down to (possibly pre-placed) structural netlists. All
of these aspects are encapsulated in the Generic Library for Adaptive Computer
Environments (GLACE), which we introduced in [29].

GLACE provides all of the basic operators (arithmetic, logic, memory) as well
as the system interfaces (I/O registers, SPP-RCU signalling) we need for C-to-
hardware compilation in a parametrized fashion [19]. For example, we can retrieve
from GLACE data about a 27 × 18 bit unsigned multiplier. The underlying data is
organized and accessed by the Flexible API for Module-based Environments [18],
which defines both passive (design data model) and active components (query/reply
scheme for interacting with the module library). The data model is organized into
different views, each representing a subset of aspects relevant for a specific stage
of the compile flow. Examples include behavior (which lists operator semantics),
synthesis (giving are/delay and interface data), topology (holding placement infor-
mation), and place (which encompasses pre-placed EDIF netlists).

GLACE data, accessed via FLAME, is used in Comrade e.g., for the hard-
ware/software partitioning step. It guides both the expansion of nested kernels from
pure software to pure hardware as well as the construction of RCU-executable paths
through the candidate kernels. It also provides the pre-placed operator netlists for
the datapath, which are then combined with the CoCoMa controller and the system
interface into a single RCU configuration.

6.5.2 Physical Design Aspects

We have always also considered the physical design aspects of reconfigurable
computing. This began with Structured Design Implementation methodology [17],
which described how to assemble regular datapaths from pre-placed and pre-routed
parametrized modules. We have carried forward this intent into the topology and
placed views of FLAME.

As an example, Fig. 6.12 shows the regular layout of an 8 bit unsigned mul-
tiplier on a Xilinx Virtex FPGA and the associated FLAME topology view. This
describes the extent of the layout (separating regular and irregular parts) as well
as the locations of external ports (which are organized here at a pitch of two bits
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Fig. 6.12 Pre-placed 8-bit multiplier and FLAME description [29].

per CLB height). The regular parts of a module have a consistent horizontal data
flow, consisting of regularly spaced bits. Above and below this regular area, irregu-
lar components (such as module-local controllers and overflow computation) can be
arranged. A purely-module based approach is inefficient, however, when compos-
ing more complex logic expressions from individual modules: Each operator would
be mapped to its own separate module (which would at least be one LUT column
long), even though multiple operators could conceivably be mapped together into
a single LUT column (as long as the number of LUT inputs is not exceeded). To
solve this problem, we have developed a universal generator for logic modules that
accepts arbitrarily complex logic expressions and performs inter-operator logic op-
timization and mapping to generate a single regularly pre-placed module for the
entire expression [35, 20].

Fig. 6.13 Regular placement of Wavelet datapath [33].

For high performance, the regular layout style also should be preserved when
assembling an RCU datapath from multiple modules. This requires custom tools,
since the vendor CAD tools are not specialized for datapath layout. An easy way to
achieve regular inter-module placement is a linear arrangement of modules, this is
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an approach that has already been used in earlier projects [27]. An example of such
a linear layout for a kernel of a Wavelet image compression algorithm [30] is shown
in Fig. 6.13(a).

However, this technique obviously does not scale with increasing datapath com-
plexity: At some point, the linear distances become excessive and the performance
decreases (despite the regular linear layout). To this end, we have developed a com-
bined approach ClaP [33] that partitions the datapath into clusters of linear sub-
datapaths (shown in Fig. 6.13(b) for the same circuit). Within each cluster, a strictly
horizontal data flow is preserved, but less tightly connected modules can be placed
in different clusters, allowing the exploitation of the vertical dimension. The core of
ClaP is a simulated annealing algorithm with different moves (inter-cluster, intra-
cluster, move entire clusters, . . . ). For the given example, this vertical stacking of
horizontally arranged clusters leads to a delay reduction of ca. 20% over the purely
linear solution.

6.5.3 Reconfiguration Scheduling

The kernels currently extracted by Comrade from real C applications (without ex-
ploiting alias or loop iteration space analysis) have a maximum size of a few hundred
operators and often take up just 3000. . . 6000 cells (4-LUT + flip-flop) of RCU area.
Considering that even medium-sized commodity FPGAs have more than 17,000
cells, a study of how to use all of this space has much potential.

Fig. 6.14 (a) Initial and (b) new on-chip architecture.

Figure 6.14(a) shows the initial RCU architecture generated by Comrade. It
consists of interfaces to the rest of the system (a slave to exchange live variables
with the SPP and a master to perform independent memory accesses) and the con-
troller/datapath for one kernel.
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Orthogonally to trying to extract more complex kernels from the C programs (see
Sect. 6.7), we can employ the unallocated RCU area to hold the controllers/datapaths
for different kernels on the RCU. In this manner, we avoid potentially very slow
reconfigurations and simply switch between kernels that have been merged into a
single configuration. Such an architecture is shown in Fig. 6.14(b). The SPP can
now initiate an appropriate switching of the kernel bus multiplexer by performing a
slave mode write to the RCU. Thus, a switch between different kernels requires just
a single clock cycle instead of the many milliseconds of a reconfiguration.

While Comrade does not yet exploit this scheme, we have already developed the
algorithms for computing how the kernels should be merged into configurations so
that the number of reconfigurations is minimized over the entire program execu-
tion [15]. For rapid calculation of an estimated solution (independent of the detailed
execution trace of the program), we use a heuristic that constructively builds clusters
of configurations following the nested loop structure of the program. To evaluate the
quality of the heuristic and to compute the optimal solution when algorithm run-time
is less critical, an alternate exact approach using dynamic programming was also de-
signed. Since the exact approach evaluates the complete trace of kernel execution
order during a program run, its own run-time can be lengthier for more complex pro-
grams. In general, the heuristic computed results close to the optimal solution for
our experiments, but required less than 1/10 s execution time. The optimal algorithm
generally had run-times between 1/10 s and 100 s.

The results of configuration merging are extremely promising. From the Wavelet
image compression application Versatility [30], we can extract eight kernels. When
using separate configurations for these kernels, the execution of the hybrid hard-
ware/software application will require 5381 reconfigurations. After performing con-
figuration merging, the heuristic will reduce that to five reconfigurations, while the
optimal solution can even get it down to just four reconfigurations. Given that re-
configuration times in many cases dominate the entire application run-time, config-
uration merging will be an essential part of a refined compile flow.

6.6 Lessons Learned

The sheer implementation complexity of a compile flow from a high-level language
down to hardware is tremendous. Even for pure software compilers, the significant
infrastructure requirements to get a flow working at all (not innovating yet) are con-
sidered serious impediments to current research by notable compiler experts [10].
The efforts to bring up a software compiler are dwarfed by the additional hardware
architecture and design tasks necessary for a hardware/software co-compiler such
as Comrade. The compiler part alone of Comrade currently consists of more than
300,000 lines of C++ and Java code, excluding the Stanford SUIF2 compiler frame-
work [32] which is used as the front-end. Also not included are the system interfaces
(SPP, memory, including caching and streaming) that were formulated in Verilog
and VHDL and the operating system modifications (see Sect. 6.3). Our research
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continues to be significantly hampered by our unfortunate choice of SUIF2 as the
base for the compiler. While SUIF2 was being hailed as a future-proof successor of
the earlier SUIF1 system, which was successfully used in the Nimble project [27],
SUIF2 development quickly faltered and even today the system does not have all of
the capabilities of its less modular predecessor. In retrospect, we should have cho-
sen the much more capable Open64 system [9], which was already available at the
project’s start, but was discarded to its convoluted implementation and steep learn-
ing curve Today, more alternatives are available: Open64 continues to be developed
and is very powerful especially in the area of parallelizing loop transformations.
While the more recent LLVM [25] is not yet as advanced as Open64 in that area, it
offers a cleaner internal structure and a well-integrated compile flow encompassing
many scalar optimizations and even just-in-time compilation. Especially the later
would allow for interesting research in just-in-time hardware generation.

The choice of a suitable intermediate representation for the RCU part of the com-
pile flow also turned out to be pivotal for the project. Existing representations, both
for pure software (e.g., SSA-CFG) or pure hardware (e.g., DFG and CDFG) lacked
the expressive power to handle the complex RCUs capable of accessing memory in
their own, which were our aim with Comrade. While the CMDFG has fulfilled that
role admirably (we have yet to discover practical limitations), it took much exper-
imentation (e.g., with DFC-SSA and Array-SSA forms) to develop it. For similar
research, we highly recommended to spend significant effort developing an IR suit-
able for all phases of the project before beginning to work on individual passes.

Analogously, the CMDFG execution semantics and their realization in the dy-
namic CoCoMa controller have also advanced the project significantly. In contrast
to pure DSP or scientific computing C code, the general purpose C code we are
aiming to compile is not amenable to efficient static scheduling: In much practical
code, simply too many data, control and (possibly hidden) memory dependencies
exist. Modern out-of-order SPPs handle such temporally distributed programs by
discovering these dependencies at run-time and re-ordering execution around them.
The CMDFG model allows a similar approach for our spatially distributed compu-
tations: The CoCoMa dynamic scheduling resolves dependencies at run-time (but
see Sect. 6.7).

As described in the preceding sections, our core focus is still the compiler and
the ACS architectures supporting its execution model. However, when compiling
more complex programs potentially containing many RCU kernels (something we
have not done yet), it is obvious that the reconfiguration overhead on current re-
configurable devices (generally FPGAs without configuration caches etc.) will be-
come excessive and most likely negate any possible speed-up actually achievable by
RCU execution. At this stage, our currently under-utilized work on reconfiguration
scheduling will become crucial for high performance.

Over the course of the project, we have worked predominantly with Xilinx
FPGAs. Starting with the XC4085XL in 1998, we progressed through the Virtex
XCV1000 (our long-time work horse), Virtex II Pro and now Virtex 5 FX FPGAs.
Up to and including the Virtex device, we managed to keep our physical design tools
(floorplanning, pre-placed module generation) synchronized with the latest FPGA
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features. However, with FPGA complexity increasing (more and more special pur-
pose blocks becoming available), and the quality of conventional logic synthesis
and design implementation tools finally improving (e.g., good support for physical
synthesis), we believe that it is no longer practical for academic research to cover
the entire flow from high-level input language down to layout generation within a
single project. We have thus downsized our own efforts in the physical design area
(which achieved speed-ups in the 20. . . 30% range) to focus on the compiler’s op-
timization and hardware-generation stages (where we often see speed-ups of 2× or
more). In practice, this means that the compiler will no longer generate pre-placed
floorplanned EDIF netlists for the RCU (datapath, controller, system interface), but
instead stop at a RTL description that is exported to a commercial logic synthesis
system for actual mapping.

6.7 Future Work

Now that the compile flow and the associated ACS architecture are fully operational,
we can let the initial results of front-to-back compilation experiments guide our
future research (some of which has already started).

First, it becomes obvious that we should move larger parts of an input program
to the RCU in order to profit from acceleration. While our fine-grained execution
model does support this already, the scope of the current SPP/RCU partitioner turns
out to be to restrictive. Instead of the current profile-based inlining/profile-based
path construction, we are currently implementing full-scale path profiling to dis-
cover critical paths flowing through multiple functions [24] without the need for
inlining. These whole-program paths can then be used as the basis for RCU kernels.

Second, we need to improve the degree of ILP in the generated hardware. While
our current CMDFG-to-CoCoMa translation does support speculation within loop
iterations, we do not yet speculate across iteration boundaries. To resolve this, we
can introduce token queues that allow the computation of predecessor nodes (e.g.,
the loop index calculation) to re-start in a new iteration even though not all of their
successors have consumed their tokens (and the associated data items) yet. Different
branches of the CMDFG can thus execute different loop iterations. Other techniques
which will be investigated are loop transformations for increased parallelism (using
the different cost models of spatial computation, e.g., availability of many registers
compared to SPP) and speculative memory accesses (both read and write). The lat-
ter capability does require active support from the memory system. Thus, we will
continue our research in ACS architecture issues.

6.8 Conclusions

With the Comrade compiler, our DFG project demonstrates the feasibility of com-
piling from general-purpose ANSI C into hybrid applications, executing both in
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software on a conventional processor and hardware-accelerated kernels on a re-
configurable compute unit. The flow draws on our advances in compiler construc-
tion, high-level synthesis, computer architecture and physical design automation to
achieve this goal. Now that the system is functional and can be evaluated on real
hardware fully supporting its execution model, we can proceed to actually improve
the quality of results. We have already discovered a number of research areas, ripe
with potential for significant improvements, that will be tackled in the next stage of
work.
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Chapter 7
POLYDYN—Object-Oriented Modelling and
Synthesis Targeting Dynamically Reconfigurable
FPGAs

Andreas Schallenberg, Wolfgang Nebel, Andreas Herrholz, Philipp A. Hartmann,
Kim Grüttner, and Frank Oppenheimer

Abstract Dynamic Partial Reconfiguration (DPR) is a promising technology ready
for use, enabling the design of more flexible and efficient systems. However, existing
design flows for DPR are either low-level and complex or lack support for automatic
synthesis. In this chapter, we present a SystemCTM-based modelling and synthesis
flow using the OSSS+R framework for reconfigurable systems. Our approach ad-
dresses reconfiguration already on application level enabling early exploration and
analysis of the effects of DPR. Moreover it also allows quick implementation of
such systems using our automatic synthesis flow.

7.1 Introduction

Dynamic Partial Reconfiguration (DPR) is the ability of FPGAs, to change some
parts of their programming while the remaining (static) parts keep operating. With
current hardware description languages like Verilog, VHDL, or SystemC [10], DPR
can only be expressed at a very low implementation level. There is no support for
explicitly expressing the change of design components at runtime in these HDLs.
More importantly, it is not possible to explore the impact of reconfigurable sub-
systems on the performance and behaviour of the system as a whole in early design
phases.
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Additionally, using DPR manually requires a lot additional design effort, since it
affects both static and dynamic parts of the design. This time-consuming and error-
prone work makes DPR prohibitive for practical use in real products. There has
been quite some research to overcome this. Unfortunately, the proposed solutions
required a significant change in modelling the static part of the design. Today’s
technologies for DPR affect the possible system architectures in several areas:

Timing

• The actual replacement of system components during run-time usually results
in delays, during which the affected area is not usable.

• Static components need to be aware of this possible temporal unavailability of
the dynamic components.

• The effect of the reconfiguration delays on a system’s latencies, throughput etc.
needs to be considered.

• Without proper insight into the required and resulting timing of the application,
the performance of dynamically reconfigurable systems might be sacrificed.

Communication

• To ensure correct behaviour, communication across the border of static and dy-
namic components has to be designed carefully.

• The dynamic parts need to abort communication to the static part before any
reconfiguration in a controlled way. After reconfiguration it needs to establish
communication again.

Behaviour

• Depending on the application, it might be necessary to preserve and restore the
internal state of a dynamically reconfigured component.

• The static parts need to know how to modify the dynamic parts.

These issues make the exploration and design of dynamically reconfigurable ap-
plications difficult and time consuming. To reduce this design burden, the specific
aspects of DPR should be visible in the abstract application model. If DPR is found
to be beneficial, the proposed solution should be implemented without the need to
recode the model. If DPR is found to be not beneficial, there has to be a quick path
to a static solution without DPR. Whatever choice is made, the tool flow must allow
use of standard synthesis and simulation tools, e.g. SystemC and VHDL tools.

Consequently, there is a need for an efficient design flow providing an appropri-
ate level of abstraction to capture the essential properties of an application as well as
enabling the integration of DPR. OSSS+R is a SystemC based design methodology
enabling algorithmic specification in C/C++, functional simulation and automated
synthesis. Our extension to the set of available modelling primitives and simula-
tion abilities is done in terms of a SystemC domain-specific library, available un-
der the LGPL license. Simulation can be done with any IEEE 1666–2005 standard
conforming simulator. The designer identifies potential candidates for dynamic re-
configuration, marks them and observes the effects by simulation. The model can



7 POLYDYN 141

be directly fed into the Fossy synthesis tool [7], generating VHDL. Feeding result-
ing files into an FPGA synthesis tool quickly yields bitfiles and initial, approximate
configuration times. A back-annotation of these times into the abstract model allows
performance evaluations.

In this chapter we present the main modelling [19, 20] and automatic synthe-
sis [21] capabilities of OSSS+R. They are illustrated by an adaptive car audio system
modelling example. The synthesis flow is presented, based on a reduced system cov-
ering reconfigurable crypto algorithms. The overall design flow starts from a pure
C++ application level model which is refined to a high level OSSS+R model and fi-
nally synthesised to a register transfer level model. We further present results of the
final implementation of the reconfigurable crypto algorithms on a Xilinx ML-401
development board using the Xilinx Early Access Partial Reconfiguration design
flow [24].

7.2 Related Work

There are other frameworks which allow both modelling and synthesising of dy-
namic reconfigurable systems.

One example is Pebble [13], a low level HDL providing specific statements for
reconfiguration. One is a mux/demux encapsulation of logic variants. The control
inputs of these muxes are used as reconfiguration conditions. The logic variants are
to be exchanged during reconfiguration. Additionally, a RECONFIGURE_IF state-
ment allows an alternative specification. The specification does not cover reconfigu-
ration times. A compiled model can be simulated using the Rebecca simulator. The
authors demonstrated synthesis for an Xilinx 6200 FPGA.

JHDL [3] is a structural hardware description language based on Java. It provides
reconfigurable elements, called PRSocket, which can receive a Reconfigure-
(int) call, requesting a specified implementation. Depending on the argument,
new circuit nodes are created. JHDL can be simulated and synthesised. The sys-
tem clock needs to be stopped during reconfiguration, which makes modelling of
reconfiguration times impossible.

T.K. Lee et al. [12] used RT C to describe a reconfigurable system. The recon-
figurable elements are tasks, which are grouped in structs, arrays or unions. The
grouping determines the replacement, e.g. members of a union are mutually ex-
clusive. These groupings allow influence on control complexity, area demands and
design performance. An example model was transformed into Handel-C and RT-
Pebble, with tool assistance and some manual work. It was then implemented on a
Celoxica RC1000-PP board.

The DCS toolset [14] accepts specially crafted VHDL as its input, containing all
implementations of the configurable components. It also needs auxiliary scheduling
and timing information. The toolset then generates a simulation model for debug-
ging. Since the design is already given in VHDL, FPGA vendor tools are used to
implement the design [18].
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There are other approaches, based on SystemC (like OSSS+R), which allow sim-
ulation but do not have tool-assisted synthesis.

SyCERS [1] is a framework allowing modelling of run-time reconfiguration,
intended to explore design alternatives. The functionality to be replaced is repre-
sented by functions inside modules. These functions are called from the body of
SC_THREADs and SC_METHODs. By using function pointers to change the func-
tion at simulation time the dynamic behaviour is achieved. Simulation is done by
mapping to the Caronte architecture, containing a microprocessor to access the re-
configurable modules.

In [2] a modelling framework using dynamic thread spawning is used. The frame-
work implements an additional layer to the SystemC kernel providing required fea-
tures like dynamic ports. Using this layer, threads can be replaced at runtime, ex-
pressing dynamic behaviour.

The ReChannel [16] library allows modelling of run-time reconfiguration at dif-
ferent levels of abstraction. Though ReChannel guides the designer during iterative
refinement to lower levels of abstraction it does not provide automatic synthesis.

In these approaches, the management of the dynamic resources (which thread
may use which resources at what instant) needs to be specified manually. An excep-
tion to this is used in the ADRIATIC project [15]. In this approach, mutual exclusive
modules are to be described as bus slaves. Then multiple slaves are grouped and
wrapped in a dynamic reconfigurable fabric (DRCF) which switches among them
and acts as a physical bus slave itself. The bus master requests a specific logical
slave by its bus address which is then utilised by the DRCF to enable the requested
logical bus slave. The DRCF introduction is done at RT level.

The given list of SystemC-based approaches does not include those requiring a
modified simulation kernel. Further SystemC-based approaches can be found in [4,
11, 23].

7.3 Methodology

Our group has previously investigated concepts for object oriented hardware spec-
ification, simulation and synthesis [8, 17]. This lead to the OSSS language [5]. We
also introduced a basic concept to handle reconfigurable architectures [19]. We do
not require the designer to explicitly express a demand for reconfiguration. Instead,
he uses certain containers and relies on an automatically generated infrastructure
for administrative tasks. We regard reconfigurability as an orthogonal aspect to the
functional specification of the circuit.

Exploiting reconfiguration is a decision of architecture. Consequently, when we
describe parts targeted to be reconfigurable we stick as close as possible to well-
known concepts from VHDL or Verilog. We address the following aspects of the
design process:

1. The designer should focus on the desired functionality and be able to separately
address the aspect of reconfiguration.
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2. Interaction between processes competing for limited and shared resources (re-
configurable areas and reconfiguration ports) should be handled automatically.

3. Design space exploration shall be supported by quick changes between dynamic
and static implementation.

4. Modifying configuration parameters should be easy.
5. The design specification shall be as close to a non-reconfigurable specification

as possible.
6. The specification should be simulated and synthesised “as-is”, that is, without

any pre-processing.

The designer implicitly constructs the necessary infrastructure and explicitly pa-
rameterises only the necessary parts. This is comparable to a runtime system and
a software operating system removing design burdens like process scheduling and
memory management from the programmer. The designer describes the dynamic
behaviour of the application first. Technological aspects can be added to the model
later in a separate step.

7.3.1 General Concept

The OSSS+R configuration specification concept bases on polymorphism. There is a
fundamental difference between polymorphism known from software languages like
Java or C++ and the polymorphism which is used in OSSS. Software uses pointers
as basis for its concept of polymorphism. Pointers in C++ have a formal type. The
actual type of the object being pointed to has to be of a class which is derived, or
identical to the formal type of that pointer.

The hardware description language OSSS does not allow pointers. Pointer syn-
thesis is a difficult task [22] that tends to lead to very inefficient designs. However,
OSSS has polymorphic containers which behave different depending on their actual
type. They can be copied, their methods can be invoked and they can be used in
signals just like normal objects. OSSS+R provides the same concept in another con-
struct, the osss_recon container. The container is instantiated with a specializing
formal class type (like a software pointer’s type). This type has to be derived from
the predefined class osss_object. It is the base type for all actual types of the
container’s content. The container must be instantiated as a member of a SystemC
module. Therefore, it has a well-defined location in the structure of the design. An
osss_recon container cannot be used for local variables, signals, ports or method
parameters. However, a container’s content can be copied from or to local variables,
signals etc.

An osss_recon container represents an area within a reconfigurable device.
Fig. 7.1 illustrates a relation between DPR-FPGAs and reconfigurable containers.
Such reconfigurable container provide a formally specified interface to every possi-
ble actual content. The relationship between a reconfigurable area on a DPR-FPGA
device and its static environment on the same device is similar: The content may
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Fig. 7.1 Analogy between polymorphism and reconfiguration [20].

change but in order to be integrated into the static neighbourhood it requires a static
interface to the outside.

Exchanging an object in an osss_recon container with another one (possibly
of the same type) corresponds to a change in the flip-flop states, which we call an
object switch. If the class types are different it also corresponds to a change of the
programmed logic on the DPR-FPGA in that area (reconfiguration). We call this a
class switch.

For such an area within the FPGA device we call the combination of logic con-
figuration (information given in a partial configuration bitstream) plus the sum of
the flip-flop states a context. This corresponds to the implementation of the actual
class and the member attribute values.

We allow accesses to a reconfigurable container by a context’s name or anony-
mously. Anonymous accesses always manipulate the context that is currently phys-
ically present in the reconfigurable area. We abbreviate the formal type used for this
anonymous access with ACFT. The ACFT is given by the specialization class for
the reconfigurable container.

In contrast, if there is a unique identification for a context we call it a named or
persistent context which also includes an identifier in the OSSS+R model. We de-
scribe those contexts using the osss_contexts container. While a named con-
text is configured on a reconfigurable area it is both accessible using the named con-
text identifier or referring to it as an anonymous context using the osss_recon
container. We abbreviate the formal type of named contexts with NCFT. These
named contexts can be used as polymorphic containers themselves, just like the
reconfigurable containers. The actual type of the named context’s content (NCAT)
just needs to be identical or derived from the formal type (NCFT). The lifetime of
a named context is unlimited since it is always declared as a member of a module.
Each named context is associated statically with exactly one reconfigurable con-
tainer.
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Table 7.1 Relations between pure software modelling, DPR hardware, and OSSS+R.

Software (C++) Hardware OSSS+R
class T {}; Partial bitstream class T: public osss_object {};
Attribute values Flip-flop states Attribute values
Polymorphic pointer Reconfigurable area Reconfigurable container
T * x; osss_recon〈T〉x;
Object being pointed to – Context
T a, b; osss_context〈T〉a,b;
Address of object – Identifier
No fixed binding – Binding a to x

a(x);
Modifying content of address x Reconfiguration Assignment to anonymous context
x = T(); (writing partial bitstream) x = T();
Modifying address State preservation Assignment to named context
x = &a; *x = T(); and reconfiguration a = T();

Table 7.1 gives an overview of the relations between pure software modelling,
DPR hardware, and OSSS+R. It shows some code fragments in C++ and to corre-
sponding expression in OSSS+R.

7.3.2 Lifetime and Conflict Management

There may be multiple named contexts for each reconfigurable container and mul-
tiple reconfigurable containers on a device. But there is one single configuration
controller per device. Accessing a named context is simply done by using the iden-
tifier in an assignment or a method call. This automatically instructs the configura-
tion infrastructure to make sure the correct context is available in the reconfigurable
area and therefore possibly demand a reconfiguration, if a class switch is to be per-
formed during the context switch. Since there may be multiple osss_recons de-
manding a reconfiguration at a time an arbitration mechanism is needed to solve the
accesses to the configuration resource (e.g. a Flash or EPROM providing configura-
tion streams).

There also may be concurrent access requests to the same osss_recon (by
SC_CTHREADs). Handling this requires a second arbitration mechanism. Both are
hidden in the configuration infrastructure and can (but do not need to) be customised
using user-defined arbitration algorithms. The invocation of the arbitration and its
specification is completely transparent to the designer.

Another task performed by the configuration infrastructure is the handling of
the attribute values. Whenever a context is being swapped out of the reconfigurable
area the flip-flop states have to be saved. Otherwise the context could not be com-
pletely restored later on. This is also handled automatically by the configuration
infrastructure and not visible to the designer. For synthesis, methods will be added
which allow reading and writing of attributes. In OSSS+R accesses to named con-
texts and reconfigurable containers cannot be interrupted. Additionally, contexts are
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only exchanged while no access (e.g. a method call) is active on the reconfigurable
container. Therefore we are able to determine points in control flow which represent
idle states in the object. For saving and restoring objects, that is, to make swap-
ping of objects functionally invisible to its users, it is sufficient to know the objects’
attributes at these idle states.

Instead of directly expressing a demand for reconfiguration, the source code may
contain demands for certain contexts. This leaves the following tasks up to the au-
tomatically generated infrastructure:

• Book keeping (which context is in which reconfigurable container)
• Detecting conflicts (is the desired context available, checked by its ID)
• Solving conflicts (swapping of context states, possibly including reconfigura-

tion steps)
• Delaying accesses (halting processes until conflicts are resolved).

Before an access is performed, the client process automatically requests permis-
sion from the access controller. The client process specifies a desired context. The
access controller keeps track of the current context which is present in the recon-
figurable area. When it detects a mismatch between the active and desired context
an object switch is initiated. If the active context is a persistent one, the current
attributes are saved in an external storage. Next, class switches are detected. The
access controller tracks the actual classes of all contexts and the current class. If the
requested context has a different class than the actual one, a class switch is neces-
sary. The access controller instructs the configuration controller with this task. After
completion, the access controller checks if the desired context is a named one, so
attributes have to be restored. Finally the client process is granted access rights.

When using the anonymous container only (no named contexts), the named con-
text handling logic is not generated for that osss_recon container.

Fig. 7.2 Abstract architecture [20].

Fig. 7.2 shows a generic structure of a design consisting of two user processes (1),
two reconfigurable areas (2) (with access arbiters attached), two context attribute
storages (one for each reconfigurable area, (3)) and a configuration controller tak-
ing care of access conflicts to the device’s reconfiguration port (4). The white boxes
are specified implicitly in the model when certain keywords, e.g. osss_context,
are used. They represent the configuration infrastructure. The designer need not
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care about their instantiation, use or interaction. He just has to set some architec-
tural parameters (e.g. configuration times or the selection of arbitration algorithms)
when the timing and scheduling is to be specified. Simulating access and configu-
ration controllers requires adding further timing information to the model. Saving
and restoring the classes’ attributes from or to a memory requires time which is
dependent on the size of the attributes. Also the configuration times depend on the
class type and specific hardware device type. This information is expressed using
OSSS_DECLARE_TIME statements. Initially the designer has to guess values since
they are unknown before bitstream generation. After synthesis they may be replaced
by more precise ones.

7.4 Derived Interface Classes

The described approach allows to model systems containing reconfigurable areas.
All accesses to these areas are expressed as normal object use (method calls and
assignments). However, the need for a static interface at the signal level requires the
use of a common interface class at the logical level. Each osss_recon is asso-
ciated with exactly one formal interface class (ACFT) which defines the available
methods. Every named context for that reconfigurable container needed to have the
same formal interface class (NCFT = ACFT). This even applies if the named con-
texts actually contain instances of derived classes (NCAT derived from NCFT).

The restriction NCFT = ACFT means forcing the designer to use the very
same class for the declaration of the osss_recon container and its associated
osss_context containers. It is possible to instantiate objects of derived types
(NCAT derived from NCFT) in a named context container but it is not possible
to invoke methods specified in the derived class using that container. If the NCFT
could be a class derived from a ACFT, additional methods would become usable via
the named context.

This means not having a fixed interface at the level of program logic anymore
but adapting it to the actual type. For synthesis we still need a fixed signal level
interface. A static analysis has to find a unified interface that enables access to all
possible contents. Since named contexts are statically bound to reconfigurable con-
tainers, no dynamic creation of contexts is possible. Both ACFT and NCFTs are
statically known, so we can walk through all NCFT classes and the ACFT in order
to calculate a virtual but static unified interface class. Previously this class had to
be explicitly present in the model and the designer had to create it manually. With
our proposed methodology this has been automated. This simplifies modular design,
since it allows adding new classes to the class tree incrementally and using them in
named contexts.

The reconfigurable instance acts as a self-adapting server component. It always
provides the correct interface implementation as requested by the user.

The static binding of named contexts to reconfigurable containers implies that no
context migration from one reconfigurable container to another is possible. This is
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not a severe limitation since the designer can explicitly copy the context’s content
to ordinary objects or other contexts. In other words, migration of contexts has to be
expressed explicitly by the designer.

7.5 Modelling Example: Car Audio System

We present a modelling example as illustrated in Fig. 7.3 to demonstrate the
OSSS+R approach. It covers a car audio system consisting of two audio sources
(a music player module and a navigation speech module) requesting services from
a reconfigurable processing area and a mixer module which combines the results.
A security module rarely uses the same reconfigurable area to perform crypto-
graphic operations (unlock the system if the correct key is present).

Fig. 7.3 Block diagram of the car audio system modelling example [20].

Three modules (music playback, navigation speech and security) perform their
tasks partly on the reconfigurable area. The music player is able to decode differ-
ent compressed audio formats (MP3, Vorbis and AAC). The decoding must be fast
enough to prevent an audio-buffer underrun if the reconfigurable area is used tem-
porarily by another module. The navigation module has sporadic need for decoding
speech when a text is to be processed. The text is also provided as compressed au-
dio samples. The implementation of the player is re-used for the navigation system.
The mixer module has to fetch audio data from these two sources and to produce
an output signal. It does not need access to the reconfigurable area. The security
module performs cryptographic operations on the reconfigurable area. It is allowed
to interrupt the output stream when a new keycard is inserted and a different access
key needs to be checked. From the modelling point of view each of these modules
requires an individual named context. These contexts are instances of classes from
the same class tree (see Fig. 7.4).
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Fig. 7.4 Class tree of the car audio system modelling example.

The music player uses a named context of type Codec. It receives data from
the music storage (located in the testbench) via a polymorphic signal of the formal
type EncodedSample. The samples have actual types like e.g. MP3Sample. Their
parent class provides a getDecoder() method which is overloaded and implemented
by the derived classes and returns an appropriate codec. The instantiation of the
codec is done by assigning the returned decoder directly to the named context. The
decoder itself is one of the classes MP3Codec, AACCodec or VorbisCodec. This
way the music player can be designed with just knowing the classes Codec and
EncodedSample. The codecs can be individually added or removed to the model
without changing the player module. This also applies to the navigation module
since it shares its implementation with the music player.

7.5.1 Coding Style: From C++ Polymorphism to OSSS+R

In a SystemC design flow the design entry may be a C/C++ description of the ap-
plication’s core algorithms. This is to be refined into a hardware description, using
SystemC modelling elements. SystemC presents itself as a library, not a language,
so one may also use all features of C/C++. While this allows faster simulation and
easier modelling, the drawback is, that such a model might use features which are
(typically) not synthesisable. Manual recoding would be required to obtain a synthe-
sisable model written in Verilog or VHDL for example. A designer may be tempted
to avoid all non-synthesisable features in the first place, however this would sacrifice
advantages like more abstract modelling.

OSSS+R encourages the designer to use C++ features, since classes, objects and
inheritance are synthesisable. For more complex components, like concurrently used
objects, OSSS+R provides synthesisable containers to reduce the dilemma described
before. A group of objects where each member is accessed rarely overlapped with
other members of the same group is a good candidate for reconfiguration. Addition-
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ally, polymorphic pointers in the C++ model are a hint to dynamic objects which
also make good candidates.

In the initial C++ model of the car audio system example some objects were
implemented using polymorphism. The different implementations of the abstract
Codec interface were accessed through a polymorphic pointer. This way, the refer-
enced codec could easily be switched from one implementation e.g. Vorbis to MP3
without having to change its interface.

Assuming the codec objects are used mutually exclusive and switches are rare
events. To let the codecs share the same physical reconfigurable area the polymor-
phic pointer is replaced by an OSSS+R reconfigurable object. The reconfigurable
object uses the same generator base class as the polymorphic pointer and provides
the same C++ syntax for accessing the object.

The C++ model contains a polymorphic pointer wg which is initialised using one
of the available generator classes.

Codec * my_codec;
my_codec = new VorbisCodec();
// for all samples to be decoded
my_codec->put(enc_sample);
my_codec->decode();
decoded_sample = my_codec->get();
// end for
// switch to MP3
my_codec = new MP3Codec();
// for all samples to be decoded
my_codec->put(enc_sample);
my_codec->decode();
decoded_sample = my_codec->get();
// end for
// ...

For OSSS+R, this pointer is moved inside the SystemC module Decoder-
Module and transformed into a reconfigurable object:

SC_MODULE( DecoderModule ) {
// ...
osss_recon< > my_reconfigurable_area;
osss_context< Codec > my_codec;

SC_CTOR( DecoderModule ) {
my_reconfigurable_area.reset_port( reset );
my_reconfigurable_area.clock_port( clock );
// binding context my_codec to reconfigurable area
my_codec(my_reconfigurable_area);

SC_CTHREAD( work, clock.pos() );
reset_signal_is(reset, true);
// process work can access context my_codec
uses( my_codec );

}
};

Within the module constructor, the reconfigurable object is bound to the process
work, enabling work to access the object. Similarly, the object could be bound
to even more processes. As you remember, the reconfigurable object automatically
provides a built-in scheduler, serialising all incoming requests.
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As shown in the implementation of the process work, the new variable is used
almost like the original C++ pointer, the only difference being the assignment to an
object, where new is omitted.

void CodecModule::work() {
my_codec = VorbisCodec();
// forall samples to be decoded
my_codec->put(enc_sample);
my_codec->decode();
WaveSample decoded_sample = my_codec->get();
// end for
// switch to MP3
my_codec = MP3Codec();
// for all samples to be decoded
my_codec->put(enc_sample);
my_codec->decode();
decoded_sample = my_codec->get();
// end for
// ...

}

The resulting implementation performs a reconfiguration, whenever the runtime
class of my_codec changes, possibly caused by an assignment. However, if the
run-time class matches the previous one, only the object’s attributes are modified.

7.5.1.1 Devices and Timing

To reflect reconfiguration and context switch times during simulation with proper
timing, OSSS+R supports timing annotations provided by the designer. Timing an-
notations are defined as part of the target platform definition. They are given for
a combination of platform and class type, e.g. Virtex 4 and VobisCodec. Designers
may specify the time needed for a reconfiguration and the time needed to store the
state of a class instance:

OSSS_DECLARE_TIME( // Timing:
virtex4, // Platform
VorbisCodec, // Class name
sc_time( 3, SC_MS), // Context save/restore
sc_time(1100, SC_MS)); // Reconfiguration time

Initially during the modelling phase, the specified times are rough estimates by
the designer. Later on, when the final implementations of the configurations are
available, the exact reconfiguration times can be obtained through the size of the par-
tial bitstreams and the performance of the chosen reconfiguration controller. These
timings can then be back-annotated to the initial model, providing the exact tim-
ing behaviour within the application model. If the model shows some unexpected
or unwanted behaviour due to this reconfiguration times, these issues can be traced
back to the OSSS+R model. This is much more convenient than debugging RT level
code.
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Fig. 7.5 Timeline for car audio system scenario [20].

Table 7.2 Guessed phases (as shown in Fig. 7.5) durations.

Process Duration Phases
Vorbis attribute save/restore 3.0 ms 2, 8
Vorbis configuration 1100.0 ms 7
MP3 attribute save/restore 2.0 ms 4, 6
MP3 configuration 1000.0 ms 3
MP3 playback 2129.8 ms 5

7.5.2 Simulation

The designer now may want to use such a model e.g. to estimate the sizes of buffers.
This can be important to make sure that the music does not stop playing while the
navigation system uses a different codec to decode some text messages.

Fig. 7.5 shows an example scenario. The music player is decoding a Vorbis
stream (1). It proceeds until the music buffer is filled or the stream is interrupted,
then it releases the reconfigurable container. Since we have chosen a fair access
scheduler (Round Robin) for the reconfigurable container the navigation system will
be granted access. The context used by the navigation module differs, therefore the
attributes for the music context have to be saved (2). Now a class switch is required
(Vorbis to MP3) and the area is configured with a different configuration (3). After
that, the attribute state from the last usage of the speech decoding context is restored
(4). The spoken text is a MP3 stream and has a decoded length of five seconds play
time. After decoding (5) the reconfigurable container is released again. The music
player may proceed, so the navigation context is being stored (6), the Vorbis codec
is configured (7) and the music context’s attributes are restored (8). Then decoding
continues (9). Note that the designer explicitly states (1), (5) and (9) only.

One design decision would be to determine the size of the music buffer. It should
be large enough to contain enough samples to bridge the time during which the
music decoding is interrupted. It must provide enough data through the phases (2)
to (8). Table 7.2 contains the phase durations as declared in additional statements in
the SystemC elaboration phase (except for the MP3 playback time).

A 128 kbit/s MP3 stream consists of frames of 27 ms length [6, 9] (926 frames
for a five second piece of speech). Each frame takes 2.3 ms to decode (assuming a
decoder running at 24 MHz) which results in a total processing time of 2,129.8 ms.
The phases (2) to (8) should last 4,237.8 ms. The first decoded frame from phase
(9) is available 2.3 ms later. The music buffer has to be large enough to contain
4,240.1 ms of audio data (186,989 samples at 44.1 kHz sample rate).
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The simulation allows to include the influence of additional aspects on the re-
quired buffer size since it also covers overhead caused by data exchange between
modules or handling of permissions. Such overhead cycles are difficult to calculate
manually. In our example the testbench request speech decoding at t = 0. The mu-
sic player releases the reconfigurable container at that time. At t = 1,002.418 ms
the first sample of decoded speech is available and by t = 3,320.975 ms all speech
samples are processed. At t = 4,251.839 ms a music buffer underrun occurs since
the next music frame is available at t = 4,570.111 ms. In order to cover the over-
head the buffer has to be 13 frames (at least 330,011 ms) larger than the spreadsheet
calculation indicated. These extra 13 frames are necessary due to overhead cycles.

7.6 Synthesising OSSS+R

Since the audio codecs in the modelling example in Sect. 7.5 do not contain real
functionality, we present the synthesis flow of only a (slightly simplified) crypto sub-
system. Three different cryptographic algorithms have been converted from existing
implementations in C or VHDL to corresponding user-classes (see Fig. 7.4): Triple-
DES, Blowfish, and AES.

While Triple-DES and Blowfish are rather symmetrical algorithms, the imple-
mentation of AES encryption and decryption is quite different. Therefore, two sep-
arate classes for encryption and decryption (AES, AES−1) have been created, to
reduce the size of the reconfigurable area on the FPGA.

An additional simplification is the replacement of the named context
osss_context<Crypto> by direct accesses to an equivalent osss_
recon<Crypto>. This was needed, since the current implementation of the
OSSS+R synthesis tool Fossy does not support named contexts, yet. However, the
design is easy to understand and well-suited to explain problems and solutions of
DPR and to illustrate the overall OSSS+R design flow.

7.6.1 From OSSS+R to RT Level

Figure 7.6 presents the flow from an OSSS+R model to a final FPGA implemen-
tation. Initially, the OSSS+R model is simulated to validate its behaviour using the
OSSS+R simulation library. The model is then automatically synthesised to register
transfer level (RTL) using the Fossy tool. First, OSSS+R specific language elements
are replaced with equivalents composed of SystemC components. Then synthesis
of the resulting SystemC model to RTL is performed, including class tree synthe-
sis, implicit to explicit FSM transformation etc. The output can be either SystemC
or VHDL. The generated VHDL may then be further processed by FPGA vendor
tools, e.g. the Xilinx ISE tool suite. Once bitstreams are obtained, the reconfigura-
tion times can be calculated and back-annotated into the original OSSS+R design.
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Fig. 7.6 Flow from OSSS+R (C++) model to FPGA implementation [21].

In Fig. 7.7(a) block-diagram of the generated RTL architecture of the crypto
subsystem is shown. The square, gray boxes are generated by Fossy representing
infrastructure components which are needed to implement the dynamic partial re-
configuration. While these components are automatically provided and instantiated
as simulation models by the simulation library, they are not synthesisable as such
and have to be replaced by synthesisable equivalents.

Fig. 7.7 Synthesis structure of Adaptive Crypto example.
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Recon-Object For each reconfigurable object a corresponding reconfigurable
area, called slot is generated. This slot may take any of the classes that have
been mapped to the reconfigurable object. Each of the classes is generated as a
stand-alone module, communicating with other modules by a signal-based proto-
col. Thanks to their polymorphic nature, all of the classes within one reconfigurable
object can share the same physical interface although the signal interpretation varies
during runtime. After implementation, each of the classes will be represented by its
own partial bitstream.

Each slot is managed by an accompanying component controlling the access to
the slot, detecting needs for reconfigurations and initiating reconfiguration requests.
Operations on the reconfigurable object, e.g. method calls, inside the crypto user
module, are replaced by a signal-based protocol to the access controller and the
slot. Each request to a reconfigurable object is first directed to the access controller,
to schedule it with other pending requests. If the access is granted and the requested
configuration is activated the process directly communicates with slot.

Reconfiguration Controller If an access controller detects the need to perform a
reconfiguration, a request for reconfiguration is sent to the platform independent
part of the reconfiguration controller (PIRC). The PIRC is automatically gener-
ated by Fossy. In our example, only one access controller is requesting services,
so the PIRC does not need to be equipped with a scheduler to resolve conflicts.1

Additionally, the PIRC translates requested class types and location information to
bitstream numbers. The translated requests are serviced by the platform dependent
reconfiguration controller (PDRC) part. A PDRC is implemented manually once for
a given platform, e.g. an FPGA prototyping board, and can be re-used for multiple
applications. Platform dependent blocks are shown in black in Fig. 7.7(a).

Method Calls The user processes contain accesses (method calls and assign-
ments) to reconfigurable objects and their contexts. These accesses are replaced by a
signal level protocol between user processes and access controllers (for permission
handling and reconfiguration) and user processes and slots (for method calls and as-
signments). In a reconfigurable system, a single user process may communicate with
a set of different slot implementations, each having their individual interface signal
interpretation. Due to the strong type system in the original model, it is guaranteed
that the user process always uses the correct signal interpretation. After the replace-
ment of all OSSS+R specific elements with synthesisable SystemC equivalents, the
RTL model is generated as SystemC or VHDL.

RTL Simulation Model Typically, a designer wants to check the result of any au-
tomatic transformation by at least simulating its result. However as standard HDLs
do not support the expression of DPR, the result of the OSSS+R synthesis cannot
be simulated as such. As a solution to this, Fossy can generate an RTL simulation
model, which can be simulated with any standard HDL simulator and is shown in
Fig. 7.7(b).

1 If more than one Recon Object is bound to the same device, an (potentially user-defined) arbiter
is automatically synthesised to serialise reconfiguration requests.
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In this model, all possible configurations of a slot are instantiated in parallel and
connected to a multiplexer structure. For the simulation model, a pseudo PDRC is
generated which controls the select inputs of the multiplexers. For each reconfigura-
tion request, instead of writing bitstreams to an FPGA configuration port, the PDRC
mimics the behaviour by waiting for as long as the configuration would take in the
real system. The waiting time is taken from the timing specifications which have
been given by the designer in the original model (see Sect. 7.5.1.1). After a first
implementation these values may also be replaced with the reconfiguration times of
the final partial bitstreams. The pseudo PDRC provides the same interface as the
original, so despite the multiplexer structure, the rest of the model is identical to
the synthesis model. This way the application can be simulated with standard HDL
simulators and will show the same behaviour as the reconfigurable design.

From RTL to Bitstreams If the simulation is successfully validated using the RT
level simulation model, the RT level synthesis model can be transformed to gate
level and bitstreams using FPGA vendor tools. The synthesis of OSSS+R has been
developed to be platform independent. However, to support the DPR features of a
target platform, the model usually has to be tailored to a vendor specific tool frame-
work. Typically, this includes creating a specific top level, some pinout description
files, a floor-planning file etc. We have implemented this vendor specific adaption
for the Early Access Partial Reconfiguration Flow (EAPR) [24] from Xilinx.

7.7 Evaluation

Using the EAPR flow, we have successfully implemented the generated RTL model
of the crypto example application on an ML401 development board from Xilinx.
The PDRC has been designed manually, using the Virtex4 ICAP directly with a
maximum bandwidth of roughly 600 MBits/sec. Table 7.3(a) shows the size of the
partial bitstreams and their resulting reconfiguration times. It should be noted, that
in this example the actual algorithms have been injected manually as HDL IP blocks
in a automatically generated empty slot.

To get a picture of the overhead introduced by the reconfiguration infrastructure
Table 7.3(b) shows the usage of FPGA resources for PIRC, PDRC, and access con-
troller. Compared to the total resources of the FPGA the overhead is rather small.
While the overhead for PDRC and PIRC is more or less constant, the resource us-
age for access controllers would increase with the number of slots and the use of a
scheduler.

Fossy generates an implementation for the empty base class Crypto as well.
The area cost for this slot, which has the synthesized method interface, but an empty
data-path inside the methods, shows the overhead for implementing method-based
communication. In the given example, the interface is quite wide (128 data bits
in each direction), therefore the cost is already quite high. However, if the meth-
ods actually contain computations the registered inputs would be required anyhow.
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Table 7.3 Results of evaluation.
(a) Bitstream sizes and configuration times

Slices Size Configuration
[bytes] time [μs]

Triple DES 1,830 203,872 254.8
Blowfish 1,083 175,812 219.8
AES 1,265 159,388 199.2
AES−1 1,488 185,584 214.0

(b) Resource usage of infrastructure
Slices LUTs Device

utilisation
PDRC 172 247 1.6%
PIRC 118 221 1.1%
Access Controller 22 42 0.2%
Empty Slot 213 403 2%

Summing up, the overall implementation cost is acceptable given the potential save
of FPGA area through the use of DPR.

7.8 Conclusion and Future Work

In this chapter, we presented a complete modelling and synthesis flow for DPR
systems based on the modelling framework OSSS+R. Using an adaptive car audio
system we demonstrated how a designer can efficiently design such systems with-
out having to deal with the implementation details of DPR. Using the abstraction
mechanism of polymorphism, reconfiguration can easily be expressed and captured
already on application level. OSSS+R models are synthesised to RTL models using
the synthesis tool Fossy. Using the Xilinx EAPR flow, we were able show that the
overhead introduced by the DPR infrastructure is acceptable.

In future we will extend Fossy to support the synthesis of reconfigurable ob-
jects with Named Contexts [20]. We are also planning to integrate a more flexible
approach for the implementation of the communication infrastructure between pro-
cesses and reconfigurable objects.

Acknowledgements Supported by the DFG project POLYDYN, as part of the Priority Programme
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Chapter 8
Design Methods and Tools for Improved Partial
Dynamic Reconfiguration

Markus Rullmann and Renate Merker

We dedicate this chapter to Prof. Wunsch
on the occasion of his 85th anniversary.

Abstract In current FPGAs the overhead associated with partial dynamic reconfig-
uration limits the application of this method in system design. We review the origins
of this overhead and present a novel approach to solve this problem. We introduce
the reconfiguration state graph which is used to describe dynamic reconfiguration
for individual resources and to assess reconfiguration cost. We present new method
to map reconfigurable modules to resources such that the reconfiguration cost are
small. The method can be applied to both digital circuits and dataflow graphs. We
demonstrate that we can exploit the trade-off between resource requirements and
reconfiguration cost by a unique high-level synthesis tool. We further discuss how
our methodology can be integrated into a design flow for efficient runtime reconfig-
urable systems.

8.1 Introduction

Reconfigurable computing architectures provide a combination of high data pro-
cessing throughput, similar to ASICs, and the flexibility of a software processor.
In such architectures an array of functional units provides the resources to perform
many operations in parallel, thus enabling high throughput. The function of the re-
sources and the data transfer between resources are programmable, hence function-
ality is customized during deployment, after device fabrication. Whereas in recon-
figurable computing systems with one static configuration any anticipated function-
ality must be provided statically, in systems with partial dynamic reconfiguration
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more efficient realizations are possible because the functionality can be adapted at
runtime to the requirements.

The design of reconfigurable systems-on-a-chip (RSoC) often follows the prin-
ciples shown in Fig. 8.1. The application consists of a number of tasks. The tasks
are partitioned into hardware tasks (HW tasks) and software tasks (SW tasks). In
the final system implementation, the software tasks constitute the software program
which is run on the RSoC’s CPU. The hardware tasks are implemented as reconfig-
urable modules, which are loaded into the reconfigurable areas of the RSoC during
runtime. This method is called partial dynamic reconfiguration. The partitioning
of the tasks is crucial for the system performance and the requirements of recon-
figurable resources. The reconfiguration between different reconfigurable modules
induces a high runtime overhead. In order to prevent frequent dynamic reconfigu-
ration we introduced multimode reconfigurable modules. A multimode module can
perform the computation for different tasks without reconfiguration.

Fig. 8.1 Application partitioning into HW tasks and SW tasks. The tasks are run on the RSoCs
reconfigurable area and the CPU.

We investigate the problems of reconfiguration overhead from the device archi-
tecture point of view. Consistently with current methodologies we assume that the
design functionality is partitioned into modules, but we make two important ex-
tensions: (1) modules are not reconfigured completely but based on individual re-
sources. We call this fine grain reconfiguration. (2) one module can provide several
functions for an application, implemented in a multimode circuit.

In this chapter we describe new models, methods and tools that reduce the over-
head associated with the dynamic reconfiguration of reconfigurable modules. The
methods use a new high-level synthesis (HLS) approach to generate reconfigurable
modules that execute the HW tasks. At first we motivate our approach by a short de-
scription of current limitations of partial reconfiguration in Sect. 8.2. In Sect. 8.3 we
explain general reconfigurable module architecture that is produced by our HLS
tool. The models used in the reconfiguration cost assessment are introduced in
Sects. 8.4 and 8.5. In Sect. 8.6 we describe our HLS approach. Experimental re-
sults obtained with our HLS tool are provided in Sect. 8.7. Finally in Sect. 8.8, we
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present our work in a broader context of general system design issues. Here we de-
scribe how our methods should be integrated into an FPGA system design flow and
give further references to related work.

8.2 Motivation

Partial dynamic reconfiguration in FPGAs is usually associated with a module based
design approach, see Fig. 8.1. At first, the designer defines a reconfigurable area on
the device. Second, he implements the reconfigurable tasks as modules that can be
loaded on the reconfigurable area. At runtime the resources in the reconfigurable
area are reconfigured to enable different modules.

Using standard methodology, the reconfiguration cost of the implementation de-
pends on the size of the reconfigurable area, cf. Fig. 8.2. Each reconfiguration is per-
formed by loading a partial bitstream into the device. The configuration bitstream
itself is composed of configuration frames that contain any data needed to configure
the entire reconfigurable area. A configuration frame is the smallest reconfigurable
unit in a device; the size of a frame and configurable logic that is associated with
each frame depends on the FPGA device. Because the standard bitstreams contain
all data for a reconfigurable area, the size of these bitstreams is large, typically hun-
dreds of kilobyte. The configuration port of the device has only a limited bandwidth.
Together, this leads to configuration times in the order of some hundred microsec-
onds. As a conclusion, configuration data becomes often too large for on-chip stor-
age and frequent reconfiguration leads to considerable runtime overhead.

Fig. 8.2 Illustration of module-based partial reconfiguration.

If the properties of reconfiguration data are analyzed in detail, it can be observed
that the data does not differ completely between reconfigurable modules: (1) some
of the reconfiguration frames are equal in two designs and (2) the data in two frames
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that configure the same part of the device frequently exhibit only a few different
bytes (see frame/data differences in Fig. 8.2). This has implications on the device
reconfiguration at runtime. After the initial device configuration, the reconfigurable
area is always in a known configuration state. When a new configuration must be
established on this area, a new bitstream is used to program the associated device
resources. In the ideal case, the reconfiguration programs only the device resources
that need a different configuration. Currently the granularity of the reconfiguration
is limited by the configuration frame size. For an efficient partial reconfiguration,
only configuration frames that contain new configuration data are used to program
the reconfigurable area. This is only possible if the current configuration and the
frame-based differences are known at runtime.

In the latest FPGA generations (Virtex4, Virtex5) the size of configuration frames
has been reduced considerable, which enables a more fine-granular reconfiguration.
Also, the bandwidth of the configuration port has been increased, which enables
faster reconfiguration. Nevertheless the drawback of existing design flows persists:
reconfiguration overhead depends solely on the reconfigurable area, but not on the
contents of the reconfigurable modules.

The configuration data themselves are the result of the circuit design and the
place and route tools. The configuration data of two modules can become very sim-
ilar if the initial design exhibits a similar circuit structure and the tools place and
route the circuits similarly. In this chapter we describe how the similarity between
reconfigurable modules can be increased in order to reduce the differences in con-
figuration data and therefore reduce reconfiguration cost.

8.3 Reconfigurable Module Architecture and Partitioning

The HW tasks are implemented in the reconfigurable modules. In these modules, the
tasks are executed in parallel to the CPU and other modules in the RSoC. Therefore,
each module needs its own local execution control that runs the task within the
module. The HW task execution is started by the software program running on the
CPU. The software also receives data and status information from the HW task.
The HW task functionality is realized by using computational resources and a state
machine that is implemented in the module. The state machine creates a sequence
of control signals for the resources in order to execute a task.

Here we describe the logical architecture of a reconfigurable module. Our high-
level synthesis tool automatically generates modules with such an architecture. The
modules consist of a datapath unit, a control unit, control memories, a bus interface
and additional I/O interfaces. The general structure is shown in Fig. 8.3.

The control unit operates as a state machine that is split into a state control mem-
ory, which holds the sequence of states and a datapath control memory which stores
the control sequence for the datapath. The datapath unit contains registers as storage
elements for variables, operations to process data, and multiplexers to control the
dataflow on the datapath connections. The control signals of these units are driven
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Fig. 8.3 Reconfigurable module architecture used by the HLS tool.

from the datapath control memory. The operations can realize either math and logic
functionality or they are used as an interface to external I/O. External I/O can realize
bus master accesses and access to FIFOs, memories and other periphery.

The amount of reconfiguration can be chosen if the module is partitioned into
static and dynamic sub-modules accordingly. With existing methods, the whole
module would be implemented as one monolithic reconfigurable module. Instead
we propose to keep the bus and I/O interfaces static and to reconfigure the contents
of the control memory and the resources of the datapath independently. Thus re-
configuration can be used for a subset of resources, depending on the configuration
differences between modules.

8.4 Reconfiguration State Graph

The current configuration and the partial reconfiguration of an FPGA must be man-
aged at runtime. A reconfiguration state graph (RSG) [6] is used to model the par-
tial reconfiguration. The RSG defines the configurations and the reconfiguration
formally. The RSG describes the different configurations available and for each re-
configuration it can be decided what resources must be reconfigured. It provides
a framework for reconfiguration management and reconfiguration overhead assess-
ment.

The RSG is defined as a digraph G(NT, ET) where the set NT of nodes i
represents the reconfigurable modules and the set ET of edges e = (i, j) rep-
resents the reconfiguration from reconfigurable module i to reconfigurable mod-
ule j. With d : NT �→ Dm for each reconfigurable module i a configuration
d(i) = (d(i)1, . . . , d(i)m) is given. The set D denotes possible configurations of
a resource. The elements d(i)k, k = {1, . . . , m} describe the configurations of the
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smallest independent reconfigurable resources k in a device. The reconfiguration
r : ET �→ {0, 1}m describes for each edge e = (i, j) ∈ ET which resources k in
a device must be reconfigured in order to change a current configuration d(i) to a
new configuration d(j). Hence, if d(i)k �= d(j)k (i.e. reconfiguration of resource k
is necessary) r(e)k = r((i, j))k = 1 and if d(i)k = d(j)k (i.e. reconfiguration of
resource k is not necessary) r(e)k = r((i, j))k = 0.

The reconfiguration overhead can now be computed on the basis of the RSG.
We assume that each reconfiguration is performed once. The average number of
resources that are reloaded if reconfiguration occurs is given by:

crc =
1

|ET|
∑

e∈ET

m∑

k=1

w1(k)r(e)k, (8.1)

where the function w1(k) yields the cost for the reconfiguration of element k. We
assume that the reconfiguration time is proportional to the weighted sum of recon-
figured resources and therefore crc is called average reconfiguration time.

The RSG model is further illustrated in Example 8.1.

8.5 Module Mapping and Virtual Architecture

The RSG model describes only how the reconfiguration overhead is affected by
the configuration data in d. For any module functionality there exist many possible
realizations, where each yields a different configuration d. We have developed a
method to map the original HW tasks to the reconfigurable modules such that the
differences between module configurations are minimized. As a result, the average
reconfiguration time is reduced, too.

We observe that functionality of a module is given as a structural representation
until the module is finally translated to binary configuration data. It is not possible to
describe the structural representation directly as a configuration d, because the func-
tionality is not directly related to fixed resources. Here, we introduce a model that
enables us to provide a configuration d(i) for any structural representation of a mod-
ule i. First, we define the structural representation formally as a digraph and then we
map the digraph to a virtual architecture (VA) in order to derive the configuration
d(i). For any such mapping we can therefore compute the reconfiguration overhead
and thus can optimize the mapping accordingly, without creating bitstreams for dif-
ferent mappings.

A module i ∈ NT is represented by a digraph Gi(Ni, Ei) where the set Ni

of nodes defines the functions used by a module and the set Ei of edges defines the
data transfer between the functions. The resource configuration required by a node is
assigned by the function l : Ni �→ D . Note that the digraph can describe structural
representations at several levels in the design flow, e.g. it can describe dataflow
graphs, synthesized digital circuits etc. The digraphs Gi, i ∈ NT are called input
graphs.
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The input graphs of all modules i are mapped to a VA. A VA is defined as
a digraph GA(NA, EA). The nodes NA denote reconfigurable resources and the
edges EA denote reconfigurable interconnect. Furthermore we define an allocation
a : Ni �→ NA, which maps the node of any input graph to a resource in the virtual
architecture. As a by-product the edges from the input graphs are mapped to the VA,
too. The most important feature of the allocation is that the different input graphs
are mapped to a common context, and hence, their configuration can be compared
to each other.

Now we specify for a module i the configuration of the VA, i.e. the configuration
of the resources n ∈ NA and of the interconnects e ∈ EA that realizes the module on
the VA. The configuration of these m = |NA| + |EA| elements is given for module
i by d(i) = (d(i)1, . . . , d(i)m) as follows:

• The configuration of resource nk ∈ NA, k ∈ {1, . . . , |NA| } is specified by
d(i)k = l(ni) if a node ni ∈ Ni exists with a(ni) = nk, otherwise d(i)k = 0.

• The configuration of interconnect ek ∈ EA, k ∈ {|NA| + 1, . . . , m} is given
with d(i)k = 1, if an edge ei ∈ Ei is mapped to an edge ek ∈ EA, otherwise
d(i)k = 0.

In summary, we provided a formal definition of the module’s structural repre-
sentation and an abstract reconfigurable architecture model. An allocation describes
how the module is mapped to the architecture model. In addition, the input graphs,
the allocation, and the VA define the configuration in the RSG model. Thus, we
can calculate the reconfiguration cost. The model is illustrated in Fig. 8.4. In or-
der to reduce reconfiguration cost, we are interested in an allocation that minimizes
reconfiguration cost.

Fig. 8.4 Mapping of the structural representations of modules to a VA and its relationship to the
RSG model.

Example 8.1. Consider three modules 1, 2, and 3 represented by the input graphs
G1, G2, G3 shown in Fig. 8.5. The nodes ni ∈ Ni of the input graphs are labeled
with their respective configuration l(ni) = fi, e.g. node n1 requires a configuration
l(n1) = f1 of the resource in order to realize the required functionality.



168 Markus Rullmann and Renate Merker

The VA graph is depicted in Fig. 8.5, too. The VA GA(NA, EA) is given by the
elements NA = {n′

1, n
′
2, n

′
3, n

′
4} and EA = {e5, e6, e7}.

For each node ni in the input graphs G1, G2, G3 the allocation to a node n′
k of

the VA is shown, i.e. a(ni) = n′
k. The allocation of an edge ei = (n′

i1
, n′

i2
) ∈ Ei

results directly from the allocation of the nodes n′
i1

, n′
i2

. For example, the edge
(n1, n2) ∈ E1 is allocated to edge e6 = (a(n1), a(n2)) ∈ EA of the VA.

The configuration d(i) of the VA that realizes the functionality required by mod-
ule i is depends on the allocation of nodes N1 and edges E1. The configuration
d(i) = (d(i)1, . . . , d(i)7) describes the configuration of the resources and inter-
connects in the following order: n′

1, n
′
2, n

′
3, n

′
4, e5, e6, e7. For example the alloca-

tion of module 1 yields the configuration d(1) = (l(n1), l(n2), l(n3), 0, 0, 1, 1) =
(f1, f2, f3, 0, 0, 1, 1).

The RSG model related to the input graphs G1, G2, G3 contains the modules
NT = {1, 2, 3} and the reconfigurations between the modules ET = {(1, 2), (1, 3),
(2, 1), (2, 3), (3, 1), (3, 2)}, cf. Fig. 8.5. The reconfiguration r((i, j)) is derived
from the configurations d(i),d(j) of the modules i, j. Consider the configurations
d(1) = (f1, f2, f3, 0, 0, 1, 1) and d(2) = (f5, f6, 0, f4, 1, 1, 0): the related recon-
figuration yields r((1, 2)) = (1, 1, 1, 1, 1, 0, 1) because the configuration of all ele-
ments k differs except for k = 6. The edge e6 is allocated by both configurations.

The reconfiguration for the full RSG is as follows: r((1, 2)) = r((2, 1)) =
(1, 1, 1, 1, 1, 0, 1), r((1, 3)) = r((3, 1)) = (1, 1, 1, 1, 1, 0, 0), r((2, 3)) =
r((3, 2)) = (1, 1, 1, 1, 0, 0, 1). If we assume a unit weight for all reconfigurable
elements, i.e. w1(k) = 1, k ∈ {1, . . . , 7}, then the reconfiguration cost (Eq. (8.1))
evaluate to:

crc =
1
6
(6 + 6 + 5 + 5 + 5 + 5) = 5

1
3
.

8.6 High-Level Synthesis of Reconfigurable Modules

In this section we describe our methodology that enables us to compute allocations
that lead to minimal reconfiguration cost. More specifically we implemented the
methodology into a high-level synthesis (HLS) tool. The tool receives the func-
tionality which must be implemented in the reconfigurable modules as ANSI-C like
source code. The source code is compiled into control dataflow graphs (CDFG) first,
one for each C-function. The CDFGs are considered as input graphs to our alloca-
tion problem. The tool performs four essential HLS steps: (1) for each node in the
CDFG an appropriate resource type is chosen, (2) scheduling assigns an execution
time to each node, (3) each node is allocated to a resource instance in the datapath
which is described as a VA, and (4) architectural synthesis creates the submodules
according to the module architecture, i.e. the control unit and the datapath unit.

HLS provides the ideal abstraction level to describe reconfigurable modules.
From the designer’s point of view, it is much easier to use C-like descriptions of the
algorithm: they can be modified more easily and they can be integrated into system-



8 Design Methods and Tools for Improved Partial Dynamic Reconfiguration 169

Fig. 8.5 Input graphs G1, G2, G3 for Example 8.1. The input graphs are mapped to the VA GA

provides a common reference for the image graphs.

level simulations. It is also possible to adapt the hardware/software partitioning late
in the design process because functions can be moved to the software processor or to
hardware modules with little effort. On the tool side, the high-level descriptions pro-
vide a great deal of freedom to map the functionality to a datapath. In our work we
exploit this freedom in order to generate reconfigurable modules with small recon-
figuration overhead. More specifically, we investigated several methods to choose
the resource types in HLS step 1, and we implemented a resource allocation method
that takes advantage of our VA model to solve HLS step 3.

Both reconfiguration overhead and resource overhead in HLS is avoided by re-
source sharing. In intra-module resource sharing, several CDFG nodes of one mod-
ule are mapped to the same resource instance in the VA, thus reducing resource
overhead. In inter-module resource sharing, several CDFG nodes of multiple mod-
ules are mapped to the same resource instance in the VA. As a result, the resources
are used in several modules and are not reconfigured between those modules.

In the following we describe the HLS steps 1 and 3 in more detail.

8.6.1 Resource Type Binding

In HLS step 1, Resource type binding can either enable or disable the reuse of VA
resources in step 3. In extension to the input graphs defined previously, the CDFG
nodes represent fixed operations or variables. An operation (or variable) can only
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be executed (or stored) on selected resource types. During resource type binding,
one resource type is chosen for each CDFG node. In the resource instance binding
step, the allocation can only be chosen such that each node is allocated to a resource
instance that is of the previously specified type. The resource type binding defines
the potential reuse of nodes and edges in the VA because it enables or disables
resource sharing possibilities between nodes. We investigated several different type
binding strategies in our research in order to see how much the strategy affects the
final results. We assume that many nodes can be bound to resource types of different
complexity, which effects resource sharing: e.g. an addition could be bound to a
simple adder-resource or to a complex ALU-resource. The different type binding
strategies are stated below:

(a) Minimum Cost Resource Type. Here, we choose a resource type for each node
independently with the objective to select the least costly one, e.g. in terms of
FPGA resources.

(b) Minimum Number of Resource Types. The resource types are chosen such that
the number of different resource types becomes minimal. As a result, it is pos-
sible that there are fewer resource instances in the VA because resources can be
shared more often. For instance two nodes may realize two different functions,
but if they are mapped to the same resource type, they may share a resource
instance in the datapath. The number of resource types can be minimized either
over each task independently or for all tasks at once.

(c) Minimum Number of Interconnect Types. The data transfers, indicated by edges
in the CDFG, are mapped to interconnects in the VA. Although the exact inter-
connect is not known during type binding, it is already possible to determine
if two edges may share an interconnect or not. Two edges can share an inter-
connect if the they are mapped to the same interconnect type. The interconnect
type is defined by the resource types were the source node and the drain node of
an edge are mapped to. The minimization of interconnect types targets specifi-
cally the reuse of interconnect in the datapath. As above, the number of resource
types can be minimized either over each task independently or for all tasks at
once.

The effect of the different strategies for resource type binding will be discussed
for the benchmarks provided in Sect. 8.7.

8.6.2 Resource Instance Binding

After a resource type has been selected for each operation and the operation has
been determined in HLS step 2, the operations must be allocated to specific re-
source instances. In step 3, the HLS tool allocates the CDFG nodes to resource
instances and derives the datapath interconnect to realize the data transfer between
nodes. This step is based on the transformation of the input graphs to the VA pre-
sented in Sect. 8.5. In our tool, we employ a heuristic optimization method that is
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based on simulated annealing [7] in order to find an allocation that minimizes a cost
function c. The cost function is a weighted sum of several cost parameters of the dat-
apath. Thus the datapath can be optimized to achieve minimal reconfiguration cost
(for resources and interconnect), resource use, interconnect overhead, and dataflow
multiplexers.

Dataflow multiplexers are introduced into the datapath in order to realize re-
source sharing. Assume that multiple nodes of one CDFG are allocated to the same
resource. However, the data supplied to the resource originates from different re-
sources. For each computation, a dataflow multiplexer connects the output of the
resource which provide the data to the shared resource input. The dataflow multi-
plexers are controlled by the control unit. The node allocation defines the resource
sharing and thus the interconnect structure and the dataflow multiplexers.

Our HLS tool can generate multimode circuits in order to reduce reconfiguration
cost. For a set of tasks it can be chosen, which tasks are implemented in the same re-
configurable module. Hence we can take advantage of inter-module resource sharing
within one configuration, which reduces resource overhead in multimode circuits,
and between different configurations, which reduces overhead for dynamic recon-
figuration.

The resource instance binding step works as follows: The scheduling algorithm
provides information how many resource instances are required. This defines the
number of resources in the VA. Further, the scheduling algorithm provides an initial
solution which assigns each CDFG node to a node in the VA. The initial solution
is modified iteratively by the simulated annealing algorithm in order to improve the
initial solution.

In simulated annealing a current solution is modified iteratively. At first, the cur-
rent solution is slightly modified to gain a new solution. Then, the cost function for
the new solution is calculated. Depending on the state of the algorithm and the cost
of the new solution, the new solution is either accepted and becomes the current
solution or the new solution is discarded.

In our tool, the new solution is derived from the current solution by a random
permutation of the allocation. Subsequently, the interconnect structure in the VA
is derived as well as the dataflow multiplexers. The permutation must observe the
constraints imposed by the scheduling: Any resource instance can only be allocated
by one CDFG node at any cycle at runtime.

For the permutation, a node n ∈ Ni is selected randomly and the allocation
a(n) = r is changed to a randomly selected resource r′, i.e. a(n) = r′. Vice versa
any node n′ ∈ Ni which is already allocated to the resource r′ and which is in
conflict with the new allocation of n, will be allocated to the previous allocation
of n, i.e. a(n′) = r. Thus, starting from a valid initial solution we permute the
solutions iteratively such that each solution remains valid.

The cost function used in the simulated annealing algorithm is composed of sev-
eral components. The basis for all components is the allocation to the VA and the
RSG model. In the following we derive the relevant computations. The resource cost
for a module i ∈ NT is calculated from the input graph Gi and the allocation a (cf.
Sect. 8.5).
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Here we assume that the resource instances nk in the VA are either in use
(d(i)k = 1) or unused (d(i)k = 0), similar to the interconnect configuration. Each
resource instance and each interconnect is associated with a cost factor w2 that rep-
resents either the number of used FPGA slices for a resource instance or the bus
width of an interconnect. Hence, the resource cost for a module i are given by:

cres(i) =
m∑

k=1

w2(k)d(i)k. (8.2)

The resource cost cres(i) do not include the cost for the dataflow multiplexers.
A single dataflow multiplexer switches between all edges running into the same
input of node n ∈ NA. For a module i, the set EA,n of such edges are given by
EA,n = {ek ∈ EA : ek = (n′, n), n′ ∈ NA ∧ d(i)k = 1}. The resource cost caused
by the dataflow multiplexers are now computed as:

cmux(i) =
∑

n∈NA

w3(|EA,n|), (8.3)

where w3(x) yields the resource cost of an x-to-1 multiplexer.
The reconfiguration cost are already defined in Eq. (8.1). The overall cost func-

tion for the simulated annealing algorithm is given by:

c =
1

|NT|
∑

i∈NT

cres(i) +
1

|NT|
∑

i∈NT

cmux(i) + crc. (8.4)

8.6.3 Control Generation

The scheduling of nodes from the input graphs is computed in HLS step 2. Together
with the allocation of those nodes, the tool generates the contents of the datapath
control memory and the state control memory. The resources in large datapaths are
often not used in every control state, i.e. the datapath control memory can be under-
utilized. Therefore we combined our tool with the approach described in Chap. 15.
We implemented a greedy algorithm that translates the contents of the datapath con-
trol memory to multi-context tables. In [18] we have shown that this method can
reduce the storage overhead for datapath control information significantly. We fur-
ther proposed two possible extensions to current FPGA architectures that enable a
very efficient and yet flexible integration of multi-context tables into FPGAs.

In this section we have provided a brief overview of a HLS tool for improved
partial dynamic reconfiguration. We have illustrated that there exists a large space
for optimizations that increase the similarity of reconfigurable modules. The aim of
these optimizations are—besides conventional optimization targets time and area—
the reduction of reconfiguration overhead.



8 Design Methods and Tools for Improved Partial Dynamic Reconfiguration 173

8.7 Experiments

In this section we discuss the efficiency of our HLS approach on a set of bench-
marks. The benchmark set has been implemented with different combinations of
type binding and instance binding methods presented in the previous section. The
results obtained depend on the combination of the HLS steps 1 and 3. This allows
us to analyze the quality of results for each combination as well as the costs in terms
of tool runtime. First we describe the experimental setup and then we discuss the
results and draw some conclusion concerning the design of reconfigurable modules.

8.7.1 Experimental Setup

In Sect. 8.6 we described several options to perform resource type binding. The
resource instance binding can also be performed with different objectives: with
the help of the weight functions w1, w2, and w3 we are able to set up different
cost functions that are used by the simulated annealing algorithm as a cost func-
tion. The different objectives are used to optimize the HW task implementations
for different scenarios within a common framework. The implementation scenar-
ios describe how the modules are implemented in the RSoC. Thus we can compare
non-reconfigurable and reconfigurable solutions.

Resource Type Binding Methods The resource type binding methods discussed
in Sect. 8.6.1 (a)–(c) are used in our experiments as follows:

1. Minimum cost resource type,
2. Minimum number of resource types for each module individually,
3. Minimum number of resource types and interconnect types for each module

individually,
4. Minimum number of resource types over all modules,
5. Minimum number of resource types and interconnect types over all modules,

where the cost for interconnect types is not optimized independently but in combi-
nation with the cost for resource types.

Resource Instance Binding Methods Further we investigated several optimiza-
tion targets during HLS step 3 that were combined with the different type binding
methods. The different optimization targets for the instance binding are as follows:

1. Minimum average resource and interconnect cost of the tasks individually,
2. Minimum resource and interconnect cost for all tasks merged into one datapath,
3. Minimum average resource reconfiguration cost,
4. Minimum average resource and interconnect reconfiguration cost.

Implementation Scenarios In this work we compare the non-reconfigurable and
reconfigurable implementation of HW tasks, both for existing methods and for our
new methodology. The following implementation scenarios are considered:
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• A: static, parallel implementation. Classic implementation, where each HW
task is implemented as an individual module, which is placed statically on the
device. The HW tasks can be executed concurrently.

• B: static, sequential implementation. Our method allows that several HW task
are implemented in a multimode module. The tasks can share resources but can
not operate in parallel.

• C: reconfiguration without reuse of resources. Classic module based reconfigu-
ration. Each HW task is assigned to an individual module which is completely
dynamically reconfigured.

• D: reconfiguration with reuse of resources. In this scenario our new reconfigu-
ration model is applied. It is assumed that only those resources and interconnect
within the datapath are reconfigured that are different between configurations.

With the data obtained from our benchmarks we want to investigate, which resource
type and which resource instance binding strategies lead to the best solution for
a scenario. Further, we will show that the scenarios B and D, which are available
through our methodology, are superior to previous concepts A and C.

Benchmark Characteristics The chosen benchmarks consist of several task sets.
Each task set contains tasks that might be used in a real reconfigurable system.
The tasks within one set are assumed to be reconfigured against each other. Thus
the tasks provide a good example on how our methodology can be employed in
practice. This kind of tasks can be found in many similar work on HLS. Here with
give a short summary of the tasks functionality and complexity by (number of tasks,
total number of nodes for all tasks). The benchmark ADPCM (2 tasks, 280 nodes)
contains an ADPCM encoder and decoder from the MediaBench suite [8]. EDGE
(3 tasks, 422 nodes) contains three different Sobel edge detection filters: a combined
horizontal and vertical filter, a horizontal only, and a vertical only filter. JPEG_DCT
(2 tasks, 613 nodes) consists of tasks that perform an integer based forward discrete
cosine transform (DCT) and a task for the backward transform. Both tasks are also
taken from MediaBench. The JPEG_DCT represents the most complex task set in
terms of operations per input graph. Finally the RGB_YUV (2 tasks, 84 nodes)
describes a color conversion from RGB color space to the YUV color space and
vice versa, this function is used in many image and video coding applications.

8.7.2 Benchmark Results and Discussion

Our HLS tool has been used to implement the HW tasks of the benchmarks accord-
ing to the different scenarios, by using different resource type and instance binding
methods. Fig. 8.6 shows the results obtained for our benchmarks using the scenarios
A–D. For each scenario we present the results for the best overall combination of
resource type and resource instance binding method. For each benchmark, the re-
sults are labeled on the x-axis as follows: scenario: resource type binding method,
resource instance binding method.
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Fig. 8.6 Comparison of results obtained with selected binding methods for scenarios A–D.
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In Fig. 8.6(a) the average amount of module resources used for operations and
storage in the datapath of a module is shown. The bright bars show the average
amount of reconfigurable resources in each module. Similarly, the average number
of interconnect wires used in the datapath of a module are depicted in Fig. 8.6(b).
Here, the bright bars show the average amount of reconfigurable interconnect. Thus,
the average resource cost 1

|NT |
∑

i∈NT
cres(i) and the average reconfiguration cost

crc are shown separately for resources and interconnect in Fig. 8.6(a, b). The aver-
age datapath size in terms of resources, which includes both operation/storage and
multiplexer cost is shown in Fig. 8.6(c). The tool runtime for the type and instance
binding algorithms is depicted in Fig. 8.6(d).

In our experiments we found that the most straightforward resource type bind-
ing method (1) achieves the best overall results in the final implementation for all
scenarios. While the type binding method has a considerable effect on the resource
sharing possibilities, the differences are negligible in the final datapath implemen-
tation. We suspect that there are always good resource sharing possibilities, because
the high-level description uses only a limited set of different operations. We found
that the resource instance binding method has a much more severe effect. For the
classic scenarios A, C we choose instance binding method (1) because in both sce-
narios, the modules are implemented independently. For scenario B we found that
instance binding method (2) performs best, because only in this case the resource
sharing between tasks that are implemented in one module is exploited. Finally for
scenario D we could show that instance binding method (4) performs best in terms
of reconfiguration cost, because both resources and interconnect reconfiguration are
targeted by the optimization.

The scenarios A and C represent the conventional approaches to implement HW
tasks on FPGAs. In scenario A, a static configuration contains all reconfigurable
module, which may lead to a high resource and interconnect overhead but enables a
parallel execution of tasks. As shown in our benchmarks, the resource and intercon-
nect requirements are reduced drastically if the modules are dynamically reconfig-
ured. At the same time, reconfiguration of all resources and interconnects used by a
module causes a high overhead.

The newly introduced scenario B, which implements static, merged datapaths
provides an attractive trade-off between the scenarios A and C. Scenario B requires
much less resources than scenario A because resources are shared between HW
tasks. Further scenario B causes no reconfiguration cost, but scenario C employs
partial reconfiguration of the module. Nevertheless, scenario B requires more re-
sources than scenario C, because the flexibility is gained with additional operations
and dataflow multiplexers, which result in a datapath with more, temporarily unused
resources. Furthermore, it is interesting to note that the differences in the resource
allocation for scenarios B and C are small, cf. Fig. 8.6(c).

In scenario D, the implemented datapaths are optimized for maximum similarity
and hence, for minimal reconfiguration cost in terms of resource and interconnect
resources. Scenario D demonstrates how much the datapaths can be optimized, such
that they differ in only few resources and interconnects. For resources, the differ-
ences are less than 10% and for interconnects, the differences are less than 26% in
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most cases, which is a significant reduction compared to the full reconfiguration of
the datapath in scenario C. However, in scenario D the resource and interconnect
cost were not included in the optimization. Therefore, the datapaths are slightly
more costly in terms of resources and interconnects. Actually, the scenarios C and
D represent two extremes between area optimization (scenario C) and reconfigu-
ration optimization (scenario D). With the flexible weights w1, w2, w3 in the cost
function, we are able to generate intermediate solutions that meet the needs of the
overall system.

The runtime of the binding algorithms shown in Fig. 8.6(d) is comparable for
the scenarios A–C, but the runtime for scenario D is much higher. The resource type
binding has been performed with method (1) in all scenarios. Obviously the resource
instance binding requires a much higher optimization effort, when the result is op-
timized for resource and interconnect reconfiguration cost. From our experience we
believe that this optimization is still much more efficient in terms of runtime and
results, than a similarity extraction of the final netlist. E.g. benchmark JPEG_DCT
contains a total of 613 nodes in the input graphs for which quality binding must
be found. However, at netlist level the similarity extraction must be performed for
2 × 1800 slices, which is much more complex.

The performance of the datapath implementations is very similar. The task ex-
ecution cycles are equal in all scenarios because the same scheduling is used. The
maximum clock frequency differs slightly between the scenarios, but usually less
than 10%. However, our optimization does not target the critical path delay directly,
it reduces the complexity of dataflow multiplexers instead.

Although the examples presented here have only a limited number of tasks, we
discuss the development for an increased number of tasks. As we merge more tasks
into one module (scenario B) it is likely that the increase in operation resources is
small. However, because the dataflow in the tasks is different, more flexibility in
interconnect is needed and the overhead in interconnect and dataflow multiplexers
increases. Likewise, if the datapath implementation is optimized for low reconfigu-
ration cost we expect that for more reconfigurable modules the average reconfigura-
tion cost increase, because an efficient inter-module resource/interconnect sharing
can not be achieved for many tasks at the same time. Our predictions are supported
by an analysis in [11] and the fact that FPGAs, which target maximum flexibility,
contain highly reconfigurable resources and very flexible interconnect routing. As a
general rule, in FPGAs about 90% silicon area are used for interconnect and only
10% for reconfigurable logic.

Here we suggest the following strategy for a balanced use of our new methodol-
ogy. HW tasks that are frequently reconfigured against each other should be merged
in one reconfigurable module or optimized for low reconfiguration cost. HW tasks
or the reconfigurable modules that are not frequently reconfigured must not be opti-
mized for low reconfiguration cost. Thus, the implementation depends on the overall
execution behavior of the application. With our methodology it is possible to use the
reconfigurable area more efficiently and to reduce the penalty of runtime reconfigu-
ration for the most critical parts of the application.



178 Markus Rullmann and Renate Merker

8.8 System Design for Efficient Partial Dynamic Reconfiguration

In this chapter we have presented a concise model to describe reconfiguration on the
level of individual resources and interconnect. The cost model is based on the recon-
figuration state graph. We introduced the model of a virtual architecture that allows
us to assess reconfiguration cost for any structural representation of hardware tasks.
The benefits of the model have been demonstrated on several examples, which have
been implemented by our high-level synthesis tool. Finally, we describe a possible
design flow that takes advantage of our methodology.

The general idea of our method, the reduction of reconfiguration overhead by
reducing the differences between reconfigurable modules, is reflected throughout
our proposed design flow for reconfigurable systems. In this section we summarize
the steps of our design flow and provide references to further work.

In the system design phase, there must be decided how the functionality of the
tasks is partitioned into HW tasks and SW tasks. The characteristics of the applica-
tion and of the reconfigurable HW tasks provide information on how many reconfig-
urable resources are required and what kind of runtime management should be used.
Our tools can aid the decision which HW tasks could be integrated into the same
reconfigurable module and provide information on the size of the reconfigurable
area.

Tasks that depend on each other can not run concurrently in a system. Therefore
they can be either integrated into the same reconfigurable module or in different
reconfigurable modules that are configured successively. If those tasks are executed
frequently they should be integrated into the same reconfigurable module because
then dynamic reconfiguration is avoided. Of course, this is only possible if the mul-
timode module fits on the reconfigurable area. More information on the partition-
ing problem is given in Chap. 9. An alternative approach is described in Chap. 4:
In hyper-reconfigurable hardware it is assumed that a sequence of configurations is
known. Next, the sequence is partitioned into hypercontexts which contain reconfig-
urable resources and resources that are static within the hypercontext. The concept
can be interpreted in our HLS context as follows: The sequence of configurations
is similar to the sequence of control data supplied to the datapath. For such a se-
quence it can be derived with the methods described in Chap. 4, which parts of
the sequence should be grouped into a reconfigurable module in order to minimize
reconfiguration cost.

The RSoC is usually managed at runtime by an operating system (OS), which
has been adapted to support dynamic reconfiguration. Examples for such systems
are described e.g. in [4, 20, 19, 10]. In [1] we have demonstrated a video-based,
realtime region-of-interest-detection application. The application demonstrates the
capabilities of our HLS tool and the integration of HW tasks and the ReconOS OS
(cf. Chap. 13). The application contains a HW task that runs as an independent
threat, parallel to the software application. The HW task sends continuously data to
the software application via the ReconOS API. As a hardware platform we use the
ESM, cf. Chap. 3.
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For design entry, the two major methods are HLS and synthesis from register
transfer level (RTL) code. During this design phase it is possible to increase the
reconfigurable module similarity significantly by special design practices. A brief
overview of our HLS method is presented in this chapter, more details can be found
in [16, 15]. We also explored possibilities to increase similarity during RTL de-
sign. Here, the designer can describe digital circuits that have an intended similarity
[17, 12]. Expert knowledge of the device architecture and synthesis is necessary to
achieve good results. Other synthesis methods that are used to reduce reconfigura-
tion cost are described e.g. in [3, 9, 2].

The similarity information, which is required later in the module implementation
phase can be provided either by the synthesis tool or it can be derived after synthesis.
As discussed before, the HLS tool directly generates the similarity information. In
addition we have developed a tool that is able to extract the similarity from generated
netlists after synthesis [13].

In an FPGA design flow, the synthesized netlists are mapped to device resources
before place and route. During the mapping the netlist elements are assigned to de-
vice specific resources, e.g. logic blocks (Slices). In this mapping several netlist el-
ements (logic and interconnect) can be assigned to the same device resource, which
may destroy the module similarity or invalidate similarity information. We have de-
scribed a mapping tool [14] that is able to take advantage of the similarity instead.
The mapping tool treats all netlists of reconfigurable modules at the same time and
thus can retain the similarity directly. The tool takes the reconfiguration cost model
into account in order to improve the mapping result.

For our methodology, existing place and route tools must be extended in order to
take advantage of the similarity information. The tools must observe the following
constraints: nodes that are allocated to the same resources in the VA must be placed
on the same device resource later on. Similarly, edges that are allocated to the same
interconnect in the VA must be routed using the same switch box configuration.
With existing tools this can only be realized to a limited extend, e.g. by using the
guide mode in the Xilinx ISE tools. This method has been used in [17, 12].

Finally, the placed-and-routed reconfigurable modules are transcribed into bit-
streams that contain the binary programming data for the device. Because we use
partial reconfiguration, the bitstreams contain only data that is relevant to adapt the
reconfigurable area to the new module. In the established EAPR design flow, the bit-
streams for the module contain the full configuration of a predefined reconfigurable
area. The authors in [5] describe a tool that can produce bitstreams which remove
the frames from the bitstreams which are static in all modules. We have described
another method to create partial bitstreams in [15]. There, the reconfiguration bit-
streams are chosen such that minimal reconfiguration time or minimal storage of
configuration data is ensured. The method is based on the RSG model described
above.
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Chapter 9
Dynamic Partial Reconfiguration by Means
of Algorithmic Skeletons—A Case Study

Norma Montealegre and Franz J. Rammig

Abstract A digital hardware system which implementation does not fit in a FPGA
device can be placed into the FPGA. The system with inherent parallelism must be
partitioned into hardware modules to be executed in different time slots using par-
tial reconfiguration. That is the so called temporal partitioning and temporal place-
ment. The partitioning of the system can be done using standard patterns used in
parallel systems. Algorithmic skeletons are common parallelization patterns which
encapsulate parallelism, communication and synchronization. They help to avoid
concentrating in unnecessary details about the underlying implementation of paral-
lelism. Algorithmic skeletons seem to be promising as a methodology for the design
of partial reconfigurable systems. In this chapter, the design of a speech recognition
front-end is described to show the feasibility of using algorithmic skeletons in the
design of reconfigurable systems. A speech recognition front-end is a digital sig-
nal processing device used to transform an audio signal into feature vectors used
for Automatic Speech Recognition or storage of semantic audio information. This
device does not fit in the fabric of the FPGA of the used development board. Af-
ter it was redesigned using a developed library of algorithmic skeletons, the use of
dynamic partial reconfiguration has made possible to fit the device into the FPGA.
This chapter demonstrates how algorithmic skeletons allow to simplify and to speed
up the development of partial reconfigurable systems.

9.1 Introduction

Algorithmic Skeletons can be seen as meta-functions or high order functions. They
can be used in applications that already have a parallel solution or are adequate to be
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parallelized. Algorithmic Skeletons were coined in the mid 1980s by Murray Cole in
his Dissertation [3]. Afterwards, other publications followed like [5, 2, 16, 17, 4, 1].

Algorithmic skeletons can be implemented and collected into alibrary, which
can be used by the system developer or programmer. Algorithmic skeletons were
already employed in parallel computers to execute parallel algorithms. FPGAs can
also execute parallel algorithms. Therefore, applications implemented in FPGAs can
be described by means of algorithmic skeletons too.

Algorithmic skeletons offer a structured means in parallel computation, there-
fore, they can be helpful for partitioning a system into independent parts which can
be executed in different time slots and be placed as a dynamic module in a FPGA.
This procedure needs partial reconfiguration support by the FPGA and a communi-
cation infrastructure among parts of the partitioned system. A library of algorithmic
skeletons for FPGAs should consider to implement this infrastructure so that the
programmer concentrates on the algorithms and gives some hints of the structure,
but needs not to spend much effort in how the algorithm will be executed in the
FPGA.

The paradigm of stream parallelism, where a stream of data is waiting to be pro-
cessed, is taken as input in two algorithmic skeletons: pipe and farm, see Fig. 9.1.
Signal processing applications have also streams of data as input. Such applications
can be taken as examples to prove the usefulness of algorithmic skeletons in the
design of reconfigurable systems. A Channel Vocoder Analyzer is a filter-bank used
as a front-end for automatic speech recognition. A very detailed implementation of
this device can be found in [14]. It can be described in terms of a farm of pipes.
A farm of pipes is a so called high order skeleton because a pipe is passed as ar-
gument to a farm skeleton. In consequence, it is an adequate example to prove the
feasibility of applying algorithmic skeletons in the development of complex systems
in FPGAs. With the implementation of an application using algorithmic skeletons
to support dynamic partial reconfiguration is intended to prove the feasibility of the
methodology exposed by Florian Dittmann [7, 6] and to go a step further in the
implementation started by Stephan Frank [11, 9].

Fig. 9.1 Pipe and farm skeleton types.
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In the next section, an overview of the overall system is presented. It deals with
how to use algorithmic skeletons in dynamic reconfigurable systems. It follows a de-
scription of a implemented library. Afterwards, the implementation of the Channel
Vocoder Analyzer on a FPGA will be presented as a partial reconfigurable system
implemented with algorithmic skeletons. This implementation solves the problem
of reduced resources available in the FPGA for such a complex application.

9.2 Overview of the Overall System

For the implementation of a partial reconfigurable system, the FPGA is divided
into a base region and partial reconfigurable regions (PRRs)[19], see Fig. 9.2. The
base region contains logic which does not change during partial reconfiguration.
This logic can include modules which interact with peripheral devices or mod-
ules which control the partial reconfiguration. Partial reconfigurable regions contain
logic which can be reconfigured independently from the base region or other recon-
figurable regions. Each partial reconfigurable region has at least one, but usually
multiple partially reconfigurable modules, which can be loaded into the reconfig-
urable region. The shape, size and placement of each partial reconfigurable region
can be defined through constraints. Those regions are instantiated as components at
the top module of the design.

Fig. 9.2 Base region and partial reconfigurable regions in a partial reconfigurable FPGA.

Partial reconfigurable modules to be reconfigured in a determined partial recon-
figurable region can constitute the modules of a skeleton. This schema implies the
existence of some intermediate memory so that the modules can communicate and
transfer information. Modules take data to process from memory and leave results
in memory too. In this way, modules which are reconfigured can use the results of
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prior modules. Such memory can either be internal or external to the reconfigurable
device.

If the amount of data transfer among partial reconfigurable modules is small, the
intermediate memory can be implemented inside the FPGA and placed in the base
region, see Fig. 9.3. In this case internal memory is organized for each skeleton to
enable their modules to communicate each other. This approach has been taken in
[11] and a pattern database has been developed. Once a pattern is elected from the
database, the wires among reconfigurable regions are placed by the tool PaReTo-
FAS after the user has given a set of constraints. This wires constitute the infrastruc-
ture for the communication among skeleton modules and intermediate memory. The
communication protocol should be implemented for each skeleton. For an example
of such an implementation, please see [11].

Fig. 9.3 Skeletons implemented with intermediate memory inside the FPGA. A pipe implementa-
tion (left) and a farm implementation (right) [11].

Many practical real world applications require a huge amount of information to
be processed. It means that internal memory resources provided by the reconfig-
urable device could be insufficient for needs of intermediate memory. Such a re-
quest can be solved with the help of external Random Access Memory (RAM), see
Fig. 9.4. In this case, a memory controller is required. It can be placed in the base
region of the FPGA, acting as an interface between external memory and the sys-
tem. DDR SDRAM and SRAM memory are found in prototyping boards, then, their
respective controllers should be implemented. The Erlangen Slot Machine [15] dis-
pose of external banks of SRAM memory, which are directly connected to the FPGA
in its Baby Board. This SRAM memory could be used to implement the interme-
diate memory, among partial reconfigurable modules implemented as slots in the
Virtex II 6000 Xilinx FPGA available in the board.

In Fig. 9.4, inputs and outputs from peripherals have respective controllers, which
leave data to be processed in external memory. Emitter and collector from a farm
skeleton, take and leave data from external memory. This two last considerations in
the implementation of algorithmic skeletons help to construct a generalized skeleton
module. In the case of a farm skeleton: emitter, workers and collector, take and leave
data from external memory. They do not pass data directly each other. Modules of
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Fig. 9.4 Skeletons implemented with intermediate memory outside the FPGA.

a skeleton take data from and leave data in external memory in the way determined
by the behavior of the skeleton. The generalization of modules makes easier dealing
with a bigger amount of skeletons or using high order skeletons.

The communication protocol and the data flow among modules of a skeleton are
very important tasks. Therefore, a skeleton manager is needed for organizing the
flow of data according to the behavior of the implemented skeleton, group of skele-
tons or high order skeleton. Besides, it is important to schedule the reconfiguration
of partial reconfigurable modules into the partial reconfigurable regions according
to the requirement of the implemented skeletons. Because this task is skeleton de-
pendent, it should also be carried on by the skeleton manager. Therefore, the recon-
figuration manager deals only with the scheduling of the reconfiguration port [8]
and the reconfiguration process itself.

Communication lines in each skeleton module are provided for the implemen-
tation of the communication protocol. A determined logic can be provided which
such lines through a wrapper or a template VHDL to be used in the implementation
of the determined logic. Such control lines are connected to the skeleton manager
through the control bus. Depending to the algorithmic skeleton the partial reconfig-
urable module belongs to, the skeleton manager will signal the memory controller
to put the correct data in the data bus or to store the data present in the same bus into
external memory. Once the processing of a partial reconfigurable module is finished
or its assigned processing time is passed, the skeleton manager will send to the re-
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configuration manager the signal of which partial reconfigurable region should be
reconfigured with which partial reconfigurable module.

The application to be presented in Sect. 9.4 is data intensive and requires big
amounts of memory, which is impossible to implement in the FPGA together with
the required logic. Therefore, the intermediate memory is implemented in external
memory. The tool PaReToFAS developed in [11] has been helpful in the implemen-
tation of a filter channel of the application as a pipe skeleton. The tool implements
the shared intermediate memory for the different modules of the pipe inside the
FPGA, which is suitable for small transfer data rates. Since the application deals
with a large amount of speech data, it is demanded to implement the intermediate
memory externally as recommended in [11]. On the other side, a single channel im-
plemented without reconfiguration fit into the used FPGA fabric. This wakes up the
possibility to profit of the parallel operation mode of pipelines. Therefore in the farm
of pipes structure of the application, only the farm is dynamically reconfigurable.
The channels are implemented as pipes, but its modules are not independently re-
configurable. The whole pipe is configured at a time.

In order to implement such a paradigm, a script description template which im-
plements the structure of parallel modules with reconfigurable modules only at the
outer skeleton is introduced. The design method is based on a library of algorithmic
skeletons which has been programmed in Python. The library has to be used in a
template program, which is also written in Python. This means that the program has
to describe the global structure of the system in terms of the algorithmic skeletons
available in the library. The template of such a program is very intuitive. The script
generates the VHDL top module of the entire design, which is able to be synthe-
sized and implemented in a FPGA using partial reconfiguration. The methodology
followed by the scripts can also enhance the functionality of PaReToFAS in a future
step.

9.3 Library of Algorithmic Skeletons

This section describes the implementation of a library of algorithmic skeletons to be
useful for parallel applications which hardware descriptions are written in VHDL.

9.3.1 Algorithmic Skeletons for Defining the Structure of the
Design

Each algorithmic skeleton is implemented as a class. Then, algorithmic skeletons
can be represented in the memory of the program as instances. The collection of
algorithmic skeletons implemented as classes constitutes a library. This library is
implemented in Python. Python is a scripting language, therefore it is possible to
use scripting constructions to describe the structure of a hardware system in terms
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of algorithmic skeletons. The designer, who is unfamiliar with Python, is provided
with a template for each skeleton. In the template it is necessary to give just the
names of the VHDL modules to be used.

The system designer implements his/her designs as VHDL modules and decides
the type of skeleton or skeletons to be used. This will define the structure of the
overall system. The designer enters the name of the VHDL modules and the type
of skeleton into the template. Then, the implemented code generator produces the
top VHDL module, which connects properly the components reflecting the desired
algorithmic behavior.

Code listing 9.1 shows an example template for three VHDL modules which use
a pipe skeleton. Line 1 calls the library of algorithmic skeletons. Line 2 assigns a
VHDL module to each stage of the pipe. Line 5 instantiates the pipe skeleton. Line
6 generates the VHDL top module. Line 7 writes the top module into a file.

Code Listing 9.1 Template for the use of a pipe skeleton.

1 from a l g o s k e l s import ∗
2 s t a g e s = [ v h d l _ e n t i t y ( ’ s t a g e 1 . vhd ’ ) ,
3 v h d l _ e n t i t y ( ’ s t a g e 2 . vhd ’ ) ,
4 v h d l _ e n t i t y ( ’ s t a g e 3 . vhd ’ ) ]
5 p i p e = v h d l _ p i p e ( s t a g e s )
6 t o p = vhd l_ top_modu le ( ’ p i p e _ t o p ’ , [ p i p e ] )
7 t o p . w r i t e ( )

Code listing 9.2 shows an example template for three VHDL modules which use
a farm skeleton. Line 1 calls the library of algorithmic skeletons. Line 2 assigns a
VHDL module to each worker of the farm. Line 5 instantiates the farm skeleton.
Line 6 generates the VHDL top module. Line 7 writes the top module into a file.

Code Listing 9.2 Template for the use of a farm skeleton.

1 from a l g o s k e l s import ∗
2 worke r s = [ v h d l _ e n t i t y ( ’ worker1 . vhd ’ ) ,
3 v h d l _ e n t i t y ( ’ worker2 . vhd ’ ) ,
4 v h d l _ e n t i t y ( ’ worker3 . vhd ’ ) ]
5 farm = vhd l_ fa rm ( worke r s )
6 t o p = vhd l_ top_modu le ( ’ f a r m _ t op ’ , [ farm ] )
7 t o p . w r i t e ( )

9.3.2 Algoskels

The developed library of algorithmic skeletons is called algoskels.py. Initially, it
implements two types of algorithmic skeletons: pipe and farm. It consists of the
following 4 classes:
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• vhdl_entity—this class contains methods for lexical, syntax and semantic anal-
ysis of the input VHDL files.

• vhdl_pipe—this class includes all methods required for the Pipe skeleton.
• vhdl_farm—this class includes all methods required for the Farm skeleton.
• vhdl_top_module—this class contains functions responsible for the automatic

generation of the VHDL top module.

The first task of the library is to analyze the given VHDL files. It extracts a list
of the port names, their directions, and their types. This information is used to bind
the VHDL components in the top module in the way, defined by the algorithmic
skeleton these VHDL components belong to.

The library allows to implement high order skeletons. A high order skeleton is a
skeleton which is composed of elements described also in terms of some skeleton.
A skeleton which is composed of some other skeletons must be instantiated only
after all skeletons it includes have been instantiated before. That is because any
compound skeleton uses VHDL files which must be previously generated. There is
no limit on how many compound skeletons are used.

For extending the library, it is necessary to program a class for a further skeleton.
Such class can be instantiated, in the same way as the pipe or farm classes. Further
examples of skeletons and their possible applications please refer [14, 3, 2, 5]

9.3.3 Algorithmic Skeletons for Partial Reconfigurable Systems

In the case of a farm skeleton, implemented with external intermediate memory,
emitter and collector can be placed in the base region and workers can be organized
in partial reconfigurable regions. Its top level may have at least two component
instances, one for the base region and one for the partial reconfigurable region in-
terconnected through bus macros.

Code Listing 9.3 Representation of the analyzer using a farm skeleton.

1 from a l g o s k e l s import ∗
2 worke r s = [ v h d l _ e n t i t y ( ’ b a s e _ r e g i o n . vhd ’ ) ,
3 v h d l _ e n t i t y ( ’ p r _ r e g i o n . vhd ’ ) ]
4 farm_PR = vhd l_ fa rm ( workers , mode= ’PR ’ )
5 t o p = vhd l_ top_modu le ( ’ farm_PR_top ’ , [ farm_PR ] )
6 t o p . w r i t e ( )

Code listing 9.3 shows a template script which produces the top module of a
partial reconfigurable farm skeleton. The partial reconfigurable region may contain
the workers as reconfigurable modules. The output values of each worker can be
obtained and be given to the modules implemented in the base region before this
partial reconfigurable module will be replaced by the next one. The top module of
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this skeleton has two component instances called base_region and pr_region. Thus,
all workers of the full farm skeleton operate in sequence, one by one, at different
time.

Adequate inter-module communication via bus macros and a proper placement of
the modules must be established too. Therefore, the generated top module includes
a template for the constraints: AREA_ GROUP, AREA_GROUP RANGE, MODE
and LOCs. The constraints themselves have to be configured manually since they
are application and FPGA dependent.

9.4 Application Scenario: Channel Vocoder Analyzer

The Automatic Speech Recognition process basically consists of the functional
stages listed below [12].

1. Front-end analysis
2. Pattern matching
3. Decision making

The Channel Vocoder Analyzer represents the front-end analysis stage in the Au-
tomatic Speech Recognition. It processes the input speech signal and constantly
produces feature vectors—also named spectral vectors-, which are to be processed
by the Pattern Matching stage. A method for implementing the front-end analy-
sis stage is a bank of filters. The sound signal is processed independently by each
filtering channel. Each channel has a band-pass FIR filter, a rectifier, a low-pass anti-
aliasing FIR filter, and a bit rate reducer also called decimator. The full set of filters
measures the short-term spectrum of the audio signal. The so called spectral vec-
tors are produced at the output of the Channel Vocoder Analyzer. Each component
of every spectral vector represents the magnitude of the signal—the square root of
the power of the signal—within the corresponding frequency band. The frequency
band of each band-pass filter is determined by the Bark scale [13], which perceptual
division of the sound frequency band gives narrower band-pass frequencies to lower
frequencies, see Fig. 9.5.

Every channel of the analyzer has as modules a band-pass filter, rectifier, low-
pass filter and decimator. They are applied to the samples as a composed function,
which can be structured like a pipe skeleton. The structure of the entire analyzer
with 16 channels can be represented as a farm of pipes. Code listing 9.4 shows the
scripting template corresponding to the analyzer. Line 2 creates a list of pipes. Line
3 gives the number of channels to be used. Line 4 and 8 instantiate automatically the
16 channels. It is to be noticed that the band-pass filters of the channels are different.
Therefore, the workers of the farm skeleton implement different functions. With line
9 to 11 the top module of the bank of filters is created. The underlying methods of
the library produce proper interconnections for every skeleton instance only if the
skeletons are instantiated in the bottom-up order. It means, first the pipe skeletons
are instantiated and then the farm skeleton.
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Fig. 9.5 Channel vocoder analyzer implemented with a bank of filters.

Code Listing 9.4 Channel vocoder analyzer described as a farm of pipes.

1 from a l g o s k e l s import ∗
2 p i p e s = [ ]
3 NUM_OF_CHANNELS = 16
4 f o r i in r a n g e (NUM_OF_CHANNELS ) :
5 bpname = ’ bandpass ’+ i + ’ . vhd ’
6 p i p e = v h d l _ p i p e ( bpname , ’ r e c t . vhd ’ , ’ l owpass . vhd ’ , ’ dec . vhd ’ )
7 p i p e _ t o p = vhd l_ top_modu le ( ’ p i p e _ t o p ’+ i + ’ . vhd ’ , [ p i p e ] )
8 t o p . w r i t e ( )
9 worke r s . append ( v h d l _ e n t i t y ( ’ p i p e _ t o p ’+ i + ’ . vhd ’ ) )

10 f a r m _ o f _ p i p e s = vhd l_ fa rm ( worke r s )
11 t o p = vhd l_ top_modu le ( ’ f a r m _ o f _ p i p e s _ t o p ’ , [ farm ] )
12 t o p . w r i t e ( )

The Channel Vocoder Analyzer has been implemented in the Xilinx Virtex-4
FX12 FPGA installed in the ML403 prototyping board developed by AVNET [20].
This board offers a great variety of useful peripheral devices like a DDR SDRAM
memory, a SRAM memory, an audio chip-set, a video digital to analog converter,
and a flash card reader among others. The Erlangen Slot Machine is another option
as target platform, please see Chap. 3.

It has been decided to have as input a n seconds wide audio signal taken from
a microphone and to visualize the computed feature vectors on a display. For this
objective, some of the on-board devices needed to be used. In order to communicate
with these on-board devices, additional hardware modules had to be designed and
implemented in the same FPGA. The prototype receives the input sound from a mi-
crophone and produces a visual representation of the feature vectors on the attached
VGA video display, see Fig. 9.6.
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Fig. 9.6 The prototype implementation of the channel vocoder analyzer (above) and its principle
of operation (below).

The input sound stream from the external microphone is processed by the on-
board audio chip AC’97. The operation of this device is controlled by an audio
controller which receives sound samples and sends them to the DDR SDRAM con-
troller. After a sequence of sound samples has been stored in the external on-board
DDR SDRAM memory, the processing channels of the analyzer start to operate.
The DDR SDRAM controller reads every sample from the stored sequence in the
same order as received from the audio controller and sends it to the inputs of the
channels of the analyzer. The processing channels of the analyzer process the sound
samples and produce the feature vectors. These values are stored in the on-board
SRAM memory. This on-board memory is controlled by the SRAM controller. The
SRAM memory is read constantly by the VGA controller, which controls the exter-
nal on-board VGA digital to analog converter device, connected to the VGA video
display.

After the complete design had been developed, the synthesized netlist of the com-
plete prototype did not fit into the Virtex-4 FX12 FPGA device. In order to analyze
the need of resources for different design parameters, the number of processing
channels of the analyzer were varied. Respective results of the hardware synthesis
are presented in Table 9.1. The number of required slices is shown in percent relative
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to the number of slices provided by Virtex-4 FX12. These results show that there
would be a possibility to fit the entire design in the FPGA fabric if the analyzer has
no more than 3 processing channels. However, to process feature vectors according
to the Bark scale requires to have implemented at least 16 channels.

Table 9.1 Results of the hardware synthesis.

Number of processing channels DSP48s Slices
16 (required) 16 out of 32 30444 out of 5472 (556%)
4 4 out of 32 6969 out of 5472 (127%)
3 3 out of 32 5337 out of 5472 (97%)

The complete Channel Vocoder Analyzer with 16 channels may fit in some other
FPGA device with a larger fabric. An alternative approach would be to use dynamic
reconfiguration of the entire FPGA device. That means, controllers and a subset of
processing channels could be reconfigured each time a new subset of channels is
required to be configured. The absence of the SDRAM controller during reconfigu-
ration can produce that all data contained in the external SDRAM memory be lost
each time the total reconfiguration happens. It is because the reconfiguration time
of the complete FPGA device is longer than the auto refresh period of the SDRAM
memory. In consequence, dynamic partial reconfiguration is the right method for
implementing this application.

Our intention is to study dynamic partial reconfiguration. This means that at a
point of time only a subset of processing channels are loaded in the configuration
memory of the FPGA. After they processed a determined number of sound samples,
a next subset of channels is loaded and so on. This methodology makes profit of
the inherent parallelism of the design. It has been decided to implement the Au-
dio, VGA, SRAM and DDR SDRAM controllers as static modules placed in the
base region. All single processing channels of the analyzer are implemented as par-
tial reconfigurable modules placed in partial reconfigurable regions. The number of
reconfigurable regions could be 3, as the results of the hardware synthesis show.
However, the reconfiguration manager needs also resources in the FPGA, therefore
it is possible to have only 1 or 2 partial reconfigurable regions.

Code listing 9.5 shows the implementation of a reconfigurable farm of pipes. In
lines 2 to 8, the 16 pipes are created automatically. This modules can be taken as
partial reconfigurable modules which can be used for producing partial bit-streams.
Lines 9 to 13 produce the top module required to implement a design with a base
region and one partial reconfigurable region. In the partial reconfigurable region the
16 created pipe modules will be reconfigured, one at a time slot. The base region
will place memory, audio and VGA controllers and the reconfiguration manager.
Figure 9.7, shows the placement of hardware in this two regions.

According to the modular partial reconfiguration design flow from Xilinx [19],
the area for each reconfigurable region must be defined. Almost the whole area of
the right part of the fabric of the FPGA is allocated for the reconfigurable region,
see code listing 9.6.
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Code Listing 9.5 Channel vocoder analyzer described as a partial reconfigurable farm of pipes.

1 from a l g o s k e l s import ∗
2 p i p e s = [ ]
3 NUM_OF_CHANNELS = 16
4 f o r i in r a n g e (NUM_OF_CHANNELS ) :
5 bpname = ’ bandpass ’+ i + ’ . vhd ’
6 p i p e = v h d l _ p i p e ( bpname , ’ r e c t . vhd ’ , ’ l owpass . vhd ’ , ’ dec . vhd ’ )
7 p i p e _ t o p = vhd l_ top_modu le ( ’ p i p e _ t o p ’+ i + ’ . vhd ’ , [ p i p e ] )
8 t o p . w r i t e ( )
9 worke r s = [ v h d l _ e n t i t y ( ’ b a s e _ r e g i o n . vhd ’ ) ,

10 v h d l _ e n t i t y ( ’ p r _ r e g i o n . vhd ’ ) ]
11 farm_PR = vhd l_ fa rm ( workers , mode= ’PR ’ )
12 t o p = vhd l_ top_modu le ( ’ farm_PR_top ’ , [ farm_PR ] )
13 t o p . w r i t e ( )

Fig. 9.7 Partial reconfigurable region (left) and the base region (right) of the reconfigurable farm
of pipes. The circuit implements the dynamic reconfigurable design of the channel vocoder ana-
lyzer. The black area corresponds to a PowerPC processor not used in this application.

The reconfigurable region contains exactly one processing channel described as
a pipe skeleton per time period. The average amount of data to be processed for a n
seconds speech sampled at a frequency of 8000 samples

second is n∗8000 samples. After the
samples are processed, produced feature vectors are composed of 16 components.
Therefore, in the worst case of no decimation present, the amount of data at the
output of the bank of filters of 16 channels is n ∗ 8000 ∗ 16 two byte data, because
each sample is a 16 bit one. In consequence, a bus macro must supply a 16 bit signal
for the incoming sample values and 16 bit signal for the outgoing spectral values.

Code listing 9.7, shows the instantiation of eight bit bus macros. As the sam-
ples are composed of 16 bits, two 8 bits bus macros are instantiated. The right to
left bus macros are responsible to transfer samples from the DDR SDRAM con-
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Code Listing 9.6 Constraints for the placement of the partial reconfigurable region.

1 # components p l a c e m e n t
2 INST " b a s e _ i n s t " AREA_GROUP= A G _ s t a t i c _ 1 ;
3 INST " r e c o n f i g u r a b l e _ i n s t " AREA_GROUP= AG_t i l e_a ;
4 # c o n s t r a i n s f o r t h e p a r t i a l r e c o n f i g u r a b l e r e g i o n
5 AREA_GROUP " A G _ t i l e _ a " RANGE=SLICE_X26Y0 : SLICE_X45Y125 ;
6 AREA_GROUP " A G _ t i l e _ a " RANGE=FIFO16_X2Y0 : FIFO16_X2Y15 ;
7 AREA_GROUP " A G _ t i l e _ a " RANGE=RAMB16_X2Y0 : RAMB16_X2Y15 ;
8 AREA_GROUP " A G _ t i l e _ a " RANGE=DSP48_X0Y0 : DSP48_X0Y31 ;
9 AREA_GROUP " A G _ t i l e _ a " MODE=RECONFIG ;

Code Listing 9.7 Bus macros.

1 # r i g h t t o l e f t bus macros ( from base t o PR r e g i o n )
2 INST " Y _ c h a n n e l s _ t o _ s t a t i c _ 1 " LOC = SLICE_X24Y116 ;
3 INST " Y _ c h a n n e l s _ t o _ s t a t i c _ 2 " LOC = SLICE_X24Y114 ;
4 # l e f t t o r i g h t bus macros ( from PR r e g i o n t o base )
5 INST " X _ s t a t i c _ t o _ c h a n n e l s _ 1 " LOC = SLICE_X24Y122 ;
6 INST " X _ s t a t i c _ t o _ c h a n n e l s _ 2 " LOC = SLICE_X24Y120 ;
7 INST " c l k _ 8 K H z _ s t a t i c _ t o _ c h a n n e l s " LOC = SLICE_X24Y118 ;

troller in the base region to the processing channel in the partial reconfigurable
region. In the VHDL top design description, the output signal X of the compo-
nent instance base_inst is connected to the bus macros X_static_to_channels_1 and
X_static_to_channels_2. The outputs of these bus macros are connected directly to
the inputs of the component reconfigurable_inst. The left to right bus macros are
responsible to transfer feature vectors from the processing channel of the partial re-
configurable region to the SRAM controller in the base region. In the VHDL top
design description, the output signal Y of the component reconfigurable_inst is con-
nected to the bus macros Y_channels_to_static_1 and Y_channels_to_static_2. The
outputs of these bus macros are connected directly to the inputs of the component
base_inst. Synchronization is achieved connecting clk_8KHz_static_to_channels to
the clock inputs.

Once the system has been structured and we have the VHDL and constraint files,
the partial reconfiguration design flow of Xilinx is applied in order to produce the
bit-streams. It is possible to generate several partial bit-streams in parallel on several
remote computers using the facility provided by Part-E [18].

The FPGA should trigger the reconfiguration of the next processing channel by
itself, after the present channel finishes processing. This task is executed by the re-
configuration manager, which has been implemented as a hardware module placed
on the base region of the FPGA. The reconfiguration manager loads the configu-
ration memory of the FPGA with the required bit-stream at the required time slot.
All configuration bit-streams are stored on the attached flash memory card. The
implemented reconfiguration manager is controlled by the signal start. If this sig-
nal is asserted, the reconfiguration manager communicates with the external flash
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controller of the prototyping board. It starts the reconfiguration process taking as
a bit-stream the one indicated by a counter which is incremented each time a new
bit-stream is loaded.

The reconfiguration time of a channel is 0.5 seconds. The processing of all 16
channels, for a 2 seconds speech data stream has been of approximately 30 seconds.

9.5 Conclusion

It has been shown that the methodology for implementing dynamic partial recon-
figuration by means of algorithmic skeletons is feasible. The methodology demon-
strated to be helpful in structuring the design. The design used as demonstrator,
has only one partial reconfigurable region. Whenever the FPGA area size allows to
implement more than one partial reconfigurable region and many skeletons are im-
plemented in the same FPGA, a skeleton manager is required. The skeleton manager
would have the task of implementing the logic for communication among modules,
to control the access to the intermediate memory in the case of the use external
memory and to schedule reconfiguration of skeleton modules when required. In this
way the reconfiguration manager could only concentrate in managing the reconfigu-
ration port of the FPGA, maybe implementing interesting scheduling strategies like
preemption during reconfiguration [10].

This application considered to implement the reconfiguration manager as a hard-
ware module inside the FPGA. However some other prototyping boards, like the Er-
langen Slot Machine [15], offer an external reconfiguration manager implemented
in an extra Spartan 2E FPGA, see Sect. 3.5. The design methodology can be easily
transferred to the Erlangen Slot Machine. For this purpose, the partial reconfigurable
modules corresponding to the modules of an algorithmic skeleton can easily be im-
plemented on the FPGA, provided the Virtex II FPGA of the ESM is divided into
slots. Therefore, each slot can represent a module and the partial reconfiguration
can be slot-based. Nevertheless, the hardware modules for driving audio and video
should still be implemented on the FPGA. SRAM memory blocks and the DRAM
socket, which is intended to provide as much RAM as needed for the tasks running
on the main FPGA, could be used as intermediate memory for the skeleton modules,
in our application, for storing audio stream data and calculated feature vectors.
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Chapter 10
ReCoNodes—Optimization Methods for Module
Scheduling and Placement on Reconfigurable
Hardware Devices

Ali Ahmadinia, Josef Angermeier, Sándor P. Fekete, Tom Kamphans, Dirk Koch,
Mateusz Majer, Nils Schweer, Jürgen Teich, Christopher Tessars, and
Jan C. van der Veen

Abstract Placement and scheduling are recognized as the most important prob-
lems when exploiting the benefit of partially reconfigurable devices such as FPGAs.
For example, dynamically loading and unloading modules onto an FPGA causes
fragmentation, and—in turn—may decrease performance. To counteract this ef-
fect, we use methods from algorithmics and mathematical optimization to increase
the performance and present algorithms for placing, scheduling, and defragmenting
modules on FPGAs. Taking communication between modules into account, we fur-
ther present strategies to minimize communication overhead. Finally, we consider
scheduling module requests with time-varying resource demands.

10.1 Introduction

The increasing performance of reconfigurable hardware devices leads to numerous
interesting applications; many examples such as video acceleration for driving as-
sistance (Chap. 18) can be found in other chapters of this book. On the other hand,
while systems that involve such devices become more and more complex, there is
a growing need for powerful design methods and tools. In particular, the available
hardware resources should be used efficiently to satisfy the demands required. For
example, modules loaded onto an FPGA should be packed densely without wasting
much of the FPGAs area, leaving as much space as possible for further tasks.
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The main idea for our research was to combine expert knowledge from the com-
puter engineering and algorithms/mathematics, to provide optimization methods for
the design and operation of reconfigurable hardware devices, in particular, FPGA-
based systems. It turned out that powerful methods from algorithm theory and math-
ematical optimization produce a significant increase in efficiency and performance.
In this chapter, we summarize the results of a 6 year lasting, fruitful cooperation.

The rest of this chapter is organized as follows: Modern generations of FPGAs
allow for partial reconfiguration. If the sequence of modules to be loaded is un-
known beforehand, repeated insertion and deletion of modules leads to progressive
fragmentation of the available space, making defragmentation an important issue.
In Sect. 10.2,1 we address this problem. We show that defragmenting an FPGA cor-
responds to solving a two-dimensional strip-packing problem. Problems of this type
are NP-hard in the strong sense, and previous algorithmic results are rather lim-
ited. Based on a graph-theoretic characterization of feasible packings, we develop
a method that can solve defragmentation instances of practical size to optimality.
We also discuss a simple strategy for dealing with online scenarios, called least-
interference fit (LIF) and compare LIF with the best offline solution.

In Sect. 10.3,2 we discuss the problem of communication-aware module place-
ment in array-like reconfigurable environments, such as the Erlangen Slot Machine
(ESM; see Chap. 3). Bad placement of modules may degrade performance due to
increased signal delays and wasted chip space for the reconfigurable multiple bus.
We present ILP formulations that address both of these problems; both ILPs can be
used stand-alone or as building blocks for more involved mathematical models.

In Sect. 10.4,3 we propose a new method for defragmenting the module lay-
out of a reconfigurable device, enabled by a novel approach for dealing with com-
munication needs between relocatable modules and with inhomogeneities found in
commonly used FPGAs. Our method is based on dynamic relocation of module po-
sitions during runtime, with only very little reconfiguration overhead—in contrast
to Sect. 10.2 where defragmentation happens during idle times of the whole FPGA.
The objective is to maximize the length of contiguous free space that is available for
new modules. We describe a number of algorithmic aspects of good defragmenta-
tion, and present an optimization method based on tabu search. Experimental results
indicate that we can improve the quality of module placement by roughly 50% over
static layout. Among other benefits, this improvement avoids unnecessary rejection
of modules.

Finally, we consider in Sect. 10.5 scheduling for modules whose resource re-
quests (i.e., area on the FPGA) changes over time. We consider slot-based recon-
figurations and assume that a modules requests a certain number of slots. So we

1 A subset of the results of this paper appeared as a Distinguished Paper in the proceedings of
ERSA’05 [45], the full version was published in TVLSI [22]. Portions reprinted, with permission,
from Transactions on Very Large Scale Integration (VLSI) Systems, c© [2008] IEEE.
2 A proceedings version was presented at FPL 06 [19]. Portions reprinted, with permission, from
Proc. of 16th Internat. Conf. on Field Programmable Logic and Applications, c© [2006] IEEE.
3 A proceedings version was presented at FPL 08 [21]. Portions reprinted, with permission, from
Proc. of 18th Internat. Conf. on Field Programmable Logic and Applications, c© [2008] IEEE.
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are dealing with a two-dimensional strip-packing problem, where the width of the
strip is given by the number of slots and the height of the strip corresponds to the
time axis. However, in contrast to classical strip-packing solutions, we are allowed
to postpone a module’s requests for more space by pausing the execution of the
module. We present an ILP and compare some heuristics for this problem.

10.2 Offline and Online Aspects of Defragmenting the Module
Layout of a Partially Reconfigurable Device

One of the cutting-edge aspects of modern reconfigurable computing is the possi-
bility of partial reconfiguration of a device: Ideally, a new module can be placed
on a reconfigurable chip without interfering with other running tasks. Clearly, this
approach has many advantages over a full reconfiguration of the whole chip. Pre-
dominantly it lessens the bottleneck of reconfigurable computing: reconfiguration
time.

On the other hand, partial reconfiguration introduces a new complexity: manage-
ment of the free space on the FPGA. In the 2D model this is an NP-hard optimization
problem. There has been a considerable amount of work to solve this problem com-
putationally. However, due to its computational complexity most recent work has
focused on the online setting or on the 1D area model (see [41] for a recent survey).

Management of free space and scheduling of arriving tasks are the core compo-
nents of an operating system for reconfigurable platforms (see Fig. 10.1). In all pre-
vious work these components use simple online strategies for the placement prob-
lem. The use of these strategies leads to fragmentation of the free space, as modules
are placed on and removed from the chip area. This leads to situations where a new
module has to be rejected by the placer because there is no free rectangle that could
accommodate the new module, even though the total free space available would be
more than sufficient (see [14] for further discussion).

We propose a different placer module. Instead of just relying on online strategies
our placer has an additional offline component: the defragmenter. Recurring idle
times can be used to optimally defragment the FPGA chip area.

This optimal defragmentation has two goals. One is to maximize the available
contiguous free space. The other comes from the FPGA device we use. For exam-
ple, the Xilinx Virtex-II series does not admit full two-dimensional partial reconfig-
uration. Instead, configuration can be performed only columnwise: While a column
is reconfigured, all other modules that use this column have to be stopped, because
reconfiguration interferes with the running tasks in a non-trivial way. So the other
goal of the offline defragmenter is to free as many columns as possible. This way
the next modules placed by an online placer will not interfere with other modules.
In the following, we assume that the FPGA consists of W columns and H rows of
configurable logic blocks (CLBs). Reconfiguration takes place on the column level,
taking c units of time to configure one column of CLBs.
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Fig. 10.1 Left: A schematic overview of an operating system for reconfigurable computers. Relo-
catable, presynthesized modules that are constrained to a rectangular layout are stored in a module
library. As requests for tasks arrive, a module capable of running the task is selected, scheduled
and eventually placed on the FPGA. Right: An FPGA of width W = 13 and height H = 11

CLBs. Assume that module M4 of width w4 = 5 and height h4 = 4 is located at position (3, 1). If
module M5 of same width and height is placed at position (5, 6) the resulting overlap is 3 columns
as indicated by the dashed lines. Consequently M4 is interrupted for 3c time units [22] c© [2008]
IEEE.

On this FPGA we execute a certain set of tasks T = {t1, t2, . . .}. Each task
is performed by a module j (i.e., a relocatable presynthesized digital circuit) that
occupies a rectangular area of size (wj , hj) on the FPGA. As a consequence, placing
module j on the FPGA takes time cwj . The set of all modules is given by M =
{m1, m2, . . .}.

In an offline setting we simultaneously seek for a feasible schedule for the tasks
(i.e., each task i is assigned a starting time si), a configuration schedule for the mod-
ules (each module j is assigned a reconfiguration time cj), and a feasible placement
of the modules on the FPGA (for each module j its location xi ∈ [0, W − wi) and
yi ∈ [0, H − hi) has to be determined). Among all feasible solutions we select one
that minimizes the makespan, i.e., the completion time of the last task. This alone is
an NP-hard optimization problem, as it contains two-dimensional packing as a sub-
problem. At the same time, this problem is closely related to scheduling problems.
(See [35] for an overview of classical one-dimensional scheduling problems.)

Columnwise reconfiguration has the drawback that reconfiguration of one col-
umn interrupts all modules using this column for the reconfiguration time c. Ex-
perimental evidence suggests that a placement strategy should take this interference
into account. This suggests a simple heuristic called least interference fit (LIF): new
modules are placed in consecutive columns that are used by as few other modules as
possible. Just like other heuristics, LIF can be used in both offline and online scenar-
ios. As we showed in [1], LIF seems to perform better than other simple heuristics
based on bin packing.

Defragmentation as described above can be regarded as the two-dimensional
strip packing problem. This, we take a closer look at this classic NP-complete op-
timization problem. As it turns out, for currently relevant numbers of modules, op-
timal placements can still be computed, using a cutting-edge algorithm for higher-
dimensional packing.
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10.2.1 Two-dimensional Strip Packing

The Strip Packing Problem (SPP) is to minimize the width W of a strip of fixed
height H such that all rectangles fit into a rectangle of size W × H . The corre-
sponding decision problem is the Orthogonal Packing Problem (OPP); to decide
whether a given set of rectangles can be placed within a given rectangle of size
W × H . Being a generalization of the one-dimensional problem 3-PARTITION, the
OPP is NP-complete in the strict sense, and so the SPP is NP-hard [24].

Dealing with an NP-hard problem (often dubbed “intractable”) does not mean
that it is impossible to find provably optimal solutions. While the time for this task
may be quite long in the worst case, a good understanding of the underlying mathe-
matical structure may allow it to find an optimal solution in reasonable time. A good
example of this type can be found in Grötschel [26], where the exact solution of a
120-city instance of the Traveling Salesman Problem is described, showing that the
right mathematical tools and sufficient computing power may combine to explore
search spaces of tremendous size.

Higher-dimensional packing problems have been considered by a great number
of authors, but only few of them have dealt with the exact solution of general two-
dimensional problems. See [16] for an overview. To our knowledge there is only one
work that tries to solve SPP to optimality [38]. See also [23] for online packing.

In [16, 17, 20, 43], a different approach to characterizing feasible packings
and constructing optimal solutions is described. A graph-theoretic characteriza-
tion of the relative position of the boxes in a feasible packing (by so-called pack-
ing classes) is used, representing d-dimensional packings by a d-tuple of interval
graphs (called component graphs); see Fig. 10.2. This factors out a great deal of
symmetries between different feasible packings, it allows to make use of a number
of elegant graph-theoretic tools, and it reduces the geometric problem to a purely
combinatorial one without using brute-force methods like introducing an underly-
ing coordinate grid. Combined with good heuristics for dismissing infeasible sets
of boxes [15], a tree search for constructing feasible packings was developed. This

Fig. 10.2 Left: Projecting the boxes of a feasible packing in 2-dimensional space onto the coor-
dinate axes converts the one 2-dimensional arrangement into 2 one-dimensional ones. These pro-
jections define interval graphs. Right: (a) A two-dimensional packing class. (b) The corresponding
comparability graphs. (c) The transitive orientations. (d) A feasible packing corresponding to the
orientation [22] c© [2008] IEEE.
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exact algorithm has been implemented; it outperforms previous methods by a clear
margin.

10.2.2 Defragmentation Approach and Computational Results

We have used our implementation for the OPP as a building block for our defrag-
mentation algorithm (see Algorithm 10.1). We have used simple lower and upper
bounds to restrict the search. Suppose I denotes the set of indices of the modules
currently present on the FPGA; then a lower bound for the number of columns WL

used by all modules after defragmentation is given by WL = �(
∑

i∈I wihi)/H�.
The upper bound is computed as the minimum of the three shelf-packing heuristics
next-fit-decreasing, first-fit-decreasing and best-fit-decreasing [5]. Based on these
bounds the defragmentation algorithm performs a binary search until an optimal so-
lution is found. We have benchmarked our code against a set of 10 instances, see
Table 10.1. On an Intel Pentium IV clocked at 3 GHz, the running time for comput-
ing the optimum for these instances was less than 0.5 s for each scenario.

Algorithm 10.1 A binary search algorithm for determining an optimal module lay-
out.
DEFRAGMENTMODULELAYOUT()
1 LB := CALCULATELOWERBOUND()
2 UB := CALCULATEUPPERBOUND()
3 while LB �= UB do
4 W := LB +

⌊
LB+UB

2

⌋

5 if SOLVEOPP(W ) then
LB := W

6 else
UB := W

10.2.3 Online Packing

A key motivation for considering partial reconfiguration is the necessity to develop
fast and effective strategies for dealing with new and changing demands. In those
cases, decisions have to be made that are based on incomplete information, as the
system does not know what further requests will arise in the future.

In the context of dynamic partial reconfiguration, we can again describe mod-
ule placement as a two-dimensional packing problem: Rectangular module requests
arrive one at a time and need to be placed on the chip area.

One-dimensional online packing is well studied; for example the classical strate-
gies FirstFit, BestFit, etc., can be used as online strategies [39]. Much less is known
about two-dimensional online packing, and hardly anything for cost functions aris-
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Table 10.1 Results for ten different scenarios, based on Fig. 10.3. The next columns show the
number of placed modules, the total free space, the maximal free rectangle, the number of free
columns before defragmentation, and after defragmentation. The last two columns show results for
the online scenario, comparing LIF to the optimum. ∗ without M11; ∗∗ including M11 (LIF fails
to place M11) [22] c© [2008] IEEE.

Scenario |I| Free space Before
defragmentation

After
defragmentation

Online

Max. Free Max. Free LIF OPT
rectangle columns rectangle columns edges edges

A 11 30 7 × 1 0 2 × 11 2 12∗ 11∗ or 13∗∗

B 9 52 2 × 8 0 4 × 11 4 9 9
C 9 70 3 × 7 0 6 × 11 6 6 6
D 9 42 4 × 4 0 3 × 11 3 10 9
E 6 83 6 × 8 0 6 × 11 6 4 3
F 6 54 8 × 2 0 4 × 11 4 4 3
G 5 76 6 × 4 2 6 × 11 6 1 1
H 6 53 3 × 11 3 4 × 11 7 3 2
I 5 87 9 × 6 1 7 × 11 7 1 1
J 6 42 3 × 8 0 3 × 11 3 4 3

Fig. 10.3 Left: The FPGA before defragmentation. Even though the remaining free space is 30
reconfigurable units (CLBs), the maximal free rectangle of dimension 7 × 1 has only 7 CLBs.
Note that there is no free column. Right: The same FPGA after defragmentation. The remaining
free space is 30 CLBs. Now the maximal free rectangle is of dimension 2 × 11 has 22 CLBs.
The number of free columns is 2 [22] c© [2008] IEEE.

ing from column-wise reconfiguration as on Xilinx Virtex-II chips, where the re-
configuration cost arises by the interruption of existing modules that use one of the
same columns as the newly placed modules. LIF seems to be a reasonable strategy
for dealing with an online scenario. Before we argue that it is indeed a good strategy,
let us note the following:

Theorem 10.1. Consider a sequence of modules that is placed in some arbitrary
permutation, resulting in an arrangement of modules. Then the total number of mod-
ule interruptions is independent of the order in which the modules were placed [22].

This means that we should aim at minimizing the total number of edges of G1,
which is precisely what LIF is trying to do in a greedy fashion.
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Theorem 10.2. Consider a set of modules, all having the same width wi = w, that
are to be placed on a chip area of sufficient height. Then LIF is a 1-competitive
online algorithm, i.e., optimal at each step [22].

Moreover, our approach allows it to compute an arrangement of modules that
is optimal with respect to reconfiguration cost, thus making it possible to perform
ex-post comparison of online strategies like LIF with an optimal solution:

Theorem 10.3. The set of module placements that incurs minimal total configura-
tion cost T correspond precisely to those feasible packings that have smallest pos-
sible number of edges in the interval graph G1 [22].

As our OPP algorithm is already based on a tree search that makes use of the
interval graphs, minimizing this edge number requires only a simple extension to
our tree search. Using the same benchmark instances as before, we compared LIF
with an optimal placement; see Table 10.1 and Fig. 10.4. It is clear to see that LIF
is near-optimal for most instances.

Fig. 10.4 Left: Applying LIF to scenario A results in insufficient space for the last module. Right:
An optimal solution for scenario A: a feasible placement for all modules with minimum total
overlap [22] c© [2008] IEEE.

10.3 Minimizing Communication Cost for Reconfigurable Slot
Modules

When trying to fully exploit the enormous practical potential of dynamically re-
configurable devices such as FPGAs, a crucial issue is intermodule communication,
especially in the context of module placement. Existing techniques for FPGAs [47,
40, 44]) tend to be very slow, and do not generate high-quality placements. In addi-
tion, they cannot cope with problems arising from dynamic placement and routing;
high run-times are also due to the fine-grain view of communicating modules.

In the online (dynamic) case where requests are generated at run-time, many ap-
proaches have been proposed [6, 48, 2, 3]. All these approaches still lack a practical
proof of concept because only little research has been spent on dynamically routing
signals between dynamically placed modules such as automatic circuit switching
(e.g., [4]) or dynamic networks on a chip (e.g., [37, 10]).
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For the offline (static) case, Teich et al. [42] showed that the problem of opti-
mally placing a set of independent modules in space and time is a 3D strip packing
problem and reduced the search space using packing classes; see Sect. 10.2.1. This
approach has been extended in to include temporal precedence constraints between
communicating modules for finding legal temporal placements [18]. However, the
concepts have yet to be verified on real hardware, mainly due to the lack of FPGA-
based platforms that allow free placement of 2D modules in time, or with great
restrictions about how modules can communicate with each other [46].

The first restriction can be solved using the FPGA-based Erlangen Slot Ma-
chine (ESM), see Chap. 3. The architecture is slot-oriented and allows reconfiguring
modules in slots of either static or dynamically adjustable width. For inter-module
communication, it provides four main methods: direct communication using bus-
macros between adjacently placed modules, SRAMs or BlockRAMs for shared
memory communication, a dynamic signal switching communication architecture
called Reconfigurable Multiple Bus (RMB), and an external crossbar; see Sect. 3.4
and Fig. 10.5.

Fig. 10.5 Schematic overview of the ESM architecture with four methods for inter-module com-
munication: direct communication via bus-macros, SRAMs for shared memory communication,
the Reconfigurable Multiple Bus (RMB), and an external crossbar.

This architecture gives rise to the following problems: Given a set of n ≤ s com-
municating modules; find a placement that minimizes either (a) the number of seg-
ments m, or (b) the maximal number of segments a signal must cross from a source
to a sink slot. The second objective means minimization of the maximal delays.

10.3.1 Mathematical Model

Our goal is to allocate the modules of an application to the slots of the ESM, such
that the number of parallel RMB bus segments or the maximal length of a connection
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between connected modules is minimized. Given an array-like architecture (such as
the ESM) that has s identical slots. Some of the slots may be occupied by other
applications. Consequently let S ⊆ {1, . . . , s} denote the set of available slots.
Each slot has width w. There may be some extra space between two neighbouring
slots j and j +1; this extra space is denoted by ej . The distance between the centers
of two slots j < l is given by djl = dlj = |l − j|w +

∑l−1
i=j ei.

We have to place an application consisting of n ≤ |S| modules. Each of the
modules is capable of executing a certain task. Some of these modules can have
placement restrictions, e.g. they may require certain pins that are available in the
first or last slot only. Let Pi ⊆ S denote the set of slots into which a module i can be
placed. Each module may wish to communicate with other modules; in the sequel
we concentrate on connections via the RMB only, after removing those that are dealt
with by other means. Each of these communication links can occupy one or more
RMB bus segments. The implementation of the RMB on the ESM supports uni-
directional communication only. Therefore, the communication graph is a directed
graph G = (V, A) with weight function t : A → N, indicating the number of bus
segments necessary for realizing an edge on the RMB.

In this more formal setting, the task of placing modules on the ESM in order
to minimize one of the two objectives given above reduces to the problem of plac-
ing the vertices of the communication graph on the integer points of the line. These
problems are variations of the classical optimization problem called minimum band-
width problem (MBW); see [12] for a recent computational study.

We present two ILP models that map modules to slots such that the number of
parallel bus segments is minimized and the maximum distance between any two
connected modules is minimized subject to a restricted number of parallel bus seg-
ments. The ILPs use two kinds of variables: Variable xij ∈ {0, 1} indicates whether
a module i ∈ {1, . . . , n} is placed in slot j ∈ {1, . . . , S} or not. If a slot j is not
available for the current application, the variables xij are fixed to zero for all mod-
ules i. If a module i must not be placed in slot j (i.e., j /∈ Pi), xij is fixed to zero
as well. We also have variables 0 ≤ xijkl ≤ 1. Even though these variables are not
binary, they can take only values in {0, 1}: If two modules i and k that are connected
by an edge ik are placed in slots j and l, respectively, xijkl is set to 1; otherwise it
is set to 0.

10.3.1.1 Minimizing the Number of Parallel Segments

Each of the modules i has to be placed in any of the available slots. On the other
hand, each of the slots j can hold at most one module. This can be expressed by the
following two assignment constraints

∑

j∈S

xij = 1, i ∈ M
n∑

i=1

xij ≤ 1, j ∈ S. (10.1)
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In this section we aim at minimizing the maximum number of bus segments in
use. In order to count the number ts of parallel segments crossing the border of slots
s and s+1, we could formulate a constraint like ts =

∑
jl∈A:j≤s<l

∑n
i=1

∑n
k=1 tjl×

xijxkl. Unfortunately, this equation is quadratic in x. As xij and xkl are binary
variables, this constraint can be linearized. To do so we introduce variables xijkl

and add the constraint
xijkl ≥ xij + xkl − 1. (10.2)

Equation (10.2) is nothing but a logical AND. xijkl is set to one if and only if
neither of xij and xkl is set to zero. Replacing the product in the quadratic equation
by the new variables results in

ts =
∑

jl∈A:j≤s<l

n∑

i=1

n∑

k=1

tjlxijkl. (10.3)

Adding the equation

ts ≤ T s ∈ S \ max
j∈S

j (10.4)

we can now formulate the integer linear program

Minimize T

subject to (10.1), (10.2), (10.3), and (10.4)

xij = 0 for i ∈ {1, . . . , n}, j /∈ S, (10.5)

xij = 0 for i ∈ {1, . . . , n}, j /∈ Pi, (10.6)

xij ∈ {0, 1}, 0 ≤ xijkl ≤ 1. (10.7)

10.3.1.2 Minimize Segment-Constrained Bandwidth

Using the ILP presented in the previous section, we are able to compute the minimal
number parallel segments in use, thereby minimizing the space overhead caused by
the RMB. Given this minimal number of segments or at least the number T of paral-
lel bus segments available, the ILP presented in this subsection finds a placement of
the modules that minimizes the length L of the longest edge between any two con-
nected modules. This number L can be determined by adding the linear inequality

L ≥ djlxijkl ik ∈ A, j, l ∈ S (10.8)

to the ILP described above. Given this additional constraint, the ILP can be formu-
lated as Minimize L subject to (10.1), (10.2)–(10.4), and (10.5)–(10.8).
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10.3.2 Case Study and Results

We applied our ILPs to an ESM-based implementation of the classical Pong video
game. This video game consists of four modules for user input, racket position cal-
culation, ball position calculation, and video interface. The communication graph
has four vertices and five edges. The first ILP yields a solution with 58 parallel seg-
ments. Even though this solution is optimal, it has unnecessarily long connections.
Applying the second ILP with T set to 58 results in a placement where the length of
the longest edge has been reduced to 2; see Fig. 10.6.

Fig. 10.6 Left: An optimal solution of the first ILP for the Pong example. The thin, medium, and
heavy lines connecting the modules represent 4, 20, and 38 segments, respectively. The maximum
number of parallel segments is 58. Note that the length of the longest connection is 4. Right: An
optimal solution of the second ILP. The solution is restricted to a minimum number of 58 parallel
segments. The length of the longest connection is now 2 [19] c© [2006] IEEE.

Our ILPs work well for small applications like the Pong game in less than a tenth
of a second. To demonstrate the ability of our approach to tackle much larger prob-
lems, we randomly generated a large number of artificial benchmark instances. We
assume an application consisting of n modules; all of these modules require some
kind of communication with other modules. The results are shown in Table 10.2.

Table 10.2 Left: Results for the first ILP. n is the number of vertices, |Ex| are the numbers of edges
of the three types of communication graphs considered. After performing 7 runs (AMD Athlon64
X2 3800+, Linux, CPLEX 10.0), time/s is the arithmetic mean taken over five runs, deleting the
best and the worst result. Right: Results for the second ILP [19] c© [2006] IEEE.

n |E1| Time/s |E2| Time/s |E3| Time/s
6 8 0.04 8 0.04 10 0.05
8 10 0.14 10 0.13 13 0.15
10 12 0.45 13 0.34 16 0.46
12 14 0.82 16 0.96 20 1.21
14 16 1.80 18 2.55 23 3.72
16 18 4.40 21 2.54 26 18.15

n |E1| Time/s |E2| Time/s |E3| Time/s
6 8 0.14 8 0.15 10 0.19
8 10 0.89 10 0.89 13 1.43
10 12 3.90 13 5.25 16 10.96
12 14 30.06 16 44.64 20 80.95
14 16 153.74 18 573.27 23 775.71
16 18 2655.44 21 2812.81 26 >3600.00
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10.4 No-break Dynamic Defragmentation of Reconfigurable
Devices

FPGAs suffer from a significant area overhead, a higher power consumption, or a
speed penalty as compared to ASIC solutions [34]. Partial runtime reconfiguration
is an applicable technique to overcome these issues. In order to take more benefit
from runtime reconfiguration, such systems should be able to provide the reconfig-
urable resources in a very flexible way to the modules. Most related work is based
on the assumption that a reconfigurable area is used exclusively by one partially re-
configurable module (e.g. [36]) at a point of time. Hagemeyer el al. [27] introduce
a system that provides a bus-based communication for integrating up to 16 mod-
ules. Koch et al. [32] partition the reconfigurable area into 60 tiles, each capable of
connecting a tiny 8-bit module over a so-called ReCoBus.

For such systems, an efficient resource management is necessary. One problem
that has to be solved at runtime is the fragmentation due to the time variant execution
of modules. For FPGAs available from the Xilinx Inc., the tiles will be vertically
aligned column by column, as shown in Fig. 10.7. Accordingly, a module requiring
multiple tiles to implement its logic will demand a consecutive adjacent set of tiles
without any gaps. This problem is discussed in this section.

Fig. 10.7 A dynamically reconfigurable system shares some logic tiles l and memory tiles m
among a set of modules within the dynamic part of the system. Some modules require a memory
tile at a fixed offset with respect to the start position within the modules [21] c© [2008] IEEE.

At first glance, this problem has a striking resemblance to one of the classical
problems of computing: Dynamic storage allocation considers a memory array and
a sequence of storage requests of varying size, looking for an assignment of each
request to a contiguous block of memory cells, such that the length of each block
corresponds to the size of the request. This allocation is static in space: after a block
has been occupied, it will remain fixed until the corresponding data is no longer
needed and the block is released. This can result in fragmentation of the memory ar-
ray, making it hard or even impossible to store new data. A large variety of methods
and results for allocating storage such as FirstFit, BestFit or different Buddy sys-
tem have been proposed (e.g., [30, 11, 28, 29]). Newer approaches that use cache-
oblivious structures for allocating space in memory hierarchies (e.g., [8, 9]). There



212 Ali Ahmadinia et al.

are three notable differences between the dynamic allocation of modules to a recon-
figurable device and dynamic storage allocation: Using pointers for creating virtual
contiguous free blocks is not an option for the placement of modules, the reconfig-
urable device may–in contrast to uniform memory—contain inhomogeneities, and
it is possible to relocate modules on a reconfigurable device during runtime.

There is a certain amount of related work from within the FPGA community [7,
25, 13, 31, 33]. These papers do not consider the algorithmic implications and how
the relocation capabilities can be exploited to optimize module layout in a fast, inter-
ruption-free, no-break fashion or the problem description differs in some points.

10.4.1 Model and Problem Description

When modules are relocated for defragmentation, we have to distinguish between
moving only the module configuration, and the configuration together with the in-
ternal state. In the first case, we just make a copy of the reconfiguration data to the
new position and start the next computation on the module at the new position. In
the second case, source and target have to be interrupted to copy the state. If we
allow overlapping regions for the defragmentation, the interruption time will dom-
inate the reconfiguration process, because we have to copy the routing information
and logic settings in addition to the state. As a consequence, we will prevent our
defragmentation algorithms to use overlapping regions to place modules.

An additional aspect is that FPGAs typically provide logic tiles l and memory
tiles m, as shown in Fig. 10.7. The placement of a module on the FPGA must fit
exactly to the particular module. This restricts the possible module start positions.
For example, module1 in Fig. 10.7 can be placed only at the positions A, H, and O.

We consider a device that allows allocating modules in a contiguous manner on
an array L of length �; modules will be denoted by M1, . . . , Mn. A module Mi

placed in the array occupies a contiguous interval, LMi . Modules are placed such
that LMi ∩ LMj = ∅ for i �= j; that is, two modules do not overlap; see Fig. 10.8.

Fig. 10.8 A module corresponds to a set of columns on an FPGA. Each module occupies a con-
tiguous block. The moves of Mi and Mj are allowed, the move of Mk is forbidden, because the
current and the target position overlap [21] c© [2008] IEEE.

Modules placed in the array divide L into sections that are occupied by a module
and sections that are not occupied; the latter are called free intervals. Reconfigu-
ration allows us to relocate a module Mi of size mi from interval LMi to a new
position within a free interval LM of size m within the array, provided that the fol-
lowing two conditions are fulfilled: LM ∩

⋃n
k=1 LMk

= ∅ and m ≥ mi. The first
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condition implies that LM and LMi are not allowed to intersect and ensures that the
new position is not occupied by any other module. The second condition ensures
that there is sufficient free space to provide a new position for the module.

The Maximum Defragmentation Problem (MDP) asks for a sequence of reloca-
tion moves, such that the resulting connected free interval is as large as possible.
We distinguish between the homogeneous MDP, where every cell in the array is
equivalent, and the heterogeneous MDP for FPGAs with heterogeneities. Clearly,
the heterogeneous MDP is more difficult.

10.4.2 Problem Complexity and Moderate Densities

We state two results: one for deciding whether one contiguous free block can be
formed, and one for the maximization version of the (homogeneous) defragmenta-
tion problem. Both can be shown by a reduction from the 3-Partition Problem [24].

Theorem 10.4. The Maximum Defragmentation Problem with free intervals F1, . . . ,
Fk is strongly NP-complete [21].

Proving NP-completeness for the decision version of a problem makes it interest-
ing to consider approximating the size of the maximal constructible free intervals.

Theorem 10.5. There is no approximation algorithm for the maximum defragmen-
tation problem with an approximation factor polynomially bounded in the input size
of the problem, unless P = NP [21].

A special case of the homogeneous MDP can be solved with linear computing
time and at most 2n moves: We define the density δ := 1

�

∑n
i=1 mi. If the density is

small enough (i.e., Eq. (10.9) holds), the total free space can always be connected.

δ ≤ 1
2

− 1
2�

· max
i=1,...,n

{mi}. (10.9)

Theorem 10.6. Algorithm 10.2 connects the total free space with at most 2n moves
and uses O(n) computing time [21].

Algorithm 10.2 LeftRightShift
Input: A array L with n modules M1, . . . , Mn such that (10.9) is fulfilled.
Output: A placement of M1, . . . , Mn such that there is only one free interval at the left end of L.
for i = 1 to n do Shift Mi to the left as far as possible.
for i = n to 1 do Shift Mi to the right as far as possible.

10.4.3 A Heuristic Method

As a consequence of the hardness and inapproximability results we focus on devel-
oping heuristic approaches for the MDP. There is a bound on the number of steps
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needed by any algorithm that constructs a maximum free interval, even in the ho-
mogeneous version:

Theorem 10.7. There is an instance of the maximum defragmentation problem such
that any algorithm needs at least Ω(n2) steps to solve it [21].

We implemented a standard tabu search. In every iteration all homogeneous mod-
ules Mi are moved to the left end and the right end of the free intervals that are
greater than or equal to mi. All inhomogeneous modules are moved to any feasible
position. Each move is evaluated by a fitness function that divides the size of the
maximal free interval by the size of the total free interval. The move yielding the
configuration with the highest fitness is chosen. Ties are broken by choosing the first
one. The resulting configuration is added to the tabu list. If the current solution is
the best one found so far it is stored.

We performed experiments on two different arrays, both having � = 94 slots.
The first one without heterogeneities, the second one with heterogeneities (Virtex-
II). Moreover, we compared our heuristic to a simple greedy approach that moves
every module to the most promising position. For the density ranging from 0.3 to
0.9 we performed 100 runs for each value and took the average value of the number
of free intervals and the size of the maximal free interval. The results are show in
Fig. 10.9.

Fig. 10.9 (Left to right) Size of the maximal free interval before and after defragmentation, using
our heuristic and a simple greedy approach in an array with no heterogeneities, size of the maximal
free interval before and after defragmentation of the Virtex-II FPGA, number of free intervals
before and after defragmentation in an array with no heterogeneities, number of free intervals
before and after defragmentation of the Virtex-II FPGA [21] c© [2008] IEEE.

10.5 Scheduling Dynamic Resource Requests

Finally we consider the problem of scheduling modules whose resource requests
(i.e., space on an FPGA) may vary over time. This may be, for example, a router



10 ReCoNodes 215

module that needs more resources if the traffic increases. In contrast to the preceding
sections, we assume that a module occupies a certain number of full slots on the
FPGA. Furthermore, we assume that requests come in time slots of a fixed size.
Now, scheduling a sequence of modules with time-varying resources corresponds to
strip packing (see Sect. 10.2.1) where the width of the strip is the number of slots on
the FPGA and the height of the strip corresponds to the time axis. Thus, we will use
height and time synonymously. However, we are allowed to delay a request; that is,
we may stretch the modules along the time axis; see Fig. 10.10.

Fig. 10.10 Left: We can place the module Mi at the position marked by × (the base slot of Mi),
if we delay the third request. That is, the second request stays on the FPGA until the third request
can be fulfilled. Right: Occupancy Constraints: If xstij = 1, the request (i, j) occupies rij slots
left or right to s—depending on sgn(rij).

10.5.1 An ILP

We want to place n modules on an FPGA with � slots. The resource requests of each
module, Mi, is given as a sequence of requests, (i, j), of length rij , rij ∈ Z\{0},
where rij denotes the number of slots requested by Mi after running j − 1 time
steps. We assume that every module occupies a base slot and extends to the left
(rij < 0) or to the right (rij > 0) of the base slot. Let mi denote the length of the
request sequence for module Mi.

For the ILP, we introduce three kinds of variables: The assignment variables,
xstij , the occupancy variables, ystij , and the usage variables, ut. The first ones
specify when and where a request is scheduled. More precisely, setting xstij to 1
indicates that request (i, j) of module Mi is scheduled in slot s at time t (i.e., the
slots s, . . . , s + rij − sgn(rij) are occupied at time t), where s is the base slot of
module Mi. For every (i, j) there is exactly one xstij with xstij = 1. Usually (i.e.,
if |rij | > 1) a request occupies more than one slot when executed. Moreover, if the
request (i, j+1) is delayed, (i, j) remains on the FPGA for more than one time unit.
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To keep track of the occupied slots, we set ystij to 1, if slot s is occupied by request
(i, j) at time t. The usage variables simply specify which time steps are used.

Clearly, the size of the FPGA, �, and the number of modules, n, strongly deter-
mine the size of an ILP and, in turn, the time needed to solve it. In addition, we
assume that an upper bound, T , on the number of time steps is given. The closer this
bound is to the optimum, the smaller the resulting ILP.

Assignment Constraints: There can be at most one request per slot and time
and—vice versa—each request must be scheduled exactly once. The following con-
straints express these conditions:

n∑

i=1

mi∑

j=1

xstij ≤ 1 ∀t = 1, . . . , T, s = 1, . . . , �

T∑

t=1

�∑

s=1

xstij = 1 ∀i, j.

(10.10)

Boundary Constraints: Next, we ensure that a request does not exceed the
FPGA’s boundary by forcing the corresponding assignment variables to be zero.

∀i, j, t = 1, . . . , T, s = slow, . . . , sup : xstij = 0

where slow :=

{
� − rij + 2, rij > 0
1, rij < 0

and sup :=

{
�, rij > 0
−rij − 1, rij < 0

(10.11)

Base-Slot Constraints: Each request of a module must be scheduled in the same
base slot:

T∑

t=1

�∑

s=1

sxstij −
T∑

t=1

�∑

s=1

sxsti0 = 0 ∀i, j. (10.12)

For every (i, j), there is exactly one s, t such that xstij = 1. Thus, summing up
s · xstij over s and t for fixed i and j yields the base slot of module Mi.

Order Constraints: Now we ensure that request (i, j) of module Mi is not sched-
uled before request (i, j − 1) is finished:

T∑

t=1

�∑

s=1

txstij −
T∑

t=1

�∑

s=1

txstij−1 > 0 ∀i, j > 0. (10.13)

Similar to the base-slot constraints, summing up t · xstij over s and t for fixed i
and j yields the time step where request (i, j) is scheduled.

Occupancy Constraints: If xstij = 1, the request (i, j) occupies rij slots at
time t. Thus, we set the appropriate occupancy variables as follows:
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∀i = 1, . . . , n, j = 1, . . . , mi, s = 1, . . . , �, t = 1, . . . , T,

s′ = slow, . . . , sup : xstij − ys′tij ≤ 0,

with slow =

{
s, rij > 0
max{1, s + rij + 1}, rij < 0

sup =

{
min{�, s + ri′j′ − 1}, rij > 0
s, rij < 0.

(10.14)

Exclusive Constraints: Now, we can ensure that requests do not overlap by al-
lowing at most one occupancy variable for a fixed slot and a fixed time to be 1.

∀t = 1, . . . , T, s = 1, . . . , � :
n∑

i=1

mi∑

j=1

ystij ≤ 1. (10.15)

Delay Constraints: If a request, (i, j +1), is delayed, the preceding request (i, j)
remains on the FPGA until (i, j +1) is scheduled. Thus, if ystij = 1 either ys(t+1)ij

must be 1 or (i, j + 1) is scheduled at time t + 1; that is, there is an s′ such that
xs′(t+1)i(j+1) = 1 holds. The following constraints keep track of delayed requests.
∀i = 1, . . . n, j = 1, . . . , mi, s = 1, . . . , �, t = 1, . . . , T − 1:

ystij − ys(t+1)ij −
�∑

s′=1

xs′(t+1)i(j+1) ≤ 0. (10.16)

Usage Constraints: Last, we introduce some constraints that define our usage
variables. Let ut be 1, if at least one xstij is 1 or if ut+1 is 1.

∀t = 1, . . . T, s = 1, . . . , �, i = 1, . . . , n, j = 1, . . . , mi :
ut − xstij ≥ 0 (10.17)

and ∀t = 2, . . . , T : ut−1 − ut ≥ 0. (10.18)

Objective Function: To minimize the makespan, we use the following ILP:

min
T∑

i=1

i ui subject to Eqs. (10.10)–(10.18)

xstij ∈ {0, 1}, ystij ∈ {0, 1}, ut ∈ {0, 1}.

10.5.2 Heuristic Methods

We implemented several heuristics for our problem. For comparison, a simple First-
Fit with and without delaying requests, and two more elaborated heuristics, BestFit
and TabuSearch. Our methods pack the given modules in a semi-infinite strip. The
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width of the strip is given by the number of slots on the FPGA, the height of the
strip corresponds to the time axis. See Fig. 10.11 for an example.

Fig. 10.11 (Left to right): Packings by FirstFit, FirstFit with delays, BestFit, and TabuSearch.

FirstFit. Probably the simplest heuristic is to place the modules, one by one, in
a first-fit way: beginning with s = 1 and t = 1, we test for every position if the
module that must be placed overlaps with already-placed modules. We choose the
first position in which no overlap occurs. Note that we disregard the possibility of
delaying requests.

FirstFit with delays. This method works the same as the method above, but al-
lows the delaying of requests. That is, if for a certain start position the requests
0, . . . , j − 1 fit into the strip without overlap, but request j does not fit in time step
t′, we search for the largest j′ < j such that request (i, j′) fits in t′ and delay every
request j′ ′ = j′ + 1, . . . (i.e., we move them upwards in the strip); see Fig. 10.10.

BestFit. Similar to FirstFit with delays, we try to find a nonoverlapping position
by testing every possible position. But now we do not choose the first feasible posi-
tion, but we evaluate every position as follows: We separately count the unoccupied
cells left and right to the placed module and take the minimum of the these two
values as a score for the given position. For example, for the placement of Mi in
Fig. 10.10, there are 4 unoccupied cells left to Mi and 14 unoccupied cells right to
Mi, yielding a value of 4 for his placement. We choose the position that yields the
minimal score and break ties by preferring the position with least number of delays.

To avoid that every module is placed on the left or right side (yielding a score
of 0), we maintain an upper limit, tmax, for the time. Before we place a new module,
we increase tmax by mi/2 and try to place the given module within the given time
bound. If this is not possible, we increase tmax by mi and try again.

TabuSearch. The idea of the heuristic is to try several BestFit runs. For every run,
we choose a different order for the insertion of modules. Starting with the sequence
S = (1, . . . , n), we swap two items of the sequence and compute the makespan
that is achieved by BestFit. More precisely, we maintain a swapping distance, i,
ranging from i = 0 to n/2. For a fixed i, we swap the items at positions j and
((j + i) mod n) + 1 for j = 1, . . . n, keeping track of the best makespan achieved
so far, and accept the swap that achieves the best makespan known so far. A tabu list
ensures that we do not swap an already accepted pair again, see Fig. 10.12.
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Tabu Search

S = (1, . . . , n)
for i = 0 to n/2

found = 0
for j = 1 to n

if (j, ((j + i) mod n) + 1)
are not in the tabu list then

Swap items at positions j
and ((j + i) mod n) + 1 in S

Calculate makespan of BestFit
if makespan is the best so far then

found = j
Undo swapping

if found > 0 then
Swap positions found

and ((found + i) mod n) + 1 in S
Store (found , ((found + i) mod n) + 1)

in the tabu list

Fig. 10.12 Left: Tabu Search. Right: A comparison of different heuristics—FirstFit (without de-
lays), FirstFit (with delays), BestFit, and TabuSearch—in settings with different densities (i.e.,
maximal value for a request). A lower bound (ratio of total area by number of slots) is shown.

To test our heuristics, we conducted a set of experiments. For an FPGA of width
� = 50 and upper limits for the size of a request, rmax, ranging from 10% to 90%
we randomly generated sequences of 20 modules per sequence. Fig. 10.12 shows
the mean value over 20 runs for every value of rmax and for every heuristic.
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Chapter 11
ReCoNets—Design Methodology for Embedded
Systems Consisting of Small Networks
of Reconfigurable Nodes and Connections

Christian Haubelt, Dirk Koch, Felix Reimann, Thilo Streichert, and Jürgen Teich

Abstract Automotive, avionic or body-area networks are systems that consist of
several communicating control units specialized for certain purposes. Typically,
constraints regarding reliability, availability but also flexibility are imposed on these
systems. In this chapter, we will present the ReCoNets approach for increasing re-
liability and flexibility of such systems by solving the hardware/software codesign
problem online. A ReCoNet allows to migrate tasks implemented in hardware or
software from one node to another. Typically, it consists of a network of communi-
cating Field-Programmable Gate Arrays (FPGAs) and CPUs. Moreover, if a suffi-
cient number of hardware/software resources is not available, the migration of func-
tionality from hardware to software or vice versa is initiated by the system itself. For
supporting such flexibility, new design methods as well as services integrated in a
distributed operating system for networked embedded systems are revealed. Besides
the formal definition of methods and concepts providing several self-x properties
such as self-healing, self-adaptiveness and self-optimization, a ReCoNet demon-
strator is presented hosting a driver assistance application.

11.1 Introduction

More and more complex embedded systems consist of several control units con-
nected via a network. Each control unit is specialized to provide a certain function-
ality. With the introduction of reconfigurable hardware (commonly FPGAs) as a
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centric part of the control units, a new dimension of flexibility can be implemented
in such systems with the help of runtime reconfiguration. At the micro level, this
includes reconfigurable hardware and software tasks on a single control unit called
ReCoNode, while the reconfiguration may also involve a macro level where tasks
are migrated among different ReCoNodes. Such a reconfigurable network, in the
following also called a ReCoNet, can automatically react to environmental changes
such as faults in a ReCoNode, network topology changes, or varying workload sce-
narios. This is established by a decentralized decision making to decide which task
is executed where, hence, answering the question on which node (macro level) and
at which placement position on a particular reconfigurable device (micro level) a
task is executed. Additionally, this includes to decide how a task is executed, i.e., in
software or in hardware.

Beside these self-healing and self-adapting properties, self-optimizing strategies
allow for improving the reliability of a ReCoNet. For example, instead of using
Triple Modular Redundancy (TMR) with a fixed, redundant task binding, a Re-
CoNet may adapt communication, task binding, or even the implementation style
(hardware or software) of a task according to the currently available resources or
load of the network components. Then, in case of a fault, tasks may migrate to
other intact resources at runtime. Obviously, in order to guarantee fault tolerance,
decentralized methods for self-healing, self-adaptiveness, and self-optimization are
required.

While different levels of granularity have to be considered in the design of fault-
tolerant and self-adaptive reconfigurable networked embedded systems, we will put
focus onto the system level in this chapter. In particular, we will focus on topology
changes like node or link defects and integration of new nodes. Central to the self-x
properties of a ReCoNet is a methodology for online hardware/software partition-
ing (cf. [28]) which describes the procedure of binding functionality onto resources
in the network at runtime. In order to allow moving functionality from one node to
another and execute it either on hardware resources or in software, we will introduce
the concepts of task migration and task morphing. Both, task migration as well as
task morphing where the implementation style of a task changes from hardware to
software or vice versa depending on load or timing constraints, require hardware
and/or software checkpointing mechanisms and an extended design flow for provid-
ing an application engineer with such new design methods.

The remainder of this chapter is structured as follows: In Sect. 11.2, a formal
model of fault-tolerant and self-adaptive reconfigurable networked embedded sys-
tems is introduced. Section 11.3 is devoted to operation system services implement-
ing the self-healing, self-adapting, and self-optimizing capabilities of a ReCoNet in
a distributed manner. This includes online hardware/software partitioning, check-
pointing as well as methods for task migration and task morphing. After this, in
Sect. 11.4, a methodology for designing ReCoNet systems is presented. In particu-
lar, the reliability analysis and optimization will be discussed. Finally, in Sect. 11.5,
a ReCoNets demonstrator capable of compensating link or node failures by dynam-
ically adapting and optimizing the routing and task binding will be presented for an
automotive driver assistance system.
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11.2 System Model

A ReCoNet is specified by a so-called network model which separates functionality
from the network architecture.

Definition 11.1 (Network Model). The entire network model M(Gtg, Gsca, Em)
consists of a topology graph Gtg , a set of sensor-controller-actuator chains Gsca,
and a set of mapping edges Em.

The topology graph models the ReCoNet architecture (resources and their con-
nections) available to implement the intended functionality of the ReCoNet.

Definition 11.2 (Topology Graph). The topology graph Gtg(V tg, Etg) consists of
a set of vertices V tg modeling the network nodes and a set of edges Etg ⊆ V tg ×V tg

modeling the connections between nodes. The set of vertices V tg can be partitioned
into sensor nodes s ∈ Stg , computational nodes n ∈ N tg, and actuator nodes
a ∈ Atg.

We assume the computational nodes, also called ReCoNodes, to be hardware/
software reconfigurable, e.g., they are composed of an FPGA together with at least
one CPU. ReCoNodes may integrate tasks implemented in software or hardware
at run-time. Additionally, these FPGA-based nodes contain dedicated analog hard-
ware for driving sensors and actuators which leads to a certain heterogeneity in
the network. In particular, a sensor node s ∈ Stg must not be directly connected
to an actuator node a ∈ Atg and vice versa. This restricts the set of edges to
Etg ⊆ Stg × N tg ∪ N tg × N tg ∪ N tg × Atg .

Exemplarily, Fig. 11.1(b) shows a network topology with four computational
nodes ni ∈ N tg , sensors si ∈ S, actuators ai ∈ A, and communication links
represented by the edges between the nodes ni. Note that some sensors and actuators
are not connected to all nodes in the network, thus building a heterogeneous network
structure.

Similar to the ReCoNet architecture, the application is modeled by a set of
sensor-controller-actuator chains composed in a single graph termed sensor-control-
ler-actuator chain graph.

Definition 11.3 (Sensor-Controller-Actuator Chain Graph). The sensor-control-
ler-actuator chain graph Gsca(V sca, Esca) consists of a set of vertices V sca repre-
senting task of the application and a set of edges Esca modeling data dependencies.
The set of vertices V sca can be partitioned into sensor tasks t ∈ T s, controller tasks
t ∈ T c, and actuator tasks t ∈ T a.

As sensor task always provide data for controller tasks and controller tasks send
control information to actuator tasks, the set of edges can be restricted to Esca ⊆
T s × T c ∪ T c × T c ∪ T c × T a.

An example of a sensor-controller-actuator chain graph consisting of two sensor
tasks, two controller tasks, and a single actuator task is shown in Fig. 11.1(a). In a
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Fig. 11.1 (a) An application is modeled by a set of so-called sensor-controller-actuator chains.
Each vertex represents a task or a replica task that both will be bound onto (b) the nodes of the
topology graph modeling the ReCoNet architecture. Each ReCoNode n ∈ Ntg is assumed to
consist of a reconfigurable logic as well as at least one CPU.

ReCoNet, tasks might be replicated for fault-tolerance reasons and are called replica
tasks t

′ {s,c,a}
i .

Finally, the set of mapping edges which describes the binding possibilities of the
tasks onto the network nodes. Due to the heterogeneity caused by the sensor nodes
si and actuator nodes ai in the ReCoNet architecture, the binding of sensor tasks tsi
and actuator tasks tai is restricted. In particular, a sensor task tsi is only allowed to
be bound onto a computational node nj ∈ N if si is a direct predecessor of nj , i.e.,
(si, nj) ∈ Etg. Analogously, an actuator task tai is only allowed to be bound onto a
computational node nj if a corresponding actuator node ai is a direct successor of
nj . It is assumed that all controller tasks tci may run on each computational node nj .

11.3 A Distributed Operating System Architecture
for Networked Embedded Systems

All mechanisms for establishing a fault-tolerant and self-adaptive reconfigurable
network have to be integrated in a distributed operating system infrastructure which
is shown in Fig. 11.2, cf. [26]. While the reconfigurable network forms the physi-
cal layer consisting of reconfigurable nodes and communication links, the top layer
represents the application that will be dynamically bound on the physical layer. This
binding of tasks to resources is determined by an online partitioning approach that
involves three basic and novel mechanisms: (1) dynamic rerouting of communica-
tion data, (2) hardware/software task migration, and (3) hardware/software morph-
ing. Dynamic rerouting is necessary because messages will have to be sent between
tasks that can migrate at runtime. The task migration mechanisms are required for
moving tasks from one node to another while the hardware/software morphing al-
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lows a dynamic binding of tasks to either reconfigurable hardware resources or a
CPU. The task migration and morphing mechanisms require in turn efficient hard-
ware/software checkpointing methods such that states of tasks will not get lost.
The basic network services for addressing nodes, detecting link failures and send-
ing/receiving messages are discussed in [10].

Fig. 11.2 Operating system layers of a fault-tolerant and self-adaptive network (ReCoNet). In
order to abstract from the hardware, this local operating system is assumed to run at each node. On
top of this local OS, basic network services are defined and used by the application to establish the
intended fault tolerance and self-adaptiveness.

Beside the network services on the macro level, the hardware reconfiguration
management on a particular ReCoNode has to be considered on the micro level.
This includes the definition of communication architectures capable to efficiently
integrate multiple partially reconfigurable modules into a system at runtime. Addi-
tionally, it is not only required to decide which node has to host which tasks within
a ReCoNet (macro level), but also, in the case of hardware tasks, it is necessary
to decide the placement position (FPGA) on a particular ReCoNode (micro level).
This includes further management services including defragmenting the reconfig-
urable area. The reconfigurable area may get fragmented because different hard-
ware tasks with individual resource requirements may be started and terminated
over time. Consequently, the free resources on a ReCoNode alone are not sufficient
for deciding if a hardware task can be placed on a ReCoNode or not. These problems
have been solved in cooperation with the project ReCoNodes, cf. Chap. 10.

11.3.1 Self-healing and Self-adaptiveness

In the context of self-adaptiveness, we aim at integrating new tasks into a running
ReCoNet. These tasks can be either platform-independent and can be executed on
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each ReCoNode in the network or they can be executed by a subset of all nodes in the
network due to, e.g., I/O-interfaces or some inhomogeneity. While self-adaptiveness
treats changes in the entire functionality of a network in general, self-healing treats
the problem of maintaining all currently running functionality to keep running cor-
rectly in case of topology changes in the network. All in all, the treatment of these
changes have to happen in limited time. Thus, we propose a two-step strategy con-
sisting of a so-called fast repair phase and an optimization phase (see Fig. 11.3).

Fig. 11.3 If a link or node defects, the fast repair phase activates replicated tasks and reestab-
lishes the communication routes. If the network is extended, all nodes collectively determine new
communication routes between tasks hosted on the new nodes and the tasks in the network (fast
repair). If a new task arrives, a node with enough computational resources is searched to bind the
task onto it. The optimization phase optimizes the binding of tasks and creates new replicas.

In case of a node or link defect, the fast repair phase activates replicated tasks and
reestablishes the communication between the tasks. If new tasks arrive and need to
be bound onto nodes in the network, the same strategy as used for placing replicas
is applied (cf. 11.3.1.2). Then, the communication between all tasks in the network
is established if it does not exist yet. Afterwards, in the optimization phase, the
problem of online hardware/software partitioning is solved with respect to differ-
ent objectives, e.g., the overall computational load, the reliability, etc. When the
hardware/software partitioning phase finishes, replicas need to be placed in order to
tolerate future defects.

In the following two subsections, we present one investigated algorithm for on-
line hardware/software partitioning followed by a method for task replica place-
ment.



11 ReCoNets 229

11.3.1.1 Discrete Diffusion-Based Task Binding

The first strategy to online hardware/software partitioning works with the objective
to distribute tasks in the network such that the computational load between the
hardware resources and the computational load between the software resources are
equally balanced. For this purpose, the class of diffusion algorithms seems to be
the most appropriate one in the context of a ReCoNet. In particular, it runs in a
distributed manner in the network, allows balancing the load with local knowledge
only, and may perform load exchanges with all neighbors simultaneously. In this
context, we propose a discrete version of a diffusion algorithm in the following,
cf. [25].

The algorithm moves load entities along the edges in the network to other nodes.
Characteristic to a diffusion-based algorithm, cf. [2, 7], is that iteratively each node
is allowed to move any size of load to each of its neighbors. Communication is only
allowed along edges e ∈ Etg. The quality of such an algorithm may be measured
in terms of the number of iterations that are required in order to achieve a balanced
state and in terms of the amount of load moved over the edges of the graph.

Definition 11.4 (Continuous Diffusion Algorithm). A local iterative load balanc-
ing algorithm performs iterations on the nodes of v ∈ V tg determining load ex-
changes between adjacent computing nodes. On each computing node vc

i ∈ V tg,
the following iteration k is performed:

ycontk−1
e = γ · wk−1

i − γ · wk−1
j ∀e = (vc

i , v
c
j) ∈ Etg

xcontk
e = xcontk−1

e + ycontk−1
e ∀e = (vc

i , v
c
j) ∈ Etg (11.1)
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The real-valued load entity ycontk
e is calculated in each iteration k which is sent

via edge e ∈ Etg. This amount of load is a fraction γ of the load difference of
two adjacent nodes connected by edge e. xk

e is the amount of load sent via edge e
until iteration k. wk

i is the load of node i after the k-th iteration. If arbitrary real-
valued load portions may be sent at each iteration k, it has been shown in [2] that
the iteration converges to the average load w̄. The number of iterations needed to
obtain a certain error bound may be large and is in general not known a priori.

A slight modification of the iteration scheme above that works with changing
values of γ in each iteration k has shown that the convergence speed can be drasti-
cally improved to exactly K − 1 iterations [7]. Simply choose γ = 1

λk
in the k-th

iteration of Eq. (11.1) where λk, 1 ≤ k ≤ K − 1 denotes an arbitrary numbering
for the K non-zero eigenvalues of L. L is called the Laplacian-matrix of the net-
work and is defined as L = D − B where D contains the node degrees as diagonal
entries and B is the adjacency matrix of the network. Hence, γ = γk = 1

λk
, and

in each iteration k, a node vc
i adds a flow of 1

λk
(wk−1

i − wk−1
j ) to the flow of edge

e = (vc
i , v

c
j), choosing a different eigenvalue for each iteration. An equally balanced

load distribution is obtained after exactly K − 1 iterations.
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In order to apply a diffusion algorithm in applications where it is not possible
to migrate a real-valued part of a task from one node to another, an extension is
required. With our following extension, two problems will be handled:

• First of all, it is not advisable nor realistic to exchange a real-valued fraction
of load between network nodes. This would imply that tasks need to be split
and distributed to multiple nodes. This might produce a lot of data traffic in the
network in addition to the inter-task communication. Moreover, the implemen-
tation of such mechanisms seems to be quite complex.

• Since the eigenvalue-based diffusion algorithm is an alternating iterative bal-
ancing scheme, it could occur that negative loads are assigned to computing
nodes. It is obvious that such a balancing scheme does not work if tasks are
migrated immediately in each balancing round.

Therefore, a novel discrete diffusion scheme is proposed which overcomes these
problems. From now on, let ycontk

e be the real-valued continuous flow on edge
e ∈ Etg which is determined by the continuous diffusion algorithm in iteration k
(cf. Definition 11.4). Also, let ydisck

e be the discrete flow on edge e determined
by the discrete diffusion algorithm. Analogously, all variables of the continuous
diffusion algorithm are extended with the index cont and all variables of the dis-
crete version are extended with disc. Then, the discrete diffusion algorithm tries to
optimize the following objective: Minimize the maximal load difference between
software resources and hardware resources separately:

max
i,j

|wdiscSW
i − wdiscSW

j |

max
i,j

|wdiscHW
i − wdiscHW

j |

In order to fulfill these objectives, the discrete diffusion algorithms works in each
iteration k with k ∈ {1, . . . , K − 1} as follows:

In the first step of an iteration, the real-valued continuous flow ycontk
e on all

edges for all nodes is computed. In the next step, each node tries to fulfill this real-
valued continuous flow for its incident edges. Thus, it sends or receives tasks, re-
spectively. Here, another optimization problem is encountered where a certain num-
ber and size of tasks of one node has to be chosen, in order to keep the optimality of
the real-valued flow. This is an instance of the knapsack problem which is known to
be NP-complete. Therefore, the discrete diffusion algorithm randomly selects tasks
to be sent via one edge as long as the discrete flow ydisck

e does not exceed the
continuous flow or no more task remains on the node:

ydisck
e ≤ ycontk

e + Δk−1
e with Δ0

e = 0 (11.2)

In this equation, an error Δk
e which remains from the load exchange of the previous

iteration is already respected. This error was caused by not fulfilling the optimality
condition of the real-valued flow. This error Δk

e that occurred in the current iteration
step can be computed as follows:
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Δk
e = ycontk

e + Δk−1
e − ydisck

e ∀e = (vc
i , v

c
j) ∈ Etg (11.3)

From here on, the discrete diffusion starts with a next iteration until the last iteration
step K − 1. In order to minimize the final error ΔK

e , the error of the current iteration
step is respected in the next iteration step, see (11.2). After the last iteration step,
the remaining error ΔK−1

e is minimized in one additional adjustment step in which
nodes exchange tasks according to the error after m − 1 iterations:

ΔK
e = ΔK−1

e − yadj
e (11.4)

yadj
e denotes the flow in this adjustment step.

Compared to the continuous diffusion algorithm, it has been proven theoretically
[25] that the proposed discrete version is always better concerning the congestion
caused by load during the optimization. Moreover, in this monograph, the upper
bounds for the deviation of the optimal load distribution and the discrete load distri-
butions were theoretically deduced.

11.3.1.2 Replica Placement

According to the overall methodology presented in Fig. 11.3, task binding and
replica placement are two subsequent steps with competing objectives. The task
binding is performed with the objective to improve the performance of an applica-
tion, i.e., reduce the traffic in the network (congestion) and balance the load on the
network nodes such that the task response times and the overhead due to context
switches are reduced. Due to the fact that the runtime behavior is of major interest,
task binding is prioritized and executed first. Afterwards, a replica placement phase
is started placing one replica per task onto the computing resources in the network.
For this replica placement phase, the following failure model will be assumed:

Definition 11.5 (Failure Model). Only one node or communication link may fail
simultaneously and another subsequent defect of such a resource occurs in a mini-
mum arrival time greater than the repair and partitioning phase shown in Fig. 11.3.

Obviously, such a defect might result in a decomposition of a network into two
or more disconnected parts. But for the presented replica placement algorithms, this
assumption is very important and typically, the execution time of the online algo-
rithm for repair and partitioning is much shorter than the time between two resource
defects. Thus, this assumption does not reduce the applicability of the presented
approach.

With the help of our failure model, it is possible to identify network regions in the
topology graph Gtg that will under no circumstance decompose. Such components
are called biconnected components: For the following examinations, let BCC i be
a set containing only the nodes of a biconnected component Gs: BCC i = Vs. In
networks with several biconnected components, so-called articulation points might
occur which are critical to the reliability of the network: An articulation point is
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a vertex whose removal disconnects the graph, i.e., the graph is decomposed into
disjoint components. Moreover, a bridge is an edge whose removal disconnects the
graph, i.e., the graph is decomposed into disjoint components, cf. Fig. 11.4.

Fig. 11.4 Shown is a network with six nodes v1, . . . , v6, with two articulation points v2, v4,
one bridge (v2, v4), and three biconnected components given through the sets {v1, v2, v3},
{v4, v5, v6}, and {v2, v4} and the corresponding edges.

After the biconnected components are identified in the network, each node
searches for each task ti it executes another node in the network which might be
able to host its replica t′

i. This search can be simply implemented with a sort of
depth-first search. Note that this depth-first search is also necessary for integrating
new tasks in the network. A new task might be loaded to a node which is not able to
execute the task because not enough computational resources are available. There-
fore, the node starts to search for another node which is able to host the task ti. In
this search, the node sends a message msg(ti) to one neighboring node. The mes-
sage msg(ti) consists of two ordered lists msg(ti).visited containing all visited
nodes and msg(ti).backtracking with nodes which will be visited again if a search
in a certain network direction was not successful. Additional task parameters are
stored in msg(ti).constraints and contain the following information: (1) required
resources like computational power or dedicated I/O components, (2) the current
quality of the replica placement, and information about the current placement of the
replica. Based on the information in msg(ti).constraints , the receiver of the mes-
sage msg(ti) can decide whether the replica will be accepted or not. If the receiver
of msg(ti) accepts the new replica, it sends a message back to the former host node
such that the task binaries can be transferred to the new host. In the following, sev-
eral criteria are explained that allow for deciding whether a new replica placement
is better than the current placement.

• Max Rel resembles the idea from [5] and tries to place tasks onto nodes with
highest reliability as long as enough computational capacity is available and
other resource constraints are not violated. The host node of the replica t′

i and
its task ti must not be the same. This strategy fails in the context of embedded
systems as it does not account for data dependencies.

• BCC Max1 Max Rel places a replica in a biconnected component where the
most adjacent tasks are located, i.e., tasks the replica communicates with af-
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ter activation of the replica. Within this biconnected component, the replica is
placed onto the most reliable node. As before, the host node of the replica t′

i

and its task ti must not be the same.
• BCC Max2 Max Rel places a replica in a biconnected component where the

most tasks are located. In this case, data dependencies between tasks are not
respected. Within this biconnected component, the replica is placed onto the
most reliable node. Again, the host node of the replica t′

i and its task ti must not
be the same.

• BCC Task Max Rel places a replica t′
i in a biconnected component where the

corresponding task ti must not be located in. The idea is to distribute the tasks
and replicas over the biconnected components such that one component with
the entire functionality is still available after a defect. Within the biconnected
component the replica is placed onto the most reliable node. If another bicon-
nected component without the task ti and a node with higher reliability is found,
the replica t′

i will be placed onto the new node. If only one biconnected com-
ponent exists, the replica is placed onto the node with the highest reliability in
this component.

Note that these criterion can also be implemented neglecting the reliability values
leading to BCC Max1, BCC Max2, and BCC Task criteria.

The entire replica placement approach is a greedy strategy which places a replica
onto a network node if it improves the current binding. From this node, the search
for a better node starts again. The decision whether the new network node is better
or not is taken based on the above criteria. Note that the reliability values as well
as the task binding are assumed to be static and known. Thus, a node which finds
a better node for its replica will not be considered again. Thus, the algorithm has
no cyclic behavior. Moreover, the approach runs asynchronously and concurrently
in the network. For the termination of the algorithm, two possibilities exist: The
algorithm runs until the next defect and tries to improve the replica placement all the
time or the algorithm terminates after each replica migrated, resp. tried to migrate a
certain number of times.

In the overall replica placement strategy, each node tries to find for each task ti
it executes another node for hosting a replica t′

i. Moreover, each node tries to im-
prove the binding of the replicas it hosts. As an example, consider the network with
a given task binding in Fig. 11.5. All tasks are assumed to consume half of the com-
putational capacity of a node. Starting from the initial binding in Fig. 11.5(a), a node
for the replica t′

1 should be found using the BCC Max2 strategy, i.e., a replica will
be placed in the biconnected component with the most tasks. For this purpose, our
algorithm starts to search for another node which may host the replica. In this ex-
ample, node v3 is considered at first and has enough capacity to execute the replica
t′
1 in case of a defect. Thus, the replica is bound to v3. This node starts again the

search algorithm in order to improve the replica binding. The search algorithm con-
siders v2 but continues to v4 because v2 is also in a biconnected component with one
task. Thus, the actual binding of the replica onto node v3 would not be improved.
By placing the replica onto node v4, the replica is in a biconnected component with
three tasks. Thus, the binding has been improved. Starting the search algorithm from
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v4 might lead to the situation shown in Fig. 11.5(d). On the way to node v7, node
v5 is considered which is assumed to not improve the current binding. Afterwards,
node v8 is visited which has no free capacity for executing an additional task. Thus,
the search stops at node v7 which has enough capacity and may improve the current
binding since four tasks belong to the same biconnected component.

Fig. 11.5 Exemplarily, four steps of BCC Max2 are shown until the replica for task t1 is finally
placed.

Extensive simulations have shown that our approach to replica placement may
improve the reliability in terms of MTTF (Mean Time To Failure) by more than
20% compared to randomized replica placement strategies.

11.3.2 Hardware/Software Task Migration

In order to allow hardware/software partitioning at run-time, a mechanism for mi-
grating software as well as hardware tasks between nodes is necessary. In case of
software migration, two approaches can be considered:

• Each node in the network contains all software binaries, but executes only the
assigned tasks. Unfortunately, this demands large memories on each node.



11 ReCoNets 235

• Alternatively, binaries are transferred over the network and will be stored only
on nodes that execute a task or host a replicated task. This migration of tasks
demands a relocation of binaries in the memory, because nodes cannot reserve
a certain part in the memory for a certain task. Due to this requirement, it has to
be ensured that the generated binaries are location-independent.

Besides software functionality, it is desired to migrate functionality implemented
in hardware between nodes in the reconfigurable network. Similar to the two ap-
proaches for software migration, two concepts for hardware migration exist:

• Each node in the network contains all hardware modules preloaded on the re-
configurable device. If a task implemented in hardware is bound to a certain
node, the corresponding hardware module is enabled. This approach requires
an unlikely huge amount of FPGA resources.

• For FPGAs supporting partial runtime reconfiguration, a more resource effi-
cient approach can be applied. Configuration bitstreams of hardware modules
are transferred between nodes and loaded to free resources on the FPGA. Com-
parable to location-independent software binaries, we demand that the configu-
ration data is relocatable, too.

For speeding up the migration of hardware and software tasks, compression tech-
niques can be used to hide some latency resulting from the relatively slow memories
and the low network bandwidth. In [11], we accelerated the configuration process
with a bitstream decompression accelerator that is capable to emit decompressed
data at 400 MB/s while only requiring about 100 look-up tables. It was also shown
that transferring software on an ESM (Erlangen Slot Machine) (see Chap. 3) can be
improved with the help of a hardware accelerator [20] for decompressing binaries
stored on the relatively slow flash memories.

11.3.3 Hardware/Software Morphing

Hardware/software morphing is required to dynamically change the implementa-
tion style of a task either to hardware or software on a ReCoNode. Naturally,
not all tasks can be morphed from hardware to software or vice versa, e.g. tasks
which drive or read I/O-pins. In [12], a propose a state machine-based approach.
For this purpose, a task ti ∈ V sca is assumed to be modeled by a finite state
machine (FSM) F = (I, O, S, δ, ω, s0), with input set I , output set O, state
set S, state transition function δ, output function ω, and initial state s0. In order
to model hardware/software morphing formally, we define two mapping functions
MHW : S → SHW and MSW : S → SSW , where SHW is the set of states
of the hardware implementation whereas SSW is the set of states of the software
implementation of ti, respectively. Note that, both, the hardware and software im-
plementation, generally contain more states than the FSM model of ti.

Definition 11.6 (Morph Point). A morph point s ∈ Sm ⊆ S is a state s ∈ S
that has equivalent counterparts in both, the hardware and software implementation.
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Furthermore, there exist inverse morph functions that permit to remap a state s ∈ S
from the refined hardware and software states:

∃s ∈ S : M −1
HW (MHW (s)) = M −1

SW (MSW (s))

Basically, the morph process consists of three steps: At first, the state of a task has
to be saved by storing a checkpoint (cf. Sec. 11.3.4). Then, the state encoding has
to be transformed such that it can be loaded to the task with its new implementation
style in the last step. This can be modeled by a so-called morph FSM.

Definition 11.7 (Morph FSM). Given a task ti ∈ V sca modeled by a FSM F , for
each morph point sm ∈ Sm we extend the state set of the FSM by a corresponding
morph state s′

m ∈ S′
m. A state machine FSM that can be morphed between hardware

and software is called a morph FSM (MFSM). The corresponding MFSM F M =
(I ′, O′, S′, δ′, ω′, s′

0) can be derived as follows: I ′ = I × Imorph ; Imorph = {0, 1}
denotes an input signal indicating the intention to morph, S′ = S ∪ S′

m, O′ = O,
ω′ = ω, s′

0 = s0, and

δ′(s′, i′) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

δ(s′, i) if i′ = (i, 0) ∧ s′ /∈ S′
m (normal operation)

δ(s′, i) if i′ = (i, 1) ∧ s′ /∈ Sm (run until next morph point)

s′
m if i′ = (−, 1) ∧ s′ ∈ Sm (start morphing)

sm if s′ ∈ S′
m go back to morph point after morphing

An example of a task FSM with the states S = {idle, run} and one morph
point Sm = {idle} is presented in Fig. 11.6(a). The corresponding derived MFSM
(Fig. 11.6(b)) contains the additional morph state S′

m = {idle′ }. When the system
decides to morph the task, this is indicated by the added input signal m. If this signal
is active and if the state machine is in the morph point idle, the morphing takes place
by entering the morph state idle′ and by translating internal state encodings to the
state representation of the morphed domain. After finishing this process, the tasks
continues its operation in the morphed implementation style, either hardware or
software.

Fig. 11.6 Example of a task FSM (a) and the derived MFSM (b). A morph process starts from the
morph point idle upon a morph request (m = 1). Then the state is translated into the states in the
new implementation style (hardware or software) inside the morph state idle′ .
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A requirement to the interfaces of morphable tasks is that they have to be equiv-
alent such that the surrounding system does not recognize the implementation style
of the morphable task. Also, the transformation depends heavily on the implemen-
tation which especially leads to problems when transforming data types. While it is
possible to represent numbers in hardware with almost arbitrary word width, current
processors perform computations on 16 bit or 32 bit wide words. Thus, the numbers
have to be extended or truncated. This modification causes again difficulties if num-
bers are presented in different number representations. The representation which
can either be one’s complements, two’s complement, fixed point or floating point
numbers, needs to be transformed, too. Additional complexity arises if functionality
requires a sequential computation in software and a parallel computation in hard-
ware. Exemplarily, assume that the computation of the parity of an 8 bit word is
performed once in hardware and once in software. While the hardware module can
evaluate the parity with an XOR-gate in parallel, the CPU needs to compute the par-
ity by shifting and masking bits sequentially. Hence, during the computation of the
parity, no transformable state exists. A contrary example is a sequential multiplier
that requires several clock cycles in hardware but is atomic in software. Although
the multiplication may require several cycles in the ALU of the processor, it is im-
possible to interrupt and extract the state (containing some intermediate values) of
the multiplier. Due to these implementation dependent constraints, an automated
morph-function generation only for bit vectors in the hardware that are interpreted
as integers in the software is currently supported. The designer needs to give in-
formation about the possible morph states called morph points and together with
the help of the automated insertion of checkpoints into hardware/software tasks,
the hardware/software morphing becomes possible. Hardware/software morphing
is discussed in more depth in [12].

11.3.4 Hardware/Software Checkpointing

Checkpointing is used during both, task migration and hardware/software morphing.
Before suspending a task t, its context C(t) must be saved and transferred together
with its bitstream or binary, resp. to another node. This context is called a checkpoint
and represents an image of the last error-free state of a module of computation from
which it can restart in case of a fault. Consequently, it is used to update the state
information between a task and its replica at certain times. It helps to reduce repair
times by requiring computations from the last checkpoint at the side of a task replica
after occurrence of a node fault. While software checkpointing has been a subject
of former research, e.g., [6], we will point out how hardware checkpointing can be
integrated into available designs.

Assuming an FSM model of operation of each hardware task t, a checkpoint
FSM (CFSM) can be derived by making the internal state C(t) accessible via the
input and output. From a technical perspective, this comprises to extend a hardware
module such that its internal state, represented by all flip-flop values, can be stored
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atomically to a safe memory. Basically, three possibilities for accessing the state of
a hardware module have been examined:

1. Scan Chain: Similar to the boundary scan used in ASIC design, an extra scan
multiplexer in front of each flip-flop allows to switch between a regular execu-
tion mode and scan mode. In the latter one, the registers are linked together to
a shift register chain. The data inside the chain represents the checkpoint. For
keeping the checkpoint consistent during the sequential checkpoint read and
write processes, the chain is connected to a ring shifter and a state machine
keeps track about the current shift position of the checkpoint.

2. Scan Chain with Shadow Registers: Each flip-flop of the original circuit will
be duplicated and only these duplicated flip-flops are connected together in a
chain for accessing the checkpoint. Data can be exchanged between the shadow
register chain and the module flip-flops in a single clock cycle, while performing
the state transfer concurrently with the module operation.

3. Memory Mapping: Alternatively, each flip-flop can be mapped directly into the
address space of the system, hence allowing a CPU to access the checkpoint.

A tool was developed for automatically including any of the three state access
mechanisms into a module at the netlist level, cf. [13].

11.4 Design and Synthesis of ReCoNets

As each task can run on different nodes in a ReCoNet, many decisions must be
taken in the phase of building a new ReCoNet. In order to support designers in such
a complex decision making, a new system synthesis approach is required.

11.4.1 Design Space Exploration

Our design space exploration searches for an ideal initial placement of tasks and
replica tasks to increase the reliability of the system while minimizing the load on
computational nodes and communication links. Besides reliability and load, other
objectives like, e.g., monetary cost, area and power consumption have to be consid-
ered. Thus, the performed design space exploration is a multi-objective optimization
problem, that aims to find a set of so called Pareto-optimal implementations. An im-
plementation is Pareto-optimal, if it is better in at least one objective when compared
to any other feasible implementation.

The used design space optimization approach performs the binding of tasks and
shadow tasks as well as the placement of voters, if appropriate. It is based on the
combination of a Pseudo-Boolean (PB) solver and a modern Multi-Objective Evolu-
tionary Algorithm (MOEA). MOEAs are a population-based optimization heuristic
taking advantage of the principles of biological evolution. The optimization is done
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iteratively in two alternating steps, the variation and selection. In the variation, new
solutions, i.e., a new generation, is created from a set of existing solutions in the
population. The design space exploration of dynamically reconfigurable systems
has been integrated with approaches developed at the University of Paderborn, cf.
Chap. 9 to determine optimal configurations and approaches developed at the Uni-
versity of Oldenburg, cf. Chap. 7 to simulate hardware reconfiguration at a cycle
accurate level [4].

11.4.2 Dependability Analysis

To evaluate the reliability and safety benefits of the proposed ReCoNet methodol-
ogy, an algorithm for an efficient analytical calculation of the Mean Time To Fail-
ure (MTTF) to quantify lifetime reliability and the Mean Time To Unsafe Failure
(MTTUF) [3] to quantify safety has been developed, cf. [24]. While the MTTF de-
notes the expected time of the system to operate correctly, the MTTUF denotes the
expected time that the system operates until a hazardous failure happens that the
system cannot detect. That hazardous failure may result in a safety critical situation,
thus, the MTTUF, although strongly related to the MTTF, is a safety measure. It has
been shown, that these two measures do not deteriorate the optimization process as
two other, arbitrarily chosen dependability measures would do, cf. [23].

Given the reliability of a system R(τ) and the safety S(τ), the MTTF calculates
as

∫ ∞
0

R(τ)dτ and the MTTUF as
∫ ∞
0

S(τ)dτ . To evaluate the reliability R(τ) and
safety S(τ) of a ReCoNet with nodes V tg and task assignment β : V sca → V tg , the
reliability analysis approach presented in [8] is used. Since a fail-silent [22] behavior
is assumed in [8], an explicit introduction of the voting structures is needed.

If a task does not obey a fail silent behavior, additional fault detection mecha-
nisms are required to enable its replica task to notice, if the task is faulty. This fault
detection and, if possible, fault toleration is done by voters which are hardware re-
sources or software tasks that aim to find a majority of k values delivered by n redun-
dant task instances. Such voters are known as k-out-of-n-majority voting structures
and are typically implemented as so called duplex voter (2-out-of-2-majority) or the
well known Triple Modular Redundancy (TMR, 2-out-of-3-majority). The entire
system synthesis approach is transparent for the designer, i.e., the system specifica-
tion given by the designer should be as abstract as possible, while implementation
details are hidden and derived automatically by an optimization process.

To evaluate a system including its implemented voting strategies, the structure
function ϕ : {0, 1} |α|+|V | → {0, 1} with the Boolean vectors α = (r1, . . . , r|V tg |)
and V = (v1, . . . , v|V sca |) has to be calculated and represented as a Binary De-
cision Diagram (BDD) [1]. ϕ evaluates to 1 if and only if the system is operating
properly under the given set of properly working resources and voters. Otherwise,
ϕ evaluates to 0. Hereby, for each allocated resource r ∈ α and voter v ∈ V , the
corresponding binary variables r = 1 and v = 1 indicate a proper operation while
r = 0 and v = 0 indicate a defect, respectively. ϕ can be used to derive the re-
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liability and safety, respectively, by the following recursive definition with Rr(τ)
describing the specific reliability of a single resource node r over time τ :

ϕ(τ) =Rr(τ) · ϕ|r=1(τ) + (1 − Rr(τ)) · ϕ|r=0(τ) (11.5)

Encoding the prerequisites for a working ReCoNet as presented in [9], the result-
ing BDD represents the ability of the system to cope with resource defects.

Using this analytically computed upper bound for the dependability, the replica-
tion strategies described in Sect. 11.3.1.2 were compared to the achievable MTTFmax

by simulating them. It has been shown, that there is only a relatively small difference
in the effectiveness of the different replica placement methodologies with regard to
the known upper bound, while in [27], the relative difference between the method-
ologies seemed significant. With regard to the upper bound, the designer may choose
the load balancing approach as well, since this approach is less than 5% worse than
the BCC technique and offers a better load balancing of the resources.

11.5 Demonstrator

The previously described methods have been implemented and tested on the basis
of a network consisting of four FPGA-based boards with a CPU and configurable
logic resources. As an example, we implemented a driver assistant system that warns
the driver in case of an unintended lane change and is implemented in a distributed
manner in the network. As shown in Fig. 11.7, a camera is connected to node n4. The
camera’s video stream is then processed in basically three steps: (a) preprocessing,
(b) segmentation, (c) lane detection. Each step is implemented as one task. The
result of the lane detection is evaluated in a control task that gets in addition the
present state of the drop arm switch. If the driver changes the lane without switching
on the correct turn signal, an acoustic signal will warn the driver of an unintended
lane change.

As depicted in Fig. 11.7, our prototype implementation of a ReCoNet consists
of four fully connected FPGA boards. Each node is configured with a NIOS-II soft-
core CPU running MicroC/OS-II as a local operating system. The local OS supports
multi-tasking through preemptive scheduling and has been extended by a message
passing system. On top of this extended MicroC/OS-II, we implemented the differ-
ent layers as depicted in Fig. 11.2. In detail, these are functions for checkpointing,
task migration, task morphing and online hardware/software partitioning.

For fault-tolerance reasons, the ReCoNet uses a Point-to-point (P2P) communi-
cation protocol. In comparison to a bus, this will produce some overhead by the
routing on the one side while omitting the problem of bus-arbitration. The routing
allows us to deal with link failures by changing the routing tables in such a way that
data can be sent via alternative paths. Besides fault tolerance, P2P networks have
the advantage of an extreme high total bandwidth. In the present implementation,
we set the physical data transfer rate of a single link to 12.5 Mb/s and measured a



11 ReCoNets 241

Fig. 11.7 Schematic composition of a ReCoNet demonstrator of an automotive driver assistance
system: On the basis of four connected FPGA-boards, we implemented an operating system infras-
tructure which executes a distributed lane detection algorithm. This application warns the driver
acoustically in case of an unintended lane change. Note that this ReCoNet is built upon heteroge-
neous nodes providing FPGAs from different vendors working seamlessly together [26].

maximum throughput of 700 kByte/s allowing to transfer the video stream in our
driver assistant application.

Although the MicroC/OS-II has no runtime system that permits dynamic task
creation, we enabled the software task migration by transferring binaries to other
nodes and linking OS functions to the same address such that tasks can access these
functions on each node. This methodology reduces the amount of transferred binary
data drastically compared to the alternative that the OS functions are transferred
either. Also, this methodology avoids implementing a complex runtime system and
the operating system keeps tiny.

For integrating hardware modules at runtime, an according communication ar-
chitecture is required on each RoCoNode. This includes (1) buses for shared mem-
ory communication (DMA, or register file access) and (2) dedicated point-to-point
links for streaming data or I/O links. The communication architecture has material
impact on the throughput, and hence, on the overall performance of the system. Fur-
thermore, the system should not only provide one or more reconfigurable islands,
as presented in prior work [21], but one fine-tiled resource area for hosting multiple
modules in a flexible manner. In [18], it has been proven that the optimal size of such
a resource slot should be in the rage of just 200–300 look-up tables for minimizing
the logic overhead. For bus-based communication with runtime reconfigurable hard-
ware, we developed the so-called ReCoBus [16, 19]. It uses an interleaving of bus
signals and, hence, significantly reduces the amount of logic for implementation and
provides high throughput. Beside the communication over the ReCoBus, reconfig-
urable modules may require links to I/O pins or point-to-point connections to other
modules in the system or within the reconfigurable part of the system. This issue
has been solved by reserving a horizontal set of wires that are aligned in parallel to
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the ReCoBus. These wires are routed in a similar regular fashion as the ReCoBus
itself [17]. A tool for supporting designers to parameterize and integrate a ReCoBus
into an FPGA-based systems has been implemented as prototype [14, 15].

In 2006, the ReCoNet demonstrator has been accepted for presentation at the
Hanover Messe. Subsequently, it was also invited for presentation at ESOF 2006,
the European Science Forum.

Acknowledgements This work was supported by DFG grant TE 163/10, project ReCoNets, as
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Chapter 12
Adaptive Runtime System with Intelligent
Allocation of Dynamically Reconfigurable
Function Model and Optimized Interface
Topologies

Lars Braun, Tobias Schwalb, Philipp Graf, Michael Hübner, Michael Ullmann,
K.D. Müller-Glaser, and Jürgen Becker

Abstract Self-reconfiguration and adaptivity are important new concepts for re-
configurable hardware. The benefits include, for example, a reduction in power dis-
sipation by sharing resources therefore requiring smaller reconfigurable chips. Idle
applications are substituted on demand by actually needed functions. As a result, the
number of possible functions controlled by such systems increases without raising
the number of additionally required processing elements. Parallel tasks (functions)
in hardware execute more efficiently compared with sequential microprocessors.
The high performance of reconfigurable hardware and the possibility of hardware
parallelization, help to overcome increasing problems of data processing with tra-
ditional microcontroller and microprocessors in future complex electronic systems.
A relevant issue is the use of adaptive reconfigurable systems in real-time applica-
tions, which is one of the basic conditions for a variety of target applications. New
approaches to create systems, which are able to manage their own configuration
are called run-time systems. These systems use the flexibility of e.g. an FPGA by
partially changing the configuration. Only the necessary functions are configured
in the chip’s memory. On demand one or more functions can be substituted by an-
other while other parts stay operative. The ALadyn project targets exactly this kind
of adaptive system approach and investigates in the physical hardware realization,
system modeling and development tools.
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12.1 Introduction

Complex systems regularly consist of mixed hardware/software parts due to per-
formance reasons. Very often it is not required, that all in hardware realized mod-
ules of the system have to be performed in one point of time. In order to enable
this, an adaptive run-time system with an intelligent process control for the hard-
ware/software functional patterns is required. In this scenario, not all possible per-
mutations consisting of the different functional patters have to be generated in ad-
vance. The novelty is that a Quality of Service (QoS) negotiation process with the
run-time system leads to a dynamic on-demand and intelligent allocation and/or
reallocation of functional patterns to the respective hardware resources. In this pro-
cess not only the functional patterns are important for the system, also the com-
munication patterns have to be considered. Also the most efficient communication
infrastructure has to be provided dynamically by the run-time system. Possible real-
izations are e.g. a Network-on-Chip and the respective topologies (Star, Torus etc.),
a bus system or a heterogeneous approach. The hardware/software realization of
the topics mentioned above exploits reconfigurable hardware (FPGAs). Until today,
no commercial tool or a toolset supports seamless design of run-time adaptive sys-
tems with the feature of the ALadyn approach. Due to this fact, within the ALadyn
project a pioneering work in the area of tool development as well as the devel-
opment of mechanisms for hardware reconfiguration was done. A meta-layer was
developed and realized which enables the description of characteristics for the re-
configuration in the system specification. For this purpose, a hierarchical system
model supporting and exploiting the different features of reconfigurable hardware
architectures was developed with the goal for targeting a wide range of embedded
applications. The applications can request functions using an API which then are
realized physically as soft- or hardware in relation to the system status. The deter-
mination of suitable realizations of the functions with respect to the system status is
performed with the intelligent distribution management system which realizes the
QoS negotiation process as described above. On the lower layer of the system, local
reconfigurable components (e.g. FPGAs) or dedicated processors (e.g. DSP) pro-
vide the physical realization of the requested functional patterns. A local run-time
control system supports the dynamic behavior. In the case of the FPGA this system
has to control e.g. the dynamic and partial reconfiguration. A schematic view of the
ALadyn layers is shown in Fig. 12.1.

To show our ALadyn system we describe in Sect. 12.2 firstly the general aspects
of partial and dynamic reconfiguration. The associated 1D and 2D Network-on-Chip
is presented in Sect. 12.3. Thereby, the on demand system adaptation is shown in
Sect. 12.4. After discussing the system modeling for the ALadyn architecture in
Sect. 12.5, we introduce a model based tool chain in Sect. 12.6. We give detailed
information on functionality and architecture of the model debugging in Sect. 12.7.
The following section focuses on the linked model based test. We conclude and
show relationships to other projects in Sect. 12.8.
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Fig. 12.1 ALadyn stack.

12.2 Partial and Dynamic Reconfiguration

12.2.1 One-dimensional Dynamic and Partial Reconfigurable
System Architecture

Figure 12.2 shows a schematic representation of the entire system. The system con-
sists of a runtime system (Run-Time Module Controller), which is based on a Xilinx
MicroBlaze soft-core processor. Through its 32-bit RISC architecture it perfectly
fits to the needs of the runtime system. An arbiter is connected to the MicroBlaze,
which provides the connection via the FPGA internal bus system to the function
modules. The arbiter is used to control the bus. The four modules are connected by
a bus communication module (Bus Com) to the as macro implemented bus. With a
fixed allocation of identification numbers, each module is addressable at any time.
The number of four module slots was chosen in the first run of the system, because
at the time of conception no estimation on the size of the entire system could be
applied. Through the choice of four module slots it could be ensured to have enough
space for the functions in each slot. The Bus Com modules serve as an interface for
coupling functions to the FPGA bus, and they are completely identical for each slot.
This allows a standardized interface definition for the design of function modules.
The bus-macro modules, which are proposed in this approach were the first imple-
mentation in an LUT-based logic and represent an architecture-independent basis
for all other physical realizations of this systems approach. In addition, this result
is the basis for all hardware, which was realized within the concept of dynamic and
partial reconfiguration within the so-called “Schwerpunktprogramm” [14]. Further,
a decompression unit and an ICAP module are shown in Fig. 12.2. Connected to
the microcontroller these modules are capable to read the reconfiguration data from
an external flash memory, decompress it and send it to the Internal Configuration



248 Lars Braun et al.

Access Port (ICAP). Thereby an internal dynamic and partial self-reconfiguration is
possible. An external circuitry, which would be necessary by using the SelectMap
interface, is not required. As link to the outside world the system is connected to an
external CAN controller.

Fig. 12.2 Schematic representation of the 1-dimensional system approach for a runtime adaptive
system.

12.2.1.1 LUT Based Communication Primitives

To establish a communication between modules busmacros are used. On the one
hand this is necessary to specify an identifiable physical interface point for the re-
configurable area. Logic in this region can then use this interface to be connected.
On the other hand, the busmacro is a mechanism to separate electrically the differ-
ent reconfigurable regions. This prevents the violation of the principles of digital
circuits. Short-circuits lead to increased power and the chip could possibly be dam-
aged. Originally the busmacros proposed by Xilinx used TBUF elements. TBUF
elements are Tristate drivers which drive TBUF lines. The disadvantage of these
macros are its use of the limited TBUF resources, there are only four signal lines
per CLB row available. Furthermore, on the new Xilinx FPGAs Tristate Buffers are
no longer available which increases the need of an LUT-based implementation of
the busmarcos. The basic idea of the new macro is to replace the TBUF elements by
slices. This offers several advantages. On the one hand, the outputs of the macro ex-
ternal pins are assigned exactly on one side of the macro. This prevents undesirable
wiring beyond the module boundaries. On the other hand, four slices, each with two
Look-Up Tables are available per CLB row. Therefore, eight signal lines per CLB
row can be realized. This is a doubling of the signal lines compared to the TBUF
macros. In addition, the functionality of the macros can be extended by the function-
alities, which are available at the slice resources. Thus, multiplexers can be realized
in the Look-Up Tables or the flip-flops can be used to synchronize the transferred
data. Another major advantage is that local wiring lines are used. These represent
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a much more flexible wiring resource and are available in a higher number. In the
system of Fig. 12.2 in each slot four slices are placed to define the input and output
pins of the macro. Figure 12.3 shows the structure of the macros. The output macro
(Fig. 12.4) connects the outputs of the module to the input of the system. The basic
structure of this macro is similar to the previous ones. However, each line has four
sources within the slots and a sink in the static system area. Since the signal lines
are interrupted by a slice in each slot, a combination of double and hex lines are
used. The output of a slice is connected with a hex line. Then, a double line is added
to connect the next slice. To determine the timing, the macros are analyzed with
the timing analyzer which is part of the Xilinx ISE software. The critical paths of
the macros have lag times of 5.651 ns and 6.139 ns. These values certainly contain
additional delay of the test flip-flops, which were necessary to build a test system
for the timing analyzer. If this delay time is subtracted, the macros themselves have
delays of about 5–5.5 ns. However, it must be considered that the macros include no
retiming elements. More information about the innovative “Busmacroarchitektur”
is described in [14].

Fig. 12.3 Input macros from the arbiter to the modules.

Fig. 12.4 Output macros from the modules to the arbiter.

As described in previous chapters, Field Programmable Gate Arrays (FPGA) of
Xilinx allow the exploitation of dynamic and partial reconfiguration. For techni-
cal reasons, the Virtex-2 FPGA series only supports reconfiguration of complete
columns. By manipulating the configuration bitstream it is possible to create vari-
able rectangular reconfigurable areas. To perform a rectangular partial reconfigura-
tion an appropriate communication structure to connect the different areas has to
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Fig. 12.5 Router module and functional unit.

be developed. In the following section the methods and the system integration for a
two-dimensional partial reconfigurable system is described.

12.2.1.2 Physically Realized Two-dimensional System Approach

To achieve a solution the integrated network-topology has to been specified as first
step. Since the FPGA is two-dimensional rectangular shaped a 2D mesh topology
is selected. In the following two different mesh-based networks are developed. The
first one uses a router to forward the data. The second one is switch-based, whereas
the switch is specially designed for the needs of FPGA on chip network.

12.3 Network on Chip

12.3.1 Router Base Modules for the On-line Placement

In the previous chapter it was suggested that a functional unit connected to the router
is added. The functional unit, which is connected to the router, can be structured
quite simply, such as an adder or subtracter, but it can also contain more complex
structures such as finite a state machine or a larger memory. Because of these differ-
ent space utilizations, it is useful to design also differently sized router base mod-
ules. Their sizes should be large enough to contain the function but without wasting
resources. Therefore initially four different module sizes were created which can
be seen in image Sect. 12.6. In the picture the 1 × 1 base modules can be seen, as
well as other modules of sizes 2 × 1, 2 × 2 and 1 × 2. It should be noted that all
modules are multiples of the basic 1 × 1 module. Thereby each module can easily be
substituted by any other module or any other module combination. The connection
points are always on the same height, so that an inter-module communication gets
never lost by exchanging or replacing the modules. Hence an existing connection
between adjacent modules is guaranteed. It results in a kind of puzzle, in which at
least one fitting piece (the 1 × 1 module) exists. Figure 12.7 shows the formalized
routing strategy which is used in the presented router based network. The advanced
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Fig. 12.6 Implemented sizes of the basis module.

Fig. 12.7 Formalized routing strategy.

Fig. 12.8 (a) 2D-mesh topology; (b) Data Dependency Graph.

method of the XY-routing by the adaptive approach allows the forwarding of data
packages in alternative directions, if a communication channel is blocked. In [4] it
has been proved that the used method is non-blocking, because cycles in the Data
Dependency Graph can be solved. Figure 12.8(a) shows the example of a 2D mesh
topology of a network as a graph. The nodes of the graph describe the used router.
The edges describe abstracted the possible paths in which a message packet can be
forwarded. These edges are depicted in the corresponding Data Dependency Graph
(Fig. 12.8(b)) as nodes. The nodes now represent the possible data paths through
a router. It is clear to see that the resulting graph is not cycle-free, which would
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mean that this network topology is also not cycle-free. A solution for the non-cycle
free graph problem is to remove edges. In real this is done by cutting connections
targeted by default routing paths within the router. Also the used adaptive routing
creates the possibility to produce cycles free Data Dependency Graphs. This is de-
scribed in detail and mathematically proven in [4] and [13]. Further details of the
router can be found in [15] and [1].

12.3.2 Switch for 2D Mesh Based NoC Approach

In this approach a switch is a module which changes the data flow path in the system.
Thereby it is possible to choose different sinks for a source and hence to control the
data path. This mechanism manages the switch and thereby the data stream which
has to be routed via the switch. The goal is to minimize the resource utilization
and to increase the speed of a switching mechanism. Another fact which argues
for the use of switches is that the design is easy to implement on FPGAs. The
network switch will be controlled by the configuration mechanism of the FPGA.
Figure 12.9(a) shows a schematic of the switch.

12.3.2.1 Switch Layout

The switch will be designed using multiplexers as shown in Fig. 12.9(b). These
multiplexers will be controlled by the outputs of LUTs. The innovation of the pre-
sented approach lies in the fact that the content of this register can be changed by
a master without being connected directly with it. Hence it is possible to change
the dataflow which is routed through the multiplexer by changing the outputs of the
involved reconfigurable LUTs. To create larger switches it is possible to cascade the
multiplexers.

Fig. 12.9 (a) Schematically view of the switch structure; (b) Technologically switch design inside
the CLB.
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12.3.2.2 Controlling the Switch

There are several ways to change the content of the reconfigurable LUTs and thereby
such a switch. If the system uses the ICAP in combination with a microprocessor
such as MicroBlaze or the PowerPC, the LUTs can be reconfigured directly. It is
also possible to control the switch utilizing the external reconfiguration port of an
FPGA.

The approximate time the switch needs to change the dataflow depends on the
speed of the internal ICAP interface. The following calculation is based on the as-
sumption that the internal ICAP of a Virtex-2 FPGA is used. The configuration
speed of this interface is 66 MHz with a bandwidth of 8 bit. One frame of a Virtex-2
Pro V2P100 will be written into the configuration memory within approximately
18 ms. This will also be the time the switch needs to change the dataflow. This en-
ables to change the switches aligned in one frame with a frequency of 56 kHz. More
information about the Switch for 2D Mesh based NoC is described in [3].

12.4 On Demand System Adaption

12.4.1 Physical on Line Routing of Communication Structures

Actual state-of-the-art systems require that communication structures are deter-
mined completely at design time. For this purpose, bus macros are used that are
implemented fix in the system and cannot be moved around from their physical
location. That is why modules can be placed at run-time only on predetermined po-
sitions, thus reducing the degree of freedom of the placement area. To avoid this
problem, a methodology has been developed that takes care of the physical realiza-
tion of the communication lines between the individual modules and the static area
during run-time. Therefore a technique has been developed to route communications
structures on the FPGA during run-time in order to react on the varying positions
of the modules. In order to make use of the degrees of freedom described above
the read-modify-writeback (RMW) (see [15]) technique was used. We assume that
the position of the modules respectively the positions of the ports are known to the
run-time system. Thus the run-time system has the information on the position of
the start and end points of the communication lines that are to be established on the
FPGA. Using these parameters the routing algorithm of the run-time system tries
to find a suitable path for this point-to-point connection. Here the A*-algorithm
showed to be well suited for this problem. The communication resources of the
FPGA are constructed in a way that every end of a communication line is connected
to one port of a switch box. Thereby a connection point describes a connection to
a communication line of the FPGA. If a connection between two lines is to be es-
tablished, the connection points of the two lines have to be connected in the switch
box. Using this methodology it is possible to connect individual lines in order to
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establish a communication path based on individual components at run-time. This
is done by using the routing templates that are configured to the adequate position
on the FPGA. These routing templates include the information which points in a
switch box have to be enabled. The information differs depending on the direction
and the length the line is to be routed. Now that the path to be routed is known,
the run-time system calculates the position of the routing templates to be placed in
order to establish a communication link. Here, different routing templates for every
orientation are used as well as 90 degree connections to change the orientation.

The method described above has been used to develop a system that enables
routing from the static area to any point on the FPGA. Therefore routing templates
for every orientation as well as 90 degree connections have been generated. The bit
width of every single macro is 8 bit which is caused by the hardware structure of the
FPGA. This limitation can be overcome by cascading the templates.

12.4.2 Physical On-line Routing of Parameterizable Filter Modules

For every functional unit, which is to be provided on FPGAs in state of the art
systems, the according bit stream must be available. In systems in which a larger
amount of modules are used, an accordingly higher number of bitstreams must be
available in the extern memory. Now a technology has been designed which allows
generating simple functions out of a set of basic blocks. These blocks are avail-
able to the run-time system in bitstream fragments and can be newly grouped ac-
cording to the connecting rule provided by the system during run-time. Thus, it is
possible to create a new module out of small single blocks. That way this mod-
ule can be assimilated very flexibly to the requirements. As already mentioned,
modules consist of single fine-granular sub-modules and are composed according
to the connecting rule by the run-time system. Therefore these sub-modules must
have defined connection points. These connecting points must be the same for all
different sub-modules and must be identical whatever their function may be. This
guarantees that the sub-modules are compatible and exchangeable and can be put
together like a plugging system. To connect the single modules to each other and to
realize any different types of necessary connections, additional routing blocks are
placed between the modules. Via these modules it is possible to connect the exit
of the sub-module to two succeeding modules. Sub-blocks like adders, subtractors,
dividers and multipliers are available to the run-time system in form of bitstreams.
Furthermore, a set of connecting macros is also available for the run-time system.
The bitstream packer analyses the description of a given data flow graph and com-
poses it by a mapping process using the bitstreams at hand. This bitstream generated
during run-time according to the connecting rule is now written onto the FPGA via
Read-Modify-Writeback (RMW). In Fig. 12.10 the test system is shown on a Virtes-
2 Pro 30 FPGA. On the right there is the area, which contains the fixed modules of
the system and is not altered during run-time. The connections marked in red are
the routing templates used to connect the sub-modules. They are arranged in a way
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that the interfaces for the sub-modules are always in the same place. In-between the
routing templates are the actual sub-modules. Because of the possibility to place the
function modules freely within the given limits the method described offers a higher
flexibility. Furthermore, the functional units can not only be adapted to the geomet-
rical requirements in extension and form but also to the altering requirements from
outside (e.g. the user). In contrast an alteration of the type of block within the model
range is possible without further ado, as the bitstream fragments are identical for
all blocks. Thus, a change from e.g. a Virtex-2 Pro 30 FPGA to a Virtex-2 Pro 100
or Virtex-2 6000 block, as it is used in the ESM (see Chap. 3), is possible without
adapting the sub-modules.

Fig. 12.10 Design of the test system shown in FPGA Editor.

12.5 System Modelling

We see a model based design process as a central point for application development,
which uses graphical description, such as the Unified Modeling Language (UML)
[17] or Statecharts [12] to specify the functionality and the run-time system. The
development of graphical modeling languages is a continuation of the search for
more powerful specification and design artifacts to meet the challenge of growing
complexity in system design.

The requirements in a textual specification can, depending on project size and
environment, be modeled and refined on the basis of different processes such as the
V-model, the Rational Unified Process, or agile methods in the UML. Goal is an
implementation model, which can automatically be transformed into an executable
form. This can be a software implementation in classical central processing units as
well as the configuration of a dynamically reconfigurable function unit. The same
model should be reusable for different implementation alternatives and platform
specific information is added automatically during the transformation step. Here
we follow the Model Driven Architecture (MDA) specified by the OMG, which
describes the way a platform-dependent model is generated in one or more trans-
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formation steps from platform-independent models. If transformation is automated,
we gain the advantage that functional changes in the platform-independent model
are propagated to specialized implementations and consistency problems can be
avoided.

Fig. 12.11 Modeling of the realization alternatives and requirements.

The benefits for the ALadyn architecture are that functions can be developed as
independent as possible from the implementation unit. The platform specific real-
ization is selected during run-time. As part of this work an interface between appli-
cation and the run-time system has been developed. The run-time system acts as a
service provider to the application offering implementation alternatives on the ba-
sis of the required quality of service criteria, which can be accepted or rejected by
the application. The interface on code level and thus the negotiation protocol has
been defined in the first project phase and prototypically implemented. Figure 12.11
shows a model of realization alternatives using the example of a window lifter,
which is managed by the ALadyn run-time system. This is done with an UML class
diagram. The function type and its interface are defined by an abstract subsystem
specification and its contained specification elements. Other subsystems contain im-
plementing alternatives, and the relevant characteristics are assigned to the «fimpl»-
stereotype. From the applications perspective requirements (stereotype «request»)
can be modeled, which are attached to the required feature characteristics [19, 20].
An application modeled in this way must be transformed into an implementation
model, which then can be used to generate a system-specific run-time system. Fig-
ure 12.12(left) shows the basic approach to this transformation process. Basis of the
modeling is the UML metamodel, based on which transformation rules, as shown
in Fig. 12.12(right), can be created. This notation is characterized by the fact that it
is easily understandable and maintainable, while powerful enough. The transformer
REMIX, which converts the transformation rules has been implemented and can be
equipped with suitable rules for the generation of the Aladyn run-time system.
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Fig. 12.12 Chain of transformation (left) and rule for transformation (right).

12.6 Tool Chain

One goal of the second project phase was the definition of appropriate tools for
system design of the ALadyn architecture and classification of tools into a compre-
hensive tool chain [19, 20].

Fig. 12.13 Tool chain for a simple ALadyn system.

Figure 12.13 shows the tool chain, which has been used for the generation of
prototypes [9]. It is based on a model based design. For function definition Matlab
Simulink / Stateflow is chosen. This decision was driven by the available generators,
which allow producing C-code and synthesizable VHDL [18]. The flow control and
the associated scheduling strategies are specified in Unified Modeling Language
(UML) class diagrams and with help of the Action Language. The code generator
Aquintos.GS (http://www.aquintos.com) is used to generate the code from the class
diagrams. VHDL models are extended with the described debugging interface and
architecture, described in detail in Sect. 12.7. In the backend, the Xilinx ISE tool
chain is used for generating bitstreams (http://www.xilinx.com). The free available
GNU tools generate binary code for the MicroBlaze Softcore processors used in
prototypes. From the generated bitstreams slots are extracted and compressed, and
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a bitstream for the complete configuration is created. This stream will be executed
on our FPGA-based target system.

Fig. 12.14 Aspects of the overall model.

Fig. 12.15 Tool chain for the ALadyn-Architecture.

To extend the flexibility of the tool chain the experience gained in the areas
of functional modeling and design process are systematized in the third phase. To
achieve this aim, the tool chain can be modelled and is integrated along with a model
of the target platform into an overall model. Figure 12.14 shows the relationships
between the sub-models. The functional model utilizes the services of the execution
units, which are specified in the platform modeling. The platform modeling also in-
cludes the numbers, parameters (size, speed, . . . ) of the execution units as well as
the possible data flows in the form of 1-to-1-connections, buses and network inter-
faces. By using a subset of platforms over a consistent interface, a single functional
model can be realized to different execution units. The process model aligns the in-
dividual work steps, such as communication with modeling tools, code generators,
compilation, synthesize, configuration of distribution manager, function repository,
enrichment of debugging interfaces etc. in a tool chain. The process model always
refers to parts of the function model and processes them. The process model and its
implementation will be influenced and configured by the available platform. Central
to the claim of an integrated design environment for executable functional models
is the integration of the functional model into the overall model. The Fig. 12.15
shows the designed tool chain for the ALadyn architecture. To allow multiple con-
junctures of model parts a metamodel for the global model has been developed and
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implemented. The described overall model achieved the availability of the first de-
scription totally based on a graphical model for a high-level mixed configurable
hardware and software system. The transition to implementation is completely au-
tomated, which leads to a dramatic improvement in productivity during the design
phase.

12.7 Model Debugging

12.7.1 Problem

A model based design approach alone can not ensure a pure top-down approach in
system design. Therefore, for the acceptance of an architecture it is essential, that
the behavior of the designed system can be monitored, visualized and, where appro-
priate, influenced. The challenge is to create an approach which allows debugging
of executable models across the boundaries of individual notations as well as across
different execution units, which is especially important in the Aladyn architecture.
As embedded systems always work in the context of an operating environment with
sensors and actuators, a debugger approach can avoid the additional complexity and
semantic equivalence problems by additional modeling of the associated environ-
ment and interfaces. Another aspect to consider is that in a completely model based
designed approach, as it is the basis for the in Sect. 12.6 presented tool chain, a part
of the behavioral semantics of the model is added only in the step of the model to
code transformation. An interpretation of the model in a simulator, therefore, always
implies doubts about the equivalence between interpretation and actual behavior.

12.7.2 Debugging Flow

Debugging a model based designed system can be understood as a reversal of the
various transformation steps which lead from the model to an executable system.
Figure 12.16 shows on the left side the relationships: The result of the design is
a model, which can be converted by code generators to source code (C++/VHDL)
and then compiled/synthesized to binary or bitstream format. This is in the next step
executed on the target platform. In the system, the extraction of run-time informa-
tion is the task of the On-Chip debugger. The hardware interface and architecture
are discussed in Sect. 12.7.3. Based on the information at run-time on source code
and/or signal level in further steps artefacts are obtained, which refer to elements of
the model. These artifacts enrich the existing model, i.e. the metamodel is extended
by meta classes, which permit a dynamic model part. The updating of this parts of
the model is done by the Mapper, which conveys between drivers and model. The
run-time information exists on different levels, which relate (at run-time static) on
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Fig. 12.16 Comparison: model levels (left) and OMG meta levels and run-time information (right).

model artifacts. The overall model is based on the most abstract level based on the
UML 1.5 metamodel. The classification of our expansion in the OMG meta level
hierarchy is shown in Fig. 12.16 [5].

For the user all these steps are automatically done, in the end the designed model
can be directly debugged on the same level it has been designed. This debugging
flow has been implemented in an own software development environment [8, 6, 7].
As an exemplary practical example a full design and debugging cycle has been re-
alised for hierarchical state machines on microcontrollers and FPGAs.

12.7.3 Interface and Architecture

The extraction of run-time information on source code level for software is already
possible with existing debuggers. Therefore, the widely used GDB debugger in the
GNU compiler collection is introduced. The models executed on reconfigurable
units are wrapped by a JTAG-compatible interface, as shown in Fig. 12.17. The
interface allows accessing the on-chip registers, which allows reconstruction of the
functional status. This interface is like the actual function automatically generated
from the model and allows access through the serial signals tdi_i and tdo_o, which
operate as shift registers. In addition, the system clock can be externally defined
by the debug interface as needed for single-step processing. Hardware and software
can be adapted transparently by addressing different memory areas using the JTAG
interface. A special feature of the ALadyn system is that the execution unit is not
known at design time and during run-time the function along with the system state
can be migrated into a totally different type of execution unit. To enable a visu-
alization of the system state in this environment, the distribution manager has to
be instrumented in a way, that it is possible to track the function migration. With
change of the type of execution unit, e.g. from CPU to FPGA, there must also be an
on-the-fly change of the used driver component.
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Fig. 12.17 Generated functionality and run-time interface.

Reconfigurable embedded systems also usually exist in the context of their en-
vironment, with which they interact having sensors and actuators. A slow down or
even stopping of the system influences the system behavior. This characteristic lim-
its the usefulness of classical debugging approaches, which stop the system clock
for inspection. Therefore, it has been investigated to what extent real-time capability
for simultaneous recording of the system process (trace) can be guaranteed, both for
processor-like as well as for reconfigurable execution units.

According to the real-time perspective of an embedded microprocessor a soft-
ware debugger component has been developed, which enables to record the system
flow, changing data values, . . . . The recorded system run can later (post-mortem) be
played in the Model-Debugger. Moreover, the above described run-time interface
for VHDL-modules has been expanded for real-time recording of signals [21]. Fig-
ure 12.18 shows the designed modular on-chip architecture. This architecture also
became part of the tool chain for system design and therefore can be easily inte-
grated into the system. The design signals will in the first step be stored into a FIFO
buffer. After the FIFO the amount of data can optionally be reduced by means of
compression and coding algorithms. The reason for this is the limited internal mem-
ory on the chip and the limited bandwidth of external interfaces. The data after the
compression can be either stored on-chip and later (in non real-time) transmitted or
it can be directly transmitted to a PC. For faster data transfers additional optional
interfaces are implemented, which can be used if they are supported by the system.
Also optional is the implementation of a DDR-RAM-Controller, which enables to
store more data on the system, if the system supports DDR-RAM.

Furthermore, trigger events can be set to define recording start- and stop-points.
Also the clock and reset signal of the design can be controlled independently from
the signals of the debugger. During run-time the signals can be modified and batch
commands implemented, for different recording and transmitting scenarios, using
the implemented controller and the interface to the PC. Moreover, in certain limits
also the trigger conditions can be modified. This enables a wide range of possibil-
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Fig. 12.18 On-Chip architecture for real-time debugging.

ities for real-time debugging of the embedded system without going through the
implementation process again.

In the next step an approach was developed to integrate the debugging system
in the two dimensional reconfigurable ALaydn architecture. The debugger works in
the network as an independent function block and records the signals of the adaptive
bus system. Thus, the architecture and function allocation as well as the functional
units themselves can be debugged. By accessing the system using switch boxes
and busmacros only a minimal influence on the target system is given, because the
debugger acts as a normal function unit.

12.8 Test

In addition to debugging, tests play an important role for the quality assurance cycle
during the design of embedded systems [16]. Based on the fundamental architecture
of model based debugging in Sect. 12.7 also a model based test technique for het-
erogeneous systems has been developed [10], as shown in Fig. 12.19(left). In this
context models are tested as functional models as well as used for test specifica-
tion. The reason for a model based test approach is the same as for debugging; it
raises abstraction level and therefore eases handling the design process of complex
systems. One critical aspect is to be able to evaluate test cases against real time
response, because of real time behavior of embedded systems.

Our test-framework allows the specification of test cases using UML use-case-
and sequence diagrams. Use-case-diagrams structure the tests and sequence dia-
grams define stimuli and expected response of the system. Test cases can define par-
ticipating objects and their messages including parameters, loops, control structures,
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Fig. 12.19 Test approach (left) and overview of the test system (right).

inclusion of other collaborations and time constraints. The presented syntax applies
to sent or received bus-messages using a Hardware-in-the-Loop (HiL) system as
well as trace data collected from an in-circuit emulator or an on-chip debugger. Fol-
lowing the idea that relevant parts of the model should directly map into concepts on
source code level, it is necessary to generate code of the overall model. Therefore,
we also implemented the test approach into our code generator (see Sect. 12.5), to
enable structural and behavioral code generation directly from UML models.

For a first implementation of this approach we used an embedded device con-
sisting of a microcontroller and interfaces controlled by various peripherals. The
setup is shown in Fig. 12.19(right). The system is monitored using a commercial
Hardware-in-the-Loop and an in-circuit emulator. The collected data is mapped
back to the model elements during the next step. Subsequently each required mes-
sage, its parameters and the time constraints are translated into assertions the system
trace is evaluated against. From the user’s side, the tester is a GUI-based JAVA appli-
cation that is used to select test cases from the model, run the test cases and generate
HTML result reports.

The presented test approach supports white-box- and black-box-testing of soft-
ware that is to be deployed on embedded processors. It can easily be extended for
reconfigurable systems using a HiL-system for stimuli generation and the on-chip
real-time debugger, as presented in Sect. 12.7.3, for tracing.

12.9 Conclusions

The DFG funded “Schwerpunktprogramm 1148 Rekonfigurierbare Rechensysteme”
under the lead of Prof. Dr.-Ing. Jürgen Teich includes individual projects in the area
of:

• Languages and Models
• Methodologies for design and development
• System analysis and evaluation
• Architectures and applications
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Since 2003 the two projects ALadyn “Adaptives Laufzeitsystem mit intelligen-
ter Allokation für dynamisch rekonfigurierbare Funktionsmuster und optimierte
Interface-Topologien” in the area of design and development as well as the project
AMURHA (Entwicklung und Synthese einer adaptiven multigranularen rekonfig-
urierbaren Hardwarearchitektur für dynamische Funktionsmuster) in the area of
hardware architectures are under investigation at the Institut für Technik der In-
formationsverarbeitung (ITIV). The results of ALadyn were partially the basis for
other projects within the “Schwerpunktprogramm” and vice versa, thanks to the
deep collaboration with other projects ALadyn lead to an outstanding success of the
project. In this section, the ALadyn project will be classified in the landscape of the
different research projects.

In the area languages and models the project “PolyDyn” (Polymorphe Ob-
jekte für den Entwurf dynamisch rekonfigurierbarer FPGAs) targets the object ori-
ented modelling approach for dynamic and partial reconfigurable hardwaresystems
and is lead by Prof. Dr.-Ing. Wolfgang Nebel. The hardware description language
SystemC-Plus exploits the methods of the object oriented programming in order to
model the dynamic system behaviour of reconfigurable architectures. The efficient
usage and the acceptance of the novel methodology “computing in time and space”
is therefore also possible for users without deep hardware knowledge. Complex in-
teractions and methods of the hardware components which can be found e.g. in the
2 dimensional reconfigurable system approach described above, can be developed
by usage of the SystemC extension developed in the PolyDyn approach. More in-
formation about PolyDyn can be found in [11]. The area of design methodology,
where as described also ALadyn belongs to, investigates in the hardware focused
realization of strategies for an efficient application of reconfigurable hardware sys-
tem architectures. The management of the reconfigurable area is a novel and nec-
essary challenge in the research field of run-time reconfigurable architectures. The
allocation of areas for hardware modules at run-time was under investigation of the
project “ReCoNodes” (Optimierungsmethodik zur Steuerung hardwarekonfigurier-
barer Knoten). The research group lead by Prof. Dr.-Ing. Jürgen Teich and Prof. Dr.
Sandor Fekete investigated in the field of algorithms for efficient placement of hard-
ware modules on dynamic and partial reconfigurable hardware. For this purpose,
strategies form mathematics in the area of 1 and 2 dimensional packing are exploited
while run-time in order to optimize the utilization of the hardware resources. The
mathematical models of the approach for multidimensional optimization consider
the parameters of the physical geometry of the target hardware, the modules to be
places as well as the temporal relations of these modules amongst other important
parameters. The used ILP (integer linear programming) approach delivers a possible
optimized strategy for the placement of the hardware modules as well as the spatial
distribution on the reconfigurable hardware. The description of the approach as well
as an example scenario is published in [23]. Within the cooperation with the research
group of Prof. Teich and Prof. Fekete, the described approach of the 2 dimensional
reconfiguration is used to realize the approach of ReCoNodes physically. This ap-
proach would also offer novel possibilities for defragmentation or re-allocation of
hardware modules in order to optimize the communication relations. Within the
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“ReCoNodes” project, a rapid prototyping platform was developed. The Erlangen
Slot Machine is a multifunctional platform enabling the flexible usage of the hard-
ware resources. Within a cooperation the 2 dimensional reconfigurable hardware
system as well as a visualization of the dynamic processes was implemented and
demonstrated on this platform. The Erlangen Slot Machine is described in detail in
the Chap. 3.

A special method for partitioning and placement, the temporal partitioning and
placement, was developed within the research group around Prof. Dr. rer. nat. Franz
Rammig in Paderborn. The developed algorithm enables to consider the temporal re-
lations of functional reconfigurable blocks. In the research work the List scheduling
algorithm was extended in that way, that run-time reconfiguration is supported. Fur-
ther more, the method for 3 dimensional placement based on spectral analysis of task
graphs was developed. Here the temporal relations (one of the dimensions) in taken
into account for positioning and placing of the reconfigurable hardware modules. It
is obvious, that this method can be exploited beneficially in the run-time system of
the ALadyn approach. Further information about temporal partitioning can be found
in [2]. The research project of Prof. Walter Stechele form the Technical University
of Munich is engaged with the application of driver assistance systems in the auto-
motive domain. Within the research project, reconfigurable image processing filters
are used to optimize the hardware utilization of a FPGA based system. In a deep
collaboration, the 2 dimensional reconfiguration approach of ALadyn was used to
realize the run-time dynamic hardware approach. Prof. Stechele and his group were
able to show the benefits of the adaptive system approach is this high performance
application. More details can be found in [22].

ALadyn was perfectly integrated in the landscape of the different projects within
the SPP 1148. Basic research enabled the development of real working hardware
systems. Especially the development of the bus-macros finally enabled the break
through of the 1 and 2 dimensional reconfigurable system approach [14]. With over
40 publications and 4 dissertations ALadyn generated outstanding success and valu-
able contribution to the academic world. Certainly this success was possible thanks
to the deep and fruitful collaboration with other project partners within the program
of emphasis.

Acknowledgements Supported by DFG grant MU 1323/6, project ALadyn, as part of the Priority
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Chapter 13
ReconOS: An Operating System
for Dynamically Reconfigurable Hardware

Enno Lübbers and Marco Platzner

Abstract In this chapter, we present the operating system ReconOS, which ex-
tends the concept of multithreaded programming to reconfigurable logic. ReconOS
aims to provide hardware cores with the same services as the software threads of
contemporary operating systems, thereby transferring the flexibility, portability and
reusability of the established multithreaded programming model from software to
reconfigurable hardware.

13.1 Introduction

The evolution of reconfigurable hardware devices has led from small logic-centric
chips to powerful platforms combining microprocessor cores with dense logic fab-
rics. However, design methodologies for such configurable systems on chip have not
kept up with the rise in complexity of reconfigurable hardware. In particular, there
is little overlap between established programming models for embedded software
and reconfigurable logic core design.

In this context, we are especially interested in the operating system layer. In the
embedded systems domain, real-time operating systems provide the designer with
a set of clearly defined objects and associated services, which are encapsulated in
application programmer interfaces, e.g., the POSIX API [8]. Among these basic
objects, we typically find threads and processes as units of execution, semaphores
and related services for synchronization, and mailboxes and their derivatives for
communication.
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The set of objects offered by an operating system together with the used schedul-
ing policy can be considered a programming model. While this model is not com-
parable to formal models of computation, it does provide a designer with an estab-
lished way of structuring an application. When going from a CPU-based system to
a CPU/FPGA platform, it seems natural to simply extend the services offered by the
operating system to customized hardware cores. Analogous to a software thread, a
hardware core performing a specific task can be thought of as a hardware thread.

In this chapter we present ReconOS, an operating system for configurable sys-
tems on chip that extends the multithreaded programming model from software
to reconfigurable hardware. ReconOS leverages standard operating system kernels,
which allow for running existing code and facilitate the access to a variety of I/O
devices. The ReconOS application programmer interface (API) essentially provides
POSIX functions as one single development model for both software and hardware
execution contexts. A designer is now able to map an application to a portable model
that can be directly executed on a variety of CPU/FPGA execution platforms.

The remainder of this chapter is structured as follows: Sect. 13.2 reviews re-
lated work in operating system approaches for reconfigurable computers. The pro-
gramming model used and implemented by ReconOS is explained in Sect. 13.3.
Section 13.4 details the execution model for hardware and software threads, with
Sect. 13.5 describing ReconOS implementations on two different existing software
operating system kernels and the underlying hardware architecture. In Sect. 13.6,
the performance of these implementations is evaluated and case studies are pre-
sented. Finally, Sect. 13.7 concludes the chapter and gives an overview of ongoing
and future work.

13.2 Related Work

In the last decade, operating systems for reconfigurable computers have been re-
searched from a number different angles. A large body of work has been focusing
on single functions of future hardware operating systems. A prominent example is
placement and scheduling of hardware tasks which has been studied under a vari-
ety of task and resource models as well as optimization objectives. Examples can
be found in Jean et al. [9], Bazargan et al. [3], Teich et al. [24], Steiger et al. [23],
Danne and Platzner [5], Danne et al. [6], and Pellizzoni and Caccamo [19].

Most of these works were either theoretical or, if experimental, evaluated their
algorithms by simulation studies on synthetic workloads, given the absence of avail-
able hardware operating system implementations and accepted benchmarks. More
recently, extensions of Linux appeared that promote the integration of software and
hardware processes under the control of an operating system (OS).

Kosciuszkiewic et al. [10] built on top of an existing Linux operating system ker-
nel and viewed so-called hardware tasks as a drop-in replacement for software tasks.
These hardware tasks were executed on synthesized PicoBlaze softcore processors
and did not exploit the fine-grained parallelism provided by FPGAs. In the described
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implementation, the interaction between software threads and hardware tasks was
limited to FIFO communication. Bergmann et al. [4] encapsulated access to hard-
ware modules into software wrappers, the so-called ghost processes which provide
a transparent interface for interactions from the kernel and other processes. The au-
thors considered sharing the same address space between hardware and software
execution units as unsuitable. Technically, they used processes instead of threads
to encapsulate hardware modules. For communication between software and hard-
ware, FIFOs mapped to the Linux file system as well as dual-ported memory ac-
cessible from both software processes and a hardware process were used, as shown
by Williams et al. [25]. So et al. [22] also modified and extended a standard Linux
kernel with a hardware interface, providing conventional UNIX IPC mechanisms
to the hardware using a message passing network. Again, communication between
hardware and software processes was implemented by FIFOs and mapped to file
system-based operating system objects.

A more closely related effort to ReconOS is the hthreads project [18]. In hthreads,
hardware threads are managed by the operating system and are able to access various
OS functions through a dedicated hardware thread interface, while sharing memory
through a sophisticated inter-thread memory model [2]. hthreads is based on the
POSIX pthreads programming model for both hardware and software threads and
implements the OS components managing synchronization and task scheduling as
hardware IP cores. In comparison to ReconOS, hthreads sacrifices the flexibility of a
software operating system kernel for exceptionally low response time and jitter [1].

13.3 Programming Model

Two important design goals of the ReconOS programming model are portability,
and—closely related—flexibility. ReconOS tries to (re)use much of the interface
and functionality already present in established APIs, such as POSIX or the eCos
kernel API. Consequently, most ReconOS programming model primitives or oper-
ating system objects are implemented by an operating system kernel running on the
system CPU. ReconOS applications are typically crafted from the following operat-
ing system objects:

• Threads are the basic units of execution which make up an application. An ap-
plication is partitioned into threads, which then communicate and synchronize
using other operating system objects.

• Semaphores and Mutexes provide means for high-level synchronization; they
can be used to sequentialize execution of threads, to protect critical code re-
gions, or to manage exclusive access to shared resources.

• Shared memory, message queues and mailboxes are used for inter-thread com-
munication. Generally, access to shared memory must be protected by synchro-
nization primitives, as is necessary for any shared resource. Message queues
and mailboxes occupy a special niche among the operating system objects—
they provide both communication and synchronization at the same time.
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The fact that all inter-thread activity is carried out using only these objects pro-
vides complete transparency within these interactions; a thread does not need to
know whether its communication or synchronization partners are located in hard-
ware or software—which, in turn greatly facilitates design space exploration with
respect to the hardware/software partitioning. Also, as long as the interfaces to the
respective operating system objects are supported, the interoperability and portabil-
ity of threads can be easily maintained when moving to a different target platform.
This applies both to different hardware target platforms, as well as to different host
operating systems, as presented in [12]. An overview of the operating system objects
and their related ReconOS and POSIX API calls, as used by hardware and software
threads, respectively, is shown in Table 13.1.

Table 13.1 Overview of ReconOS API functions.
OS object POSIX API (software) ReconOS API (hardware)
Semaphores sem_post() reconos_sem_post()

sem_wait() reconos_sem_wait()

Mutexes pthread_mutex_lock() reconos_mutex_lock()
pthread_mutex_unlock() reconos_mutex_unlock()

Condition variables pthread_cond_wait() reconos_cond_wait()
pthread_cond_signal() reconos_cond_signal()
pthread_cond_broadcast() reconos_cond_broadcast()

Message queues/ reconos_mq_send()
mail boxes mq_send() reconos_mbox_put()

reconos_mbox_tryput()
reconos_mq_receive()

mq_receive() reconos_mbox_get()
reconos_mbox_tryget()

Shared memory reconos_write()
*ptr = value reconos_write_burst()

reconos_read()
value = *ptr reconos_read_burst()

Threads pthread_exit() reconos_thread_exit()
pthread_create() –
sched_yield() reconos_thread_yield()
pthread_delay_np() reconos_thread_delay()

To explain the fundamental principles of the ReconOS hardware/software pro-
gramming model, we first present the programming of hardware threads under Re-
conOS before discussing the creation and termination of threads. ReconOS software
threads are identical to regular threads of the host operating system both in concept
and implementation. Since software threads are handled by the standard OS sched-
uler, they are independent from the ReconOS extensions.
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13.3.1 Hardware Threads

Software threads have sequential execution semantics. To use an operating system
service, a software thread simply calls the corresponding function in the operating
system library. Hardware tasks, on the other hand, are inherently parallel. Mostly,
there is no single control flow and, thus, no apparent notion of calling an operat-
ing system function. In particular, typical hardware description languages, such as
VHDL, offer no built-in mechanism to implement blocking calls.

To present as unified a programming model as possible to the user, we rely on
the following approach: We structure a hardware thread such that all interactions
with the operating system are managed by a single sequential state machine. To
this end, we have developed an operating system function library for VHDL. This
library contains code implementing the system call signaling wrapped into VHDL
procedures, e.g., reconos_sem_wait(). Together with the operating system in-
terface (OSIF), a separate synchronizing logic module serving as the connection
between the hardware thread and the OS, these procedures are able to establish the
semantics of blocking calls in VHDL. A hardware thread thus consists of at least
two VHDL processes: the synchronization state machine and the actual user logic.
The state transitions in the synchronization state machine are always dependent on
control signals from the OSIF; only after a previous operating system call returns,
the next state can be reached. Thus, the communication with the operating system is
purely sequential, while the processing of the hardware thread itself can be highly
parallel. It is up to the programmer to decompose a hardware thread into a collection
of user logic modules and one synchronization state machine. Besides the increased
complexity due to the parallel nature of hardware, this process is no different from
programming a software thread.

An example demonstrating this mechanism is illustrated in Fig. 13.1. In this ex-
ample, the hardware thread receives a message into the local RAM, processes it,
waits on a semaphore (SEM_READY), writes the result to shared memory, and
then posts another semaphore (SEM_NEW). The OS synchronization state machine
and the user logic communicate via the two handshake signals run and done.

13.3.2 Thread Creation and Termination

The creation of threads within the ReconOS programming model is almost identical
for software threads (using pthread_create()) and hardware threads (using
rthread_create()). A hardware thread takes the same scheduling and stack
size parameters as a software thread. These are used for the hardware thread’s asso-
ciated delegate thread (see Sect. 13.4.3.1) and influence the hardware thread’s prior-
ity when contending for access to operating system objects. Instead of a pointer to
a software thread’s executable code, a hardware thread is associated with a core, a
data structure which is also passed to rthread_create(). A core represents the
hardware thread’s “executable circuit” which can be loaded into the FPGAs recon-



274 Enno Lübbers and Marco Platzner

Fig. 13.1 Example of an OS synchronization state machine [11].

figurable fabric. Just as a section of machine code can be shared between multiple
software threads, the same core can also be instantiated multiple times to form sev-
eral hardware threads with the same functionality.

Cores can be loaded statically onto the FPGA together with the static hardware
architecture (e.g., buses and peripherals) during system bootup, or be reconfigured
dynamically into predefined slots when needed. If there are free slots when a new
hardware thread is created, the corresponding core is loaded immediately; other-
wise, it is marked for execution and will be loaded once a slot becomes free. The
dynamic reconfiguration process is handled by a separate software thread, the hard-
ware scheduler, which is described in Sect. 13.4.3.2.

Thread termination can either be initiated by the respective threads themselves—
using pthread_exit() (within software threads) or reconos_thread_
exit() (within hardware threads)—, or threads can be explicitly aborted using
pthread_kill().

13.4 Run-Time System

In order to support the programming model described in Sect. 13.3, a dedicated
hardware/software run-time environment is needed to provide the connection be-
tween hardware threads and an existing operating system kernel. On the hardware
side, a well-specified interface is required to manage the requests and responses of a
hardware thread. On the software side, many of these requests need to be forwarded
to the host operating system kernel, and their responses need to be relayed back to
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the hardware threads. Finally, to take advantage of the dynamic reconfiguration ca-
pabilities of modern platform FPGAs, the operating system needs to be extended to
manage hardware multitasking. This section details the mechanisms employed by
ReconOS to manage these tasks: the operating system interface (OSIF), the delegate
threads, and the hardware scheduler.

13.4.1 Hardware Architecture

The ReconOS hardware architecture, shown in Fig. 13.2, consists of a main CPU ex-
ecuting the operating system kernel, one or more slots for hardware threads together
with an operating system interface (OSIF) each, and two separate interconnection
networks—usually buses—for accessing OS services and shared memory. Option-
ally, dedicated thread-to-thread communication channels can be established at de-
sign time between the slots. Such a configuration is typical for many signal process-
ing applications that arrange filter stages in pipeline form, connected by hardware
FIFOs (see Sect. 13.4.1.1).

Fig. 13.2 ReconOS hardware architecture with three hardware threads [15].

The separation of control and data communications provides several benefits:

• OS control communications do not obstruct data communications on the mem-
ory bus, thus reducing its arbitration overhead and latency.

• Vice versa, memory communications, especially bursts, can not interfere with
OS communications. This reduces the latency of OS calls, which is paramount
to the use of ReconOS in real-time environments.

• OS interfaces for hardware threads that do not need direct access to system
memory can be synthesized without the memory interface, thereby greatly re-
ducing the area footprint.

13.4.1.1 The Operating System Interface

To be able to model hardware circuits executing on reconfigurable logic as threads,
it is necessary to carefully define mechanisms for low-level synchronization and
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communication between the hardware circuitry and the operating system. In Re-
conOS, this is the task of the operating system interface (OSIF). Figure 13.3 gives
an overview of the OSIF’s structure and its interfaces. On one side, the OSIF con-
nects to the hardware thread’s OS synchronization state machine and local RAM.
On the other side, the OSIF provides an interface to two bus systems, the system
memory bus and an OS control bus. Further, the OSIF requires an interrupt line to
the CPU’s interrupt controller and features optional ports to connect to FIFO cores.
The OSIF itself is built from several modules whose functions are described in the
following.

Fig. 13.3 OSIF overview and interfaces [13].

Thread Supervision and Control ReconOS provides hardware threads with a
hardware API that comes in the form of a function library which specifies VHDL
functions and procedures like reconos_sem_post() or reconos_thread_
exit(). A designer can use these procedures inside the thread’s OS synchroniza-
tion state machine to sequentially call operating system functions, much like a soft-
ware thread uses functions from the operating system’s C-API. As a consequence,
every state of the OS synchronization state machine may contain at most one VHDL
system call. The VHDL procedures are purely combinational and communicate with
the OSIF through a set of incoming and outgoing signals.

The mechanisms that govern the OS call request-response interactions between
the OSIF and the hardware thread are controlled by the command decoder module.
This module receives OS call requests from the hardware thread, decodes them and
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initiates the appropriate processes to fulfill that request. This may involve, for ex-
ample, raising an interrupt with the system CPU, initiating a bus master transfer or
feeding data into a FIFO.

Since the operating system executing on the CPU cannot process OS calls within
one clock cycle, the OSIF needs a means to suspend state transitions of the thread’s
OS synchronization state machine. This is achieved by having the OS synchroniza-
tion state machine routinely check input signals from the osif2task record be-
fore setting its next state. This way, the OSIF can block the part of the hardware
thread that interacts with the operating system, which effectively implements the
semantics of blocking calls in VHDL. A more detailed description of the mecha-
nisms and procedures used to provide low-level synchronization between hardware
threads and the OSIF can be found in [13].

OS Call Relaying OS services that are not provided by the OSIF directly (such as
memory or FIFO accesses) are relayed to the OS kernel running on the CPU. Once
the command decoder receives such a request from the hardware thread, it makes the
command and associated arguments available to the CPU through the control bus,
and raises an interrupt. This interrupt is forwarded to the software delegate thread
associated with the hardware thread (see Sect. 13.4.3.1), which retrieves the com-
mand and arguments and executes the software OS call on behalf of the hardware
thread. Any return values are sent back to the OSIF, which passes the values on to
the hardware thread.

This mechanism provides maximum flexibility, since virtually every call that is
possible from a software thread can now be requested by a hardware thread as well.
However, OS call relaying comes with a considerable overhead which is quanti-
fied in Sect. 13.6. On every relayed OS call, the CPU needs to process an inter-
rupt, switch to the associated delegate’s context, and access the control bus registers
before actually executing the call. During this time, the hardware thread’s OS syn-
chronization state machine remains suspended. Nonetheless, it must be noted that
the parallel user processes inside the thread may continue their execution.

Data Communication Routing Due to the overhead involved in relaying OS re-
quests to software, all high-throughput data communications should be handled in
hardware without involving the CPU. In the ReconOS OSIF, this is realized in two
variants, which provide the basis for any efficient, high-bandwidth thread-to-thread
communication:

• Bus master access
By utilizing the OSIF’s memory bus interface, a hardware thread has direct ac-
cess to any memory location and bus-connected peripheral in the system. Using
the bus master controller (see Fig. 13.3), it is even possible to transfer bursts of
data to and from memory. To request a burst write, the hardware thread must first
store the data to transfer in the thread-local RAM. Then, the thread’s OS syn-
chronization state machine calls a reconos_write_burst() procedure.
This prompts the bus master controller to initiate a memory bus transfer from
the local RAM, which is mapped into the system memory space, to the target
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address in main memory. Similarly, a thread can request a burst read transaction,
which will place data from main memory in the local RAM.

• Hardware FIFOs
While direct memory bus transfers represent an improvement over the indirect
communication methods provided by the OS call relay technique, their perfor-
mance can suffer considerably when several threads, the CPU, or other periph-
erals contend for the bus.
To allow for bus-independent thread-to-thread data communication, the Re-
conOS run-time environment provides dedicated FIFO buffers implemented in
hardware. Two threads connected by such a FIFO module can transfer data
without interrupting the CPU or increasing bus load. When a hardware thread
signals a pending read or write access to such a FIFO, the OSIF can pass the
data directly to a hardware FIFO module. In the event of a write request to a full
FIFO or a read request to an empty FIFO, the FIFO manager can also suspend
the hardware thread’s OS synchronization state machine, thus providing block-
ing get/put operations on FIFOs. Details on the performance of this message
passing mechanism can be found in Sect. 13.6.

13.4.2 Hardware Multitasking

In the ReconOS execution environment, it is possible to synthesize multiple hard-
ware threads to the same location in the FPGAs reconfigurable fabric. Using partial
dynamic reconfiguration, the operating system is able to load hardware threads dur-
ing run-time, effectively realizing hardware multitasking between different hard-
ware threads. To this end, the area allocated to the execution of hardware threads
is split into separate slots, each with its own OS interface. The partial bitstreams
of the different cores are linked into the application’s executable and are loaded
onto the reconfigurable fabric under the control of a separate scheduling thread (see
Sect. 13.4.3.2) running on the CPU. This mechanism is made available to hardware
threads using the already established threading API.

To reduce the complexity of the reconfiguration logic and the overheads incurred
by context saving and restoring in hardware, ReconOS in its current implementa-
tions employs a cooperative multitasking scheme for its hardware threads. Hardware
threads cannot be preempted asynchronously, but use special OS calls to voluntarily
yield their slot to other waiting threads. Typically, these preemption points will be
inserted into a hardware threads wherever state information is minimal. Cooperative
multitasking in ReconOS is described in detail in [14].

13.4.3 Software Architecture

To interface hardware threads with the host operating system kernel, the ReconOS
software architecture employs delegate threads and a hardware scheduler. These
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concepts are common among all ReconOS implementations; the necessary adapta-
tions to maintain portability across different host operating systems are illustrated
through two examples in Sect. 13.5.

13.4.3.1 Delegate Threads

A fundamental assumption of the ReconOS programming model concerns the trans-
parency of thread-to-thread communication and synchronization, regardless of the
execution context (hardware or software) of the respective communication partners.
This enables the designer to easily replace, for example, a software thread with a
functionally equivalent hardware thread, allowing for rapid design space exploration
with respect to the hardware/software partitioning.

To achieve this transparency in ReconOS, every hardware thread is associated
with exactly one software thread, its delegate. The delegate is responsible for exe-
cuting operating system calls on behalf of the corresponding hardware thread, mak-
ing it appear as a software thread to the operating system kernel. Delegate threads
are created as standard OS threads and passed additional parameters necessary to
access the OSIF hardware. After creation, the delegate resets, initializes and starts
the hardware thread. It then waits for an incoming OS request from the hardware to
execute. The basic execution flow of a delegate thread is depicted in Fig. 13.4.

Fig. 13.4 Execution flow of a delegate thread [15].

To be able to map the OS objects referenced by the hardware thread to actual in-
stances in the operating system kernel, the delegate thread maintains a table of object
instances that are used by the hardware thread. Individual resources are represented
towards the hardware thread as an index into this table. Hence, a single hardware
thread description (or core) can be used for multiple instances in the system; giving
different instances access to different resources is simply a matter of changing the
delegate’s OS object table. This mechanism is also a prerequisite for partial recon-
figuration of hardware threads, when a core is relocated to a different slot.

13.4.3.2 Hardware Scheduler

All reconfiguration decisions a centrally managed by a high-priority software thread,
the hardware scheduler. It communicates with the delegate threads through a central
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kernel data structure with synchronized access. Any thread ready to run—because
of a rthread_create() call or a returning blocking function call—is marked
as “waiting for a slot” in its kernel data structure. As mentioned in Sect. 13.4.2,
a running thread can voluntarily yield its slot to other waiting threads. As soon as
a delegate thread receives a OS interaction request from its hardware thread that is
marked as “yielding”, it notes this in the thread’s kernel data structure and wakes up
the hardware scheduler.

Upon invocation, the scheduler then checks for waiting threads and reconfigures
them into any available free slot, or into a slot that is currently occupied by a yielding
thread. If there are no free or yielding slots, a yield request is broadcasted to all
running threads. This allows running threads to yield only when there are other
threads waiting to avoid unnecessary reconfigurations.

A detailed description of the interaction between the hardware scheduler and the
delegate threads as well as a quantitative analysis of scheduling overheads can be
found in [14].

13.5 Implementation

13.5.1 Target Platforms

The principle of extending the multithreaded programming model to reconfigurable
logic itself is not tied to a particular technology or architecture. Certain features
of ReconOS, however, do require specific devices. For example, dynamic partial
reconfiguration, which ReconOS employs for hardware multitasking, is as of now
only available and supported on Xilinx Virtex-II, Virtex-II Pro, and Virtex-4 FPGAs.

The ReconOS extensions can be implemented on virtually any operating system
which supports multithreading. As we will show in Sect. 13.6, we have currently im-
plemented the ReconOS extensions on two different host operating systems, eCos
and Linux. Depending on the actual choice of a host OS, its target platform require-
ments also dictate the platform for that particular ReconOS variant. For example,
among the CPU families supported by eCos, only PowerPC processors can be found
on Xilinx FPGAs, and only on a limited range of families. On the other hand, Re-
conOS/Linux can also be executed on soft core CPUs synthesizable to a wider range
of target devices.

In essence, these requirements have led us to use Xilinx Virtex-II, Virtex-II
Pro, and Virtex-4FX FPGAs for our prototypes. Besides off-the-shelf multi-purpose
evaluation boards, we have also successfully run ReconOS on the Erlangen Slot
Machine (see Sects. 13.6.1, 3 and 8.8).

13.5.2 Prototypes

Based on the hardware architecture shown in Fig. 13.2 and two OS kernels, we have
created three ReconOS prototypes: ReconOS/eCos-PPC and ReconOS/Linux-PPC



13 ReconOS: An Operating System for Dynamically Reconfigurable Hardware 281

on a XC2VP30 FPGA, and ReconOS/Linux-MicroBlaze on a XC4VSX35 FPGA.
The main features of these prototypes are listed in Table 13.2. Our implementation
of the run-time environment uses the IBM CoreConnect bus topology available for
Xilinx FPGAs. A 64-Bit high-throughput Processor Local Bus (PLB) connects the
CPU and the OS interfaces to external SDRAM, which is used for both the operating
system and shared thread memory. A separate Device Control Register (DCR) bus
is used for control communications between the OS interfaces and the operating
system kernel. Both the OS interfaces and the hardware threads run at the system’s
bus clock, which is 100 MHz for all prototypes.

Table 13.2 ReconOS prototype implementations.

Prototype (ReconOS/–) eCos-PPC Linux-PPC Linux-MicroBlaze
Operating system eCos Linux Linux
Based on kernel eCos-VIRTEX4a 2.6-virtexb 2.6-nommuc

CPU PowerPC 405 PowerPC 405 MicroBlaze 4.0
FPGA XC2VP30 XC2VP30 XC4VSX35
CPU clock 300 MHz 300 MHz 100 MHz
PLB/DCR bus clock 100 MHz 100 MHz 100 MHz
MMU No Yes No
a[17]; b[21]; c[20].

A single OS interface requires 1147 slices which amounts to about 8.4%/7.5%
of the logic resources of the employed XC2VP30 and XC4VSX35 FPGAs, respec-
tively. Roughly two-thirds of the OS interface slices are taken up by the PLB bus
interface, while the remaining logic is mainly used for the command decoder (267
slices) and the DCR bus interface (56 slices). The hardware architecture has been
assembled and synthesized using Xilinx ISE 9.2, Xilinx EDK 9.2, and custom tools
for automated OS interface and thread instantiation.

13.5.2.1 ReconOS/eCos

The eCos [7] real-time operating system provides a modular and configurable frame-
work of operating system services. Application designers can select the necessary
packages from the eCos repository and compile them into a library, which the fi-
nal application is linked against. eCos is also configurable on a source code level.
Using preprocessor macros, unneeded code is removed at compile time, resulting
in small code sizes, which suits the targeted embedded segment. eCos is written in
C/C++ and supports a range of target processor architectures, including the Pow-
erPC 405, as found on Xilinx FPGAs of the Virtex-II Pro, Virtex-4 FX and Virtex-5
FXT families.

To transparently include ReconOS delegate threads in the eCos programming
model, we have extended the eCos thread class to include additional information
relevant to hardware threads, such as OSIF addresses, interrupt numbers, and OS
object tables. Together with C wrappers for thread creation that are very similar to
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the eCos and POSIX API, reusing the existing kernel code allows ReconOS delegate
threads (and, by extension, the associated hardware threads) to take advantage of all
services provided by the eCos kernel.

Because eCos does not distinguish between user and kernel space but runs en-
tirely in the processor’s real mode, hardware access from user threads is greatly sim-
plified. Although the delegate thread is logically part of the user application rather
than the kernel, it can directly access the DCR bus to communicate with its corre-
sponding OSIF. eCos also lets hardware and software threads share the same address
space, since it disables the MMU, sacrificing memory protection and privilege man-
agement for a greatly simplified memory access model and higher performance.
While unreasonable for larger-scale multiuser systems, this is entirely appropriate
for small-footprint self-contained embedded systems, as targeted by eCos.

Fig. 13.5 Communication between hardware thread and delegate thread [12].

The sequence of events that is performed to relay an OS call from hardware to
the eCos kernel is shown in Fig. 13.5(a). When a hardware thread uses a VHDL API
call to request an operating system service, the respective VHDL procedure asserts
certain handshake lines between the thread and its OSIF (1). Pending OS calls re-
quested by the OSIF are signalled to the CPU’s interrupt controller via a dedicated
interrupt line (2). In eCos, interrupt processing is split into two steps to minimize
interrupt latency. First, a very small interrupt service routine (ISR) is invoked (3),
which executes in its own context, performs the necessary operations to enable re-
ception of the next interrupt as quickly as possible, and marks the deferred service
routine (DSR) (4) for execution. The latter is scheduled by the regular eCos sched-
uler so as not to interfere with the low-level interrupt processing. As the last step
before the actual delegate thread is invoked, the DSR posts a semaphore (5) which
the delegate is waiting on, essentially signaling an incoming request. The delegate
thread then directly accesses the OSIF’s registers via dedicated DCR access instruc-
tions to retrieve call parameters (6) and executes the requested eCos kernel function.
Section 13.6 evaluates the timing overhead of this OS call sequence.
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13.5.2.2 ReconOS/Linux

The Linux operating system is employed on a wider range of target architectures
and therefore enjoys a wider adoption than eCos. The list of architectures includes,
as the most interesting to us, the PowerPC 405 and the Xilinx MicroBlaze soft core.
The latter widens the range of ReconOS targets to include FPGAs without an em-
bedded CPU core. The MicroBlaze can be synthesized with or without an MMU.
For our MicroBlaze prototype, we have opted for the omission of the MMU, which
simplifies memory transfers between software and hardware threads.

While offering a wide set of configurable options, the Linux kernel does not allow
to reduce its memory footprint as much as the eCos kernel. Absolute values on the
size of the respective kernel images are difficult to obtain, as the code size greatly
depends on the selected features, the target architecture, and the employed compiler.
Also, an eCos kernel image already includes all necessary API implementations, the
libc, and possibly a network stack. It can be expected, though, that a Linux kernel’s
size exceeds an equivalent eCos kernel by about an order of magnitude.

To communicate with its OSIF, a delegate thread needs access to the DCR bus.
On a PowerPC system, this is accomplished through the mtdcr and mfdcr instruc-
tions, both of which are privileged. In Linux, user-space code, such as a delegate
thread, typically cannot execute privileged instructions. To make the OSIF registers
accessible to the delegate, we have thus implemented the low-level hardware access
to the OSIF registers in a kernel driver, which publishes the registers through a de-
vice node, as depicted in Fig. 13.5(b). The hardware-independent code, such as the
API wrappers and the delegate thread code, is implemented through a library that is
linked with the user application.

Due to the separation of hardware-dependent and independent code, the sequence
of events to relay an OS call from hardware to the Linux kernel differs from the one
described for the eCos kernel. The signal assertions between hardware thread and
OSIF (1) and the interrupt request to the system’s interrupt controller (2) are iden-
tical. When a delegate thread needs to access its OSIF, it does so through filesys-
tem accesses to the kernel driver’s device node. In eCos, synchronization between
the delegate thread and the OSIF was achieved through a dedicated semaphore. In
Linux, this synchronization is implemented through read accesses blocking until an
interrupt from the OSIF is registered (3). Only then is the blocking delegate thread
resumed (4) and the read access translated into DCR operations (5). Write opera-
tions to an OSIF do not block. The timing overhead of this sequence is also analyzed
in Sect. 13.6.

13.5.3 Debugging and Monitoring

The debugging of a multithreaded hardware/software system like ReconOS is a
complex task. To aid application developers with debugging and optimization, Re-
conOS utilizes and extends the IBM CoreConnect bus functional simulation [26].
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A hardware thread’s VHDL description is integrated into a simulation testbench
consisting of an OS interface and functional models of the memory and control
buses. Because simulating an entire operating system booting and running on a com-
plex microprocessor is rather time-consuming, we replace the CPU with a thread-
specific stimulus file generated from a simple scripting language. When debugging,
a hardware thread designer needs only to specify the expected timing and sequence
of the thread’s OS interactions, which are then automatically checked against the
actual simulated thread behavior.

Debugging during run-time is also possible through a dedicated monitoring in-
frastructure. Intelligent probe cores collect data relevant to the functionality and
performance of the hardware thread (or other critical modules such as the OS inter-
face). The collected data is accumulated and pre-processed on a separate soft-core
CPU, which allows a more refined tracking of the system’s state than is possible
with regular raw logic analyzers. It is also possible to feed the collected perfor-
mance data back into the ReconOS execution environment and use it for run-time
optimizations.

13.6 Experimental Measurements

The ReconOS programming and execution models have been experimentally veri-
fied using several prototypes based on the implementations described in Sect. 13.5.
In the following, we present quantitative performance results of operations on op-
erating system primitives on both host operating systems, which provides valuable
pointers on the costs and overheads involved with individual thread interactions.
Then we discuss another set of experiments that has been conducted to evaluate
the throughput of the different communication mechanisms available to ReconOS
threads. Lastly, we focus on more elaborate application case studies to analyze the
impact of the operating system overheads on real-world implementations. The re-
sults demonstrate the applicability, feasibility, and portability of the proposed mul-
tithreaded programming model.

To enable quantitative measurements on the performance of operating system
calls, we have run a set of benchmarks on the three prototype implementations listed
in Table 13.2. The first set of experiments employs a set of synthetic threads analyz-
ing the performance of timing critical OS calls. The mutex and semaphore primitives
serve as representative examples, as most other supported API calls are either based
on them or are not considered timing critical. The threads measure the raw execution
time of single API calls to lock (unlock) a mutex or post (wait on) a semaphore, re-
spectively, as well as a measure we call the turnaround time. The turnaround time is
defined as the time it takes from one thread releasing a mutex (posting a semaphore),
to the next thread acquiring a lock (receiving the semaphore).

The experiments have been run with different combinations of software and hard-
ware threads. The results are shown in Fig. 13.6. While the synchronization over-
head incurred by the operating system is not negligible, its impact on system perfor-
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mance remains within reasonable bounds, as application designers will usually use
the reconfigurable fabric for data-centric parallel processing tasks, and implement
control-intensive sequential tasks on the system’s CPU.

Fig. 13.6 Performance of ReconOS synchronization primitives.

In a second experiment, we have analyzed the attainable throughput for the com-
munication primitives available to ReconOS threads. Two threads perform a se-
quence of data transfers, subsequently reading and writing data from and to main
memory, as well as reading and writing data from and to a mailbox. Several config-
urations of the test have been run, using hardware and software threads, and with
mailboxes mapped either to hardware FIFOs or to eCos software mailboxes. The
throughput of ReconOS communication primitives for hardware threads depends
primarily on the specifics of the hardware architecture (memory bus, hardware FI-
FOs), which is identical for the ReconOS/eCos and ReconOS/Linux prototypes.
For this test, the ReconOS/eCos prototype employing a PowerPC processor and two
hardware threads was selected.

The first hardware thread reads 8 kBytes of data from main memory into its local
RAM. It then uses the ReconOS mailbox calls to transfer this data to the hardware
FIFO, one 32-bit word at a time. Simultaneously, the second hardware thread reads
from the hardware FIFO, also by using the ReconOS mailbox API. Once this data
transfer is completed, the second thread writes the data back to main memory.

During the experiment, we have measured the times for reading and writing the
data from and to main memory, and the times for writing and reading the data to and
from the mailboxes. For comparison, we have also measured the times for data trans-
fer between hardware and software threads using ReconOS’ message queue primi-
tives. Since software threads do not possess local memory, the memory read/write
tests for software threads have been combined into a single memcopy test. The re-
sults are shown in Table 13.3.

While the hardware FIFOs only achieve 66% to 74% of the memory bus (PLB)
in terms of raw throughput, one has to keep in mind that in order to transfer data
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Table 13.3 Performance of ReconOS communication primitives.

Operation With data cache Without data cache
[μs] [MB/s] [μs] [MB/s]

MEM→HW (burst read) 45.74 170.80 46.41 168.34
HW→MEM (burst write) 40.54 192.71 40.55 192.66
MEM→SW→MEM (memcopy) 132.51 58.96 625.00 12.50
HW→HW (mailbox) 61.42 127.20 61.42 127.20
SW→HW (mailbox) 58500 0.13 374000 0.02
HW→SW (mailbox) 58510 0.13 374000 0.02
SW→HW (message queue) 472.00 16.55 2166.79 3.61
HW→SW (message queue) 482.31 16.20 2160.69 3.62

All operations were run for 8
kBytes of data

from one thread to another, two memory transactions have to occur: first, the send-
ing thread needs to write to shared memory, before the receiving thread can read
the data. When using hardware FIFOs, reading and writing can occur concurrently.
Considering this, an 8 kByte data transfer via hardware FIFOs is about 40% faster
than a transfer of the same data via shared memory. Also, the transfer via mailboxes
is implicitly synchronized, while two threads exchanging data via shared memory
need explicit synchronization, e.g., via mutexes or semaphores.

13.6.1 Application Case Studies

The real-world implications of the ReconOS overheads on the overall system per-
formance, and the feasibility of hardware/software system design based on the Re-
conOS programming model have been evaluated on a number of case studies cov-
ering several application domains:

• We have shown the benefits of ReconOS’ incremental design methodology, as
well as the integration of complex operating system services on a multithreaded
image processing application [11], which streams image data from a worksta-
tion across an Ethernet network to an FPGA board, where it is processed in a
chain of hardware and software threads. Similarly, another application acceler-
ates cryptographic block ciphers modeled as hardware threads to encrypt and
decrypt streamed video data. We have also used ReconOS to design a modular
image processing library consisting of specialized hardware threads.

• ReconOS serves as a base for a multithreaded framework for Sequential Monte
Carlo Methods [16], which can be used to track the state of a non-linear system
through imprecise measurements. Using this framework, we have implemented
a prototype for object tracking in video streams. Through ReconOS, the frame-
work is able to adapt to changing data-dependant performance requirements by
changing its HW/SW partitioning during run-time through partial reconfigura-
tion of its hardware threads.
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• To experimentally explore the portability and ease of use of the ReconOS pro-
gramming model, we successfully combined the high-level synthesis (HLS) ap-
proach developed by the group of Prof. Merker (see Chap. 8) with ReconOS
running on the Erlangen Slot Machine (see Chap. 3). In this prototype, a visual
object tracking system has been realized, in which a hardware thread developed
with the HLS tool communicates with software threads using the ReconOS ex-
ecution environment.

In the following, we describe a general a ReconOS application which we rou-
tinely use for benchmarking architectural improvements of the run-time system. In
this application, a multithreaded sorting algorithm has been implemented using Re-
conOS and mapped to different host operating systems and underlying hardware
architectures.

A list of 218 unsorted 32-bit integers is sorted, using a combination of bubble sort
and merge sort; the basic concept is depicted in Fig. 13.7. First, the data is divided
into 128 chunks, which are sorted individually using bubble sort. The resulting lists
are then merged. To map this application onto our system, we divided it into two
threads, one for the bubble sort routine, which has a software and a hardware imple-
mentation, and one for the merge operation, which is always performed in software.
The threads communicate using shared memory and use message boxes for simul-
taneous synchronization and passing of buffer addresses. The application has been
run on two prototype platforms, one running ReconOS/eCos on a PowerPC, the
other running ReconOS/Linux on a MicroBlaze. Both systems use exactly the same
application code for both software and hardware threads. Three tests have been per-
formed: the first running the sort thread in software (SW); the second running the
sort thread in hardware (HW); and the third running two sort threads concurrently,
one in software, the other in hardware (SW+HW). The results of the measurements
are shown in Fig. 13.7. In this figure, two times are given for each test and ar-
chitecture, the first (bold) value denotes the time spent sorting, while the second
corresponds to the merge time.

Fig. 13.7 Sort case study [15].
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The first and last test, which perform (at least part of) the sorting routine in soft-
ware, reveal, unsurprisingly, that the MicroBlaze processor performs the sort oper-
ation vastly slower than the PowerPC. However, when executing the sorting thread
solely in hardware, both systems are almost on par. In this situation, the hardware
thread interacts with the OS synchronization primitives infrequently enough so that
the performance penalty due to additional software processing remains within ac-
ceptable limits. This is a typical scenario: an application designer will likely use
the precious hardware resources for data-centric computations with relatively in-
frequent OS synchronization operations, and perform most control-dominated tasks
inside software threads. Therefore, while the penalty incurred by the low-level syn-
chronization and communication between delegate thread and OS interface is sub-
stantial for OS calls alone, the effect on overall application performance is marginal.

13.7 Conclusion and Outlook

In this chapter, we have presented the extension of the established multithreaded
programming model to reconfigurable logic. Our operating system ReconOS fa-
cilitates rapid HW/SW design space exploration by providing transparent ser-
vices for communication and synchronization, thereby promoting hardware cores
from passive coprocessors to active peers in a multithreaded environment. The de-
scribed multithreaded design process allows to accelerate critical system compo-
nents through reconfigurable hardware without sacrificing portability, flexibility and
reusability. Building on a portable execution model, ReconOS enables designers to
exploit both fine-grained data parallelism as well as coarse-grained thread-level par-
allelism, and helps to take advantage of the rising complexity of modern reconfig-
urable devices.

Future work on ReconOS will focus on improved support of hardware vitaliza-
tion, with emphasis on hardware thread scheduling and preemption techniques. Ad-
ditionally, we will continue to work on supporting the synthesis of ReconOS threads
from domain-specific application descriptions.

Acknowledgements This work was supported by DFG grant PL-471/2, project ReconOS, as part
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Chapter 14
FlexiChaP: A Dynamically Reconfigurable ASIP
for Channel Decoding for Future Mobile
Systems

Matthias Alles, Timo Vogt, Christian Brehm, and Norbert Wehn

Abstract Future mobile and wireless communication networks require flexible
modem architectures to support seamless services between different network stan-
dards. Hence, a common hardware platform that can support multiple protocols
implemented or controlled by software, generally referred to as software defined
radio (SDR), is essential. This chapter presents a family of application-specific
instruction-set processors (ASIPs) for channel coding in wireless communication
systems. Flexibility is provided by offering not only programmability but also dy-
namical reconfiguration within the ASIP pipeline. As a weakly programmable IP
core, it can implement many channel decoding schemes for a SDR environment. It
features binary convolutional decoding, turbo decoding for binary as well as duo-
binary turbo codes, and LDPC decoding for current and upcoming standards. The
ASIP consists of a specialized pipeline with 15 stages and a dedicated communi-
cation and memory infrastructure. A reconfigurable data shuffling allows for fast
context switches, multi-standard support, and a efficient ASIP implementation.

14.1 Introduction

In recent years, we have seen the emergence of an increasing number of wireless
protocols. Next generation mobile communication networks will feature new ser-
vices, especially multi-access and heterogeneous interoperability, with increased
data throughput. Thus, flexibility becomes a dominant aspect for the transceiver.
To provide the flexibility for supporting seamless services between various wireless
networks, there is a high demand for a common hardware platform that can support
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multiple protocols implemented or controlled by software, generally referred to as
software defined radio (SDR).

The focus of this Chapter is put on channel decoding in mobile and wireless
communications systems in the context of SDR. Channel decoding is the central
processing task of the outer modem. Here convolutional codes (CC), binary turbo
codes (bTC), duo-binary turbo codes (dbTC), and low-density parity-check (LDPC)
codes are established techniques. The implementation complexity of the encoding
algorithms for these codes is negligible. The decoding algorithms, however, have
a very high computational complexity. In [16] it was shown that channel decoding
contributes, depending on the implementation platform, about 40% to the total com-
putational complexity of the physical layer of a UMTS or a WiFi 802.11a system.
The challenge is to provide a flexible platform for channel coding that offers the
needed computing power and a high efficiency w.r.t. area and power consumption.

Most of today’s platforms for digital baseband processing support one or just a
few standards, with an embedded channel decoder coprocessor engine especially
designed for the respective outer modem. Such architectures are not suited for SDR
since they do not provide the required flexibility for channel decoding.

Recently, platforms for SDR [16, 23, 26, 13, 12, 19] were presented. Most of
these platforms are targeting the signal processing tasks in the inner modem, i.e., fil-
tering, modulation and channel estimation. These algorithms have to process a huge
amount of operations/samples, but have a high degree of data parallelism. Thus,
these SDR platforms are multiprocessor systems with SIMD (single-instruction
multiple-data) vector processing engines. Channel decoding substantially differs
from the algorithms in the inner modem. They are non-standard signal process-
ing algorithms with non-standard arithmetic and word widths. Here, the challenge
is an efficient internal data management with a high utilization of the computational
units.

In case of the SODA platform, which consists of an ARM processor and four
uniform DSPs especially developed for SDR applications, one of these engines im-
plements channel decoding solely [16]. Rather than using a pool of uniform proces-
sors for physical layer processing and reserving one of them for channel decoding
only, we propose a heterogeneous platform in which channel decoding is performed
by an ASIP that is optimized for this task. Thus, this ASIP can be considered as a
weakly programmable processor that offers just enough flexibility and yields power
efficiency. We will show that efficient utilization of application knowledge yields
efficient and flexible architectures, as confirmed in a design study on a scalable re-
configurable channel decoder for future wireless handsets [15]. High performance
combined with the advantages of processors, namely instruction level flexibility, are
achieved by ASIPs, cf. Chap. 2.

In [20] the first ASIP targeting the channel coding domain of UMTS turbo codes
was presented. The gain in processing speed of this ASIP was limited by the clas-
sical RISC (reduced instruction set computer) structure and its general load/store
memory architecture. Total freedom in pipeline and memory architecture design
gives room for further improvement. Moreover, it allows to add application specific
run-time reconfigurability to the ASIP approach. Run-time reconfigurability yields
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a further performance boost allowing, e.g., fast context switches and a reduced in-
struction bit width.

An ASIP using this approach is presented in [22], but it only targets binary and
duo-binary turbo codes with a maximum of eight states. Convolutional codes, turbo
codes with more than eight states, and LDPC codes are not supported. The ASIP
presented in this chapter, named FlexiChaP (Flexible Channel Coding Processor),
resolves this lack of code support and furthermore achieves a higher data through-
put, as will be shown in Sect. 14.7. In detail the architecture was presented in [1,
29]. FlexiChaP represents a whole family of processors since it can be tailored to the
application scenario by design-time configurability. It implements convolutional,
turbo, and LDPC decoding for a vast number of existing and emerging standards
in the field of mobile wireless communication systems. Run-time reconfigurability
plays a major role in achieving the required flexibility as will be shown in Sect. 14.5.

14.2 Channel Codes

A careful analysis of channel codes incorporated in communication standards re-
veals that most of them are using convolutional codes, binary/duo-binary turbo
codes, and LDPC codes. Although block sizes, polynomials, and coding rates differ
both within one coding scheme as well as between the coding schemes, it is possible
to find commonalities for convolutional and turbo decoders which can be exploited
for the decoder’s architecture. In contrast the decoding algorithm of LDPC codes
varies substantially from convolutional and turbo code.

Table 14.1 summarizes relevant standards.

Table 14.1 Standards and channel codes.
Standard Codes States Code Rates Infobits Throughput
GSM CC 16, 64 1/4, 1/3, 1/2 Up to 876 Up to 12 kbit/s
EDGE CC 64 1/4, 1/3, 1/2 Up to 870 Up to 384 kbit/s
UMTS CC 256 1/4, 1/3, 1/2 Up to 504 Up to 32 kbit/s

bTC 8 1/3 Up to 5114 Up to 2 Mbit/s
CDMA2000 CC 256 1/6, 1/4, 1/3, 1/2 Up to 744 Up to 28 kbit/s

bTC 8 1/5, 1/4, 1/3, 1/2 Up to 20730 Up to 2 Mbit/s
HSDPA bTC 8 1/2, 2/3, 3/4 Up to 5114 Up to 14.4 Mbit/s
LTE bTC 8 1/3–9/10 Up to 6144 Up to 150 Mbit/s
DAB CC 64 1/4 None Up to 1.1 Mbit/s
DVB-H CC 64 1/2, 2/3, 3/4, 5/6, 7/8 1624 Up to 32 Mbit/s
DVB-T CC 64 1/2, 2/3, 3/4, 5/6, 7/8 1624 Up to 32 Mbit/s
DVB-RCT dbTC 8 1/2, 3/4 Up to 648 Up to 31 Mbit/s
IEEE802.11a/g CC 64 1/2, 2/3, 3/4 Up to 4095 Up to 54 Mbit/s
IEEE802.11n CC 64 1/2, 2/3, 3/4 Up to 4095 Up to 450 Mbit/s

LDPC – 1/2, 2/3, 3/4, 5/6 Up to 1620 Up to 450 Mbit/s
IEEE802.16e CC 64 1/2, 2/3, 3/4, 5/6 Up to 864 Up to 75 Mbit/s
(WiMAX) dbTC 8 1/2, 2/3, 3/4 Up to 4800 Up to 75 Mbit/s

LDPC – 1/2, 2/3, 3/4, 5/6 Up to 1920 Up to 75 Mbit/s
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14.2.1 Convolutional Codes

In convolutional codes forward error correction is enabled by introducing parity bits
at the encoder. Convolutional encoding is based on a shift register process, which
can also be interpreted as a Mealy automaton. Binary convolutional codes are char-
acterized by a single binary input sequence (information sequence). They are fully
specified by the constraint length Kc = m+1 with m the size of the shift register, a
feedback polynomial GFB , and generator polynomials Gi for the parity bits. In case
of GFB = 0 the code is non-recursive, otherwise recursive. Note that one output
sequence can be equal to the input sequence: the systematic information. The num-
ber of output values per information bit defines the rate R of the code. The code rate
is defined as R = information bits

information bits+parity bits . It can be adapted by the number of
generator polynomials and the puncturing scheme. By puncturing, certain bits are
removed from the coded bit stream and are not transmitted.

In mobile and wireless communications systems a large variety of binary con-
volutional codes with varying puncturing schemes are used. The constraint length
typically varies between Kc = 5 . . . 9, and the number of generator polynomials
between 1 and 4. The polynomials themselves basically assume arbitrary values.

Convolutional codes are usually decoded using the Viterbi algorithm (VA) [27,
28]. It finds the most likely sequence of state transitions in a finite-state Markov
chain and generates hard decision output values.

14.2.2 Turbo Codes

Turbo codes, proposed by Berrou et al. [3], are among the most advanced chan-
nel coding schemes. The idea behind these codes is to construct a powerful error
control code out of simple building blocks. Two component codes are concatenated
either in parallel or in serial, separated by an interleaver (INT) that rearranges the
bits in a pseudo-random fashion. Typically, convolutional codes are used as compo-
nent codes, see Fig. 14.1. The goal of the interleaver is to provide each component
decoder with uncorrelated input data. The constraint length of the component codes

Fig. 14.1 (a) Berrou’s turbo encoder and (b) turbo decoder structure.
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typically is Kc = 3 . . . 5. In binary turbo codes single bits enter the component
encoders sequentially, where as in the case of duo-binary turbo codes two bits are
encoded in parallel [4].

The ultimate goal of a channel decoder is to find the a-posteriori probability
(APP) for each information bit. The turbo decoder approximates an APP decoder
by decoding the component codes separately but cooperatively. A closed loop of
component decoders, separated by an interleaver and deinterleaver, iterates several
times, until a predetermined number of iterations is reached, or earlier if some other
stop criterion is fulfilled [11]. The component decoders are soft-input soft-output
(SISO) decoders that perform APP decoding. Turbo decoding typically uses the
Maximum A-posteriori Probability (MAP) algorithm since it processes soft input
values (intrinsic information) and it produces soft output values (extrinsic informa-
tion). In contrast the Viterbi algorithm only generates hard decoded bits. An im-
plementation friendly version of the MAP algorithm is the suboptimal Max-Log-
MAP, since it works in the logarithmic domain. Here multiplications are substituted
through additions. Both, Max-Log-MAP and Viterbi decoding, are based on the
add-compare-select (ACS) recursion. For more details on the decoding algorithms
refer to [27, 28, 3, 25].

14.2.3 LDPC Codes

LDPC codes [9] are linear block codes defined by a sparse parity check matrix
H of size M × N , see Fig. 14.2(a). For binary LDPC codes a valid codeword x
has to satisfy HxT = 0 in a modulo-2 arithmetic. A column in H is associated
to a codeword bit, a row corresponds to a parity check. A non-zero element in a
row means that the corresponding bit contributes to this parity check. The complete
code can be best visualized by a Tanner graph, a graphical representation of the
associations between code bits and parity checks. Each column of H corresponds
to a variable node (VN) and represents one code bit, each row of H corresponds
to a check node (CN) and represents one parity check, respectively. Edges connect
variable and check nodes according to the non-zero elements of the parity check
matrix. Figure 14.2(b) shows the corresponding Tanner graph to the parity check
matrix in Fig. 14.2(a) of an LDPC code with N = 7 variable nodes and M = 3

Fig. 14.2 Definition of an LDPC code: (a) parity check matrix (b) corresponding Tanner graph.
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check nodes. The number of edges connected to a given node is called the node
degree.

Like turbo codes, LDPC codes are decoded iteratively. Messages about the bit
probabilities are transmitted via the edges between variable nodes and check nodes.
The check nodes perform the parity check calculation, while the variable node per-
form an overall estimation of the decoded bit. The decoding process is stopped if all
parity checks are satisfied or a fixed number of iterations has been performed.

Fully parallel decoder implementations instantiate all nodes of the Tanner graph.
This approach lacks flexibility and is furthermore infeasible for high block lengths.
LDPC decoders are therefore implemented in a partly parallel fashion, where only
a subset of nodes in the Tanner graph is implemented as hardware units. The nodes
of the Tanner graph are processed in a time multiplexed way on the functional units.
Low latency and high throughput are obtained by exchanging many messages be-
tween variable and check nodes per clock cycle. A random connectivity between
variable and check nodes poses big challenges for an efficient hardware implemen-
tation. Complex connectivity networks become mandatory to allow for a flexible
and parallel message exchange, resolving occurring memory access conflicts. Thus,
LDPC codes defined by standards are based on so called structured LDPC codes [5].
The matrices of these codes are composed of cyclically shifted identity matrices of
size P × P . Figure 14.3 shows the structured binary parity check matrix of the
WiMAX code with N = 576 variable nodes, M = 288 check nodes, and P = 24.

Fig. 14.3 A parity check matrix of the WiMAX code with P = 24.

These codes allow for an efficient implementation of the connectivity between
up to P variable and P check nodes. Memory access conflicts are avoided and a
low complexity logarithmic barrel shifter is sufficient as connectivity network for
a given P . A flexible LDPC decoder has to support different submatrix sizes and
varying node degrees. For more information on the decoding algorithms refer to [9,
18, 6].
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14.3 Decoder Requirements

As one can see from Table 14.1, each standard has its own parameters for the chan-
nel encoder, such as different constraint lengths, generator polynomials, and, in case
of turbo codes, different interleaving patterns. For LDPC codes many different par-
ity check matrices have to be supported, depending on block size and code rate.
Thus, the ASIP has to support a wide range of coding parameters.

In summary, the following specifications were derived which have to be provided
by the ASIP to fulfill the flexibility requirements for SDR systems:

• combined decoder for CC, binary/duo-binary TC, and LDPC decoding,
• VA and Max-Log-MAP decoding for CC,
• support of N = 16 . . . 256 states for CC,
• support of N = 4 . . . 16 states for bTC,
• support of N = 8 . . . 16 states for dbTC,
• arbitrary feedback and generator polynomials,
• rate flexibility by internal depuncturing of punctured codes for CC and TC,
• submatrix size flexibility for LDPC codes,
• check/variable node degree flexibility for LDPC codes,
• high throughput, low latency.

The throughput requirements strongly vary with the communication protocols
and standards. In a mobile service like HSDPA, for instance, the maximum through-
put for the turbo decoder is 14.4 Mbps. We target a throughput of at least the max-
imum of HSDPA. If the required throughput is not achieved by a single processor,
e.g., in a WiFi system, FlexiChaP can be configured for a multiprocessor decoder
system [30].

14.4 ASIP Design Methodologies

ASIPs allow for smooth trade-offs of implementation flexibility (in terms of soft-
ware programmability) against hardware performance (throughput, energy, area).
Application specific instructions offered by these processors can close the perfor-
mance gap between traditional processors and dedicated hardwired solutions and
improve the energy efficiency.

One can distinguish between software-driven top-down and architecture-driven
bottom-up design methodologies for ASIPs. In the traditional top-down approach,
one starts with a generic architectural processor template, e.g. a 5-stage RISC (re-
duced instruction set computer) pipeline, see Fig. 14.4(a). By profiling the target
application on this processor the bottlenecks are identified and removed by insert-
ing application specific instructions. This approach therefore can be considered as
a software-driven design flow. In contrast, the bottom-up approach starts from the
micro-architecture level, see Fig. 14.4(b). By a thorough analysis of the target al-
gorithms and the required flexibility, functional blocks (indicated by triangles) are
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Fig. 14.4 ASIP design methodologies (a) top-down approach (b) bottom-up approach [2].

identified that need to be included into the processor pipeline. Thus, this approach
can be considered as a architecture-driven design flow. All the flexibility and over-
head in the processor that is not needed by the application is removed. Adapting bit
widths, arithmetics, memory hierarchies etc. completely to the needs of the applica-
tion yields best performance and energy efficiency. ASIPs designed in this manner
share hardly any characteristic of classical RISC pipelines and can be considered
as application specific building blocks enhanced with programmability. To empha-
size this property these special processors are also called weakly programmable IP
(WPIP).

14.5 Architecture

14.5.1 General Considerations

As pointed out in the previous sections, channel decoding for the various standards
requires a high flexibility. However, since the ASIP is intended to only perform
channel decoding, a “just enough policy” dominated the pipeline design. I.e., the
FlexiChaP ASIPs were designed following the bottom-up approach as explained in
the previous section. Dedicated architectures for the different decoding algorithms
were intensively investigated w.r.t. commonalities in computation and memory or-
ganization. Table 14.2 shows the result of our analysis. The different building blocks
and memories, and how they can be shared among the different algorithms are listed.
It shows that many operations can be shared between convolutional and turbo de-
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coding. LDPC decoding differs fundamentally from these trellis based decoding
algorithms, but memory sharing is still applicable.

Table 14.2 Basic building blocks of the different decoding algorithms. Besides the common build-
ing blocks, the extrinsic and the survivor memory can be shared in a common decoder architecture.

Viterbi MAP Turbo LDPC
Branch metric calculation x x x
State metric calculation x x x
LLR calculation x x
Traceback x
Variable node calculation x
Check node calculation x
Barrel shifter x

Channel value memory x x x x
State metric memory x x x
Extrinsic memory x x
Survivor memory x

The ASIP was designed with an ASIP environment which does not impose any
constraints on the instruction set, pipeline or memory structure. For this we used
the ProcessorDesigner from CoWare [7]. The data path is modelled with LISA (lan-
guage for instruction-set architectures). From the LISA description all needed tools
and models can be generated (clock accurate C++ pipeline model, assembler, linker,
debugger, synthesizable VHDL model).

Optimization for turbo and LDPC decoding was the primary goal since these
are the most demanding tasks. We process one complete ACS recursion step of
turbo code applications in a single clock cycle. Higher constraint lengths as they
are common in convolutional codes are processed in a time multiplexed manner.
To compute one recursion step per clock cycle, it must be possible to read channel
values, to process branch and state metrics, and to store multiple state metrics or
soft output values in parallel. This requires data parallelism within the pipeline, and
a customized memory architecture with high memory bandwidth. Turbo codes do
not use component convolutional codes with a constraint length Kc larger than 5.
Hence, a maximum of 16 state metrics are computed in parallel. If Kc is larger
than 5, the state metrics of a single trellis step have to be computed sequentially.
Therefore a trellis step of a code with, e.g., 256 states needs to be divided into 16
partitions, each including 16 states or eight butterflies.

For LDPC decoding a whole submatrix can be processed per clock cycle. The
maximum submatrix size is 27×27. In case bigger submatrices need to be supported,
the parity check matrix has to be reordered to submatrix sizes of 27 × 27 or less.

The channel code structure is at least constant for a whole data block. The cost
(w.r.t. area and energy) of specifying the code structure with each instruction is very
high. On the other hand it is important to be able to switch within a few clock cycles
from one channel code to another, for instance to support soft handover. Therefore
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the channel code configuration is not specified by the instructions but is kept dy-
namically reconfigurable within the ASIP, as explained later in Sect. 14.5.4.

The decoding algorithm itself is software defined, i.e., based on the special in-
struction set of the ASIP. Various windowing [8] and block termination schemes [24]
must be supported for turbo, MAP, and Viterbi decoding. The software programma-
bility yields flexibility, e.g., to adjust the acquisition length to the code structure
and to the communication channel conditions. For LDPC decoding the node degree
variability is achieved on the software level, whereas the submatrix size is reconfig-
urable.

14.5.2 Memory Concept

As already mentioned, flexible data routing and efficient data management are key
for an efficient channel decoding. Thus the ASIP is based on a distributed mem-
ory concept, composed of various memories allocated to specific pipeline stages as
depicted in Fig. 14.5.

Fig. 14.5 General pipeline architecture for turbo/viterbi decoding, consisting of an interface, mem-
ories (a program memory, an interleaver memory, a channel value memory (CV), a last-in-first-out
buffer (LIFO), a state metric memory (SMM), a hard decision output memory (HD), and a memory
for a-priori or local survivor storage (AP/SUR)), a dynamically reconfigurable channel code con-
trol, a program control, and an instruction pipeline with 15 stages (Fetch (FE), Decode (DC), Ad-
dress Generation (AD), Interleaver Access (IL), CV and AP/SUR Memory access (MEM), Branch
Metric Calculation (BM1), Branch Metric Shuffling (BM2), State Metric calculation (SM), 4 stages
for LLR calculation (LLR1 to LLR4), Extrinsic Calculation and Saturation (SAT), and Write Back
(WB)) [29].

Besides the channel value (CV) memory for the input and the hard decision (HD)
memory for the output data, two additional memories are reserved to store internal
data only: one, a state metrics memory (SMM) for the storage of the state metrics
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during forward or backward recursion of the MAP algorithm, or for the storage of
intermediate state metrics during Viterbi processing. It can store 128 words each
192 bits wide. Two, a last-in-first-out (LIFO) which serves as buffer for channel and
a-priori values. The SD memory serves for internal data storage, namely the a-priori
values for turbo decoding or the decision bits of the local survivors for the traceback
of the Viterbi algorithm. For LDPC decoding the pipeline and memory organization
looks different, since the main goal for the integration of LDPC codes was memory
sharing between turbo and LDPC functionality. E.g. the SMM is used to store the
channel/a-posteriori values of an LDPC code and it is furthermore accessed at dif-
ferent pipeline stages. Note that all memories are switched off when not accessed to
reduce power consumption.

The instructions are able to access up to six memories in parallel. The addresses
for these memory accesses are generated with the help of five dedicated address
registers placed in the AD pipeline stage (e.g. WBA, RDA, CVA). The address reg-
isters are modified implicitly by the instructions, or explicitly by direct or indirect
addressing coded in the instructions.

14.5.3 Pipeline

The data path consists of 15 pipeline stages. Figure 14.6 shows the pipeline with the
hardware used during turbo and MAP decoding, and Fig. 14.7 depicts the hardware
needed for LDPC decoding. While most of the logic of the turbo pipeline is reused
for Viterbi decoding, almost no logic is shared with the LDPC functionality. When
compared to a standard RISC pipeline, there are hardly any commonalities. Only the
first two stages, instruction fetch (FE) and instruction decode (DC), are similar. The
rest of the pipeline is completely tailored to the decoding algorithms. One essential
operation for turbo and Viterbi decoding is the ACS operation. In Fig. 14.6 this
operation is performed in the SM stage, in the so called butterflies. The inputs and
outputs to/from these butterflies, however, have to be shuffled according to the code
structure, i.e., the polynomials of the used convolutional code. The Dynamically
Reconfigurable Channel Code Control (DRCCC) is responsible for applying the
correct shuffling context to the data path. 16 states can be processed by the butterflies
in binary mode in one clock cycle, and 8 states in duo-binary mode, respectively.

In case of more than 16 states, a load-store architecture is implemented: interme-
diate state metrics are loaded from the SMM to a pipeline register, processed, and
then written back from the pipeline register to the SMM. A single trellis recursion
with 256 states can thus be computed in 16 consecutive steps. Each step requires
two clock cycles since the load and the write-back are executed in parallel on the
dual-ported SMM. Furthermore, each step requires a different data shuffling.

For LDPC decoding it is necessary to support different submatrix sizes. Hence
reconfigurable barrel shifters are used within the pipeline. The shifters have to be
reconfigured if at all only after a block has been decoded.
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Fig. 14.6 Pipeline architecture as required for CC and TC decoding using the Max-Log-MAP
algorithm [29].

14.5.4 Dynamically Reconfigurable Channel Code Control

The DRCCC unit defines the structure of the convolutional (component) code that
is in use. It controls the internal data routing of the data path and the memory con-
figuration. The DRCCC is look-up-table (LUT) based. It includes a shadow and a
working configuration. The working registers hold the configuration that is actually
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Fig. 14.7 Pipeline architecture as required for LDPC decoding. Pipeline stages are: fetch (FE),
decode (DC), address (AD), read (RD), shift (SH), extrinsic computation (EXT), check node in
(CNI), check node out (CNO), APP calculation (APP), saturation (SAT), shift inverse (SHI), write
back (WB) [1].

in use, while the shadow registers allow for loading a new configuration without
effecting the actual data processing. The content of the shadow registers is trans-
ferred to the working registers by a special instruction within one clock cycle, thus
allowing a fast context switch between different codes.

Moreover, the DRCCC unit allows for efficient multi-context instructions. As
already mentioned before, the state metrics of one recursion step for a convolutional
(component) code with more than 16 states are computed in up to 16 processing
steps in case of a code with 256 states. These different processing steps require,
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e.g., varying data routing within the data path pipeline. This routing is defined by
a context. Eight different contexts can be stored within the DRCCC. These eight
contexts are sufficient to decode a code with 256 states since the data routing does
not differ for all processing steps. Each of these contexts can be freely assigned to
the different steps.

The flow of loading the appropriate configuration parameters from the DRCCC
to the pipeline is depicted in Fig. 14.8. A certain step number is associated with
each data-manipulating instruction (e.g. step = 1 for VA1, step = 2 for VA2, and
so forth in the assembler code example in Fig. 14.9(a)). This step number is used
to look-up the context number that is associated with the current processing step.
Afterwards, the actually required part of the corresponding context is loaded into a
pipeline register, which in turn controls the data flow within the pipeline stage(s).
The example in Fig. 14.8 shows the load of the BM_allocation_context for the con-
trol of the branch metric shuffling between the branch metric calculation and the
state metric calculation.

Fig. 14.8 Use of configuration contexts within the pipeline: each trellis instruction specifies a
step number. Each step number is mapped to a certain context with the help of context_map. The
retrieved context number finally specifies the context that is loaded into a pipeline register and used
from there to control the data flow in the data path [29].

In total, 383 bits are sufficient to specify the whole channel code structure of a
convolutional code. Due to the DRCCC, the instruction bit width is reduced from
68 to 24 bits which considerably saves area and energy.

14.5.5 Instruction Set

The processor has to be programmed in assembler in order to fully exploit the perfor-
mance of the data path. Each instruction is 24 bits wide and can include besides the
opcode additional address information for accessing the CV, SD or SM memories.
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The instructions can be grouped in control, address modification, and algorithmic
instructions.

The program flow control is implemented by hardware-loops, or zero-overhead-
loops: a block of instructions is executed for a certain number of times defined by
the instruction, or forever. The block starts after the RPT instruction and ends at
a certain position in the program, defined by a label in the assembler program. A
stack-based system allows to nest five of these loops. Furthermore, a branch into a
subroutine is allowed.

Besides a no-operation instruction nop, a special instruction PD is defined to
power down the processor’s pipeline and to set it into a sleep mode. This sleep mode
can only be left by applying the wakeup interrupt request through the interface of
the ASIP. The content of the shadow registers of the DRCCC is transferred to the
working registers by the reconf instruction.

The algorithmic instructions can be grouped into LDPC instructions, VA instruc-
tions, and MAP instructions for “fully parallel” and “partially parallel” processing
of the state metrics. The “fully parallel” Log-MAP instructions can compute all state
metrics of one recursion step in parallel. If the constraint length of the code is larger
than five, the “partially parallel” instructions allow for sequential processing of a
single trellis step. The example assembler code for Viterbi decoding of block with
254 infobits coded with Kc = 7 and R = 1/3 is shown in Fig. 14.9(a). The as-
sembler code is independent of the feedback and generator polynomials. Those are
defined in the DRCCC. For larger blocks basically only the number of repetitions of
the loops has to be modified. Therefore it is possible to write very compact instruc-
tion code, resulting in a small program memory. Figure 14.9(b) shows an assembler
code for LDPC decoding. This code exactly corresponds to the parity check matrix

Fig. 14.9 (a) Viterbi assembler code for a convolutional encoded block with 254 information bits,
constraint length Kc = 7 equal to 64 states, rate R = 1/3 [29]. (b) LDPC assembler code snippet
for WiMAX LDPC code of Fig. 14.3 (N = 576, M = 288, R = 1/2) [1].
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in Fig. 14.3. The reconfigurable barrel shifters are initialized with l.subm, while a
whole submatrix is being processed with l.diag.

14.6 ASIP Validation

Validation of the presented ASIP family is very challenging. Due to the high flexi-
bility many use cases have to be considered when testing. E.g., the UMTS standard
alone accounts for more than 5000 different block lengths that have to be tested.
Furthermore, Monte Carlo simulations are preferable, since they show the bit and
frame error rates (BER/FER) for given signal-to-noise ratios (SNR). Thus they show
the overall system performance of the ASIP with the running program. Performing
these simulations with the generated C++ pipeline simulation model or the VHDL
model is infeasible. The decoding speed on standard PCs with more than 3 GHz is
just several hundred payload bits per second. This speed is at least three orders of
magnitude too low.

To overcome the aforementioned validation bottlenecks, a rapid prototyping en-
vironment was developed [2]. We chose the Xilinx ML507 evaluation platform [21]
for rapid prototyping the ASIP, since this platform perfectly fits our requirements. It
is a fully featured FPGA board with many interfaces and a hardwired IBM PowerPC
440 on the Virtex5 FPGA. The Xilinx Embedded Development Kit 10.1 (EDK) was
used to integrate the prototyping platform.

Prior to running the ASIP three tasks have to be performed:

• A configuration has to be loaded into the ASIP.
• A program has to be loaded into the ASIP.
• Data has to be sent to the ASIP.

Due to the high flexibility of FlexiChaP, an intelligent interface is needed. Config-
uration data has to be generated, programs have to be loaded, and input data have
to be generated and loaded into the ASIP. Furthermore, BER and FER have to be
calculated after decoding. Performing all these tasks in software is the only way to
offer the required flexibility. The PowerPC on the FPGA is used for this by commu-
nicating with the ASIP via the processor local bus (PLB). For this, a PLB wrapper
has been created around the ASIP interface. Configuration and program are loaded
in a memory mapped way into the ASIP, while for data transmission handshaking is
used.

Figure 14.10 shows the system data flow, which is based on three components:

• A graphical user interface (GUI) running on the PowerPC [10].
• A baseband processing chain for performing BER and FER simulations running

on the PowerPC.
• The FlexiChaP ASIP running in FPGA logic.

The GUI is used to set the system parameters, such as interleaver (e.g., UMTS or
LTE), block size, code rate, signal-to-noise ratio (SNR), and many more. When all
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Fig. 14.10 Emulation system data flow [2].

parameters are set, the system chain starts its operation. It consists of a flexible base-
band processing model with data generation, encoding, modulation (BPSK, QPSK,
8PSK, 16QAM, 64QAM or 256QAM), additive white Gaussian noise (AWGN),
demodulation, and BER/FER calculation. Decoding is performed on the ASIP. The
FlexiChaP software driver calculates the required configuration data and loads the
selected program from an external Compact Flash into the ASIP. After decoding,
the results are displayed on the GUI, but can also be sent to a PC, in order to check
the results automatically. If these are not satisfying for a certain case, it is possible
to apply the usual debugging methods.

The platform is used as a hardware/software development platform, that allows
us to quickly validate the correct functionality of the ASIP in conjunction with the
assembler programs. By using the GUI for controlling the whole system, the pre-
sented platform is able to run completely autonomously without any PC. Thus, it is
suitable for customers of the ASIP that want to develop their own programs. The
customers do neither need the LISA source code, nor the C++ pipeline simulation
model, nor the VHDL code of the processor, but only the programming model.

In our setup, the hardwired PowerPC is clocked at 450 MHz, a double-precision
floating point unit (FPU) runs at 150 MHz in FPGA logic, and the ASIP runs at
75 MHz. These clock frequencies were chosen because of the clock ratios that are
constrained between all these components. Table 14.3 shows the resulting payload
throughputs for the different validation techniques, i.e., C++ pipeline simulation
model, VHDL RTL model, and the presented FPGA-based rapid prototyping plat-
form. For the C++ and RTL simulations a standard PC with a Pentium4 CPU run-
ning at 3.2 GHz has been used.

For a UMTS turbo code with 882 information bits, the C++ model achieved a
payload throughput of only 450 bits per second, since the ASIP uses mainly non-
standard data types, e.g. signed integers with a 6 bit quantization are used for the
channel values. With this simulation speed it takes 22 days to simulate one million
blocks, which is a necessity for tests at a FER level of 10−4. This simulation corre-
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Table 14.3 Throughput comparison for different evaluation techniques [2].

Code rate Payload Throughput/kbps UMTS turbo code (882 info bits, 5 iterations)
C++ VHDL FPGA-based FPGA-based
model model (soft-AWGN) (hard-AWGN)

1/3 0.45 0.12 37.0–151.2 217.3–252.0
1/2 0.45 0.12 53.7–195.3 272.5–309.8
2/3 0.45 0.12 71.6–267.8 364.7–415.0
9/10 0.45 0.12 97.7–363.3 507.2–578.2

sponds to only a single SNR and a single configuration. The RTL simulation speed
of 120 bits per second with ModelSim is another factor of three to four slower.

In contrast to these simulation methods, the prototyping platform achieves pay-
load throughputs of up to 363.3 kbps with a software noise channel.

In order to further increase the throughput, the software noise generator is re-
placed by a high quality AWGN IP running in FPGA logic [31]. In this way, the
throughput of the overall system can be drastically increased at the cost of flexi-
bility regarding the supported SNRs (the AWGN IP only supports SNRs in steps
of 0.1 dB). Accelerations of up to 600% for BPSK and up to 165% for 256QAM
modulation are achievable with the hardware noise channel. Throughputs of more
than 575 kbps are possible.

The obtained BERs/FERs from the platform are congruent with a turbo decoder
software model that applies the same parameters. Thus, the prototyping platform
successfully validated the ASIP when running a programm. Up to one million
frames have been decoded per SNR with the software noise generator in just two
to four hours instead of 22 days. Employing the hardware AWGN channel in this
case gains another factor of five in throughput.

14.7 Results

As already mentioned, the FlexiChaP pipeline architecture was modelled in the
LISA language [7]. This model is parameterizable to support the full set of codes
as discussed before, or only a subset of the codes. Thus we provide design-time and
run-time configurability (see Table 14.4).

Table 14.4 Run-time and design-time configurability of FlexiChaP.

Design-time Run-time
Code classes x
Code structure x
Decoding algorithm x x
Memories x x

Various VHDL instances of the FlexiChaP pipeline were synthesized. A 65 nm
low power low leakage standard cell library with worst case conditions is used as tar-
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get technology. The area of the different ASIP instances without memories is listed
in Table 14.5. The maximum clock frequency for FlexiChaP with full functionality
is 400 MHz. If only a subset of codes is supported even higher clock frequencies are
possible. The area overhead of the ASIP with bTC, dbTC, and VA flexibility is 46%
compared to a dedicated 16-state bTC decoder ASIP, not considering the memories.
LDPC functionality requires about as much logic as the support for these trellis-
based decoding schemes. Since there is almost no logic reuse between TC/VA and
LDPC decoding, the overall area with full functionality is approximately given by
the sum of TC/VA functionality and LDPC functionality. The ASIP was also syn-
thesized for a Xilinx Virtex4 FPGA. Here a maximum clock frequency of 132 MHz
was achieved when only LDPC codes are supported.

Table 14.5 ASIC and FPGA synthesis results for various instances of the ASIP [1].

Functionality ASIC (65 nm, 1.10V, 120◦C) FPGA (Xilinx xc4vlx80-12)
bTC dbTC VA LDPC Size [mm2] Frequency [MHz] Size [Slices] Frequency [MHz]
X 0.074 450 (max) 4,207 135 (max)
X X 0.089 415 (max) 5,494 117 (max)
X X X 0.109 400 (max) 7,012 109 (max)

X 0.113 425 (max) 8,076 132 (max)
X X X X 0.232 400 (max) 14,495 109 (max)

FlexiChaP with full functionality requires 0.39 mm2 for the memories. Due to
the high memory reuse for LDPC decoding still 0.31 mm2 are needed when omit-
ting LDPC support. Overall this sums up to 0.62 mm2 with full functionality and
0.42 mm2 without LDPC support. With this RAM configuration it is possible to
decode binary turbo codes with up to 6144 information bits, duo-binary turbo and
convolutional codes with up to 8192 information bits (R = 1/2 for convolutional
codes). LDPC codes with a block length of up to 3456 bits, a check node degree
of up to 28 and up to 13824 edges are decodable. Thus, all LDPC codes in the
WiMAX and WiFi standards are supported by the ASIP. Note that the memories
can be tailored to the actual application scenario at design and run-time.

Table 14.6 Core payload throughputs of FlexiChaP for convolutional, turbo and LDPC codes [1].

Algorithm Throughput/Mbps Conditions
@ 400 MHz

Viterbi 12–196 16–256 states
Binary MAP 1.6–170 4–256 states
Binary TC 17 4–16 states, 5 iterations
Duo-binary TC 17–34 8 or 16 states, 5 iterations
LDPC 27.7–257.0 10–20 iterations

The payload throughputs achieved by FlexiChaP for convolutional, turbo and
LDPC decoding are listed in Table 14.6. For Viterbi and MAP decoding the through-
put strongly depends on the number of states. If the number of states is higher than
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16 in the binary case the load/store mechanisms as mentioned before result in a de-
creased throughput. The LDPC decoding throughput varies depending on the sub-
matrix size and the code rate. The LDPC throughputs are valid for the WiMAX and
WiFi standard.

Table 14.7 Comparison of different turbo decoder implementations for UMTS turbo codes [29].

Implementation Size Clock freq. Cycles/ Throughput
Technology (bit*MAP) @ 5 iter

Conf. RISC [20] ASIC (130 nm) 104 kGE 133 MHz 9 1.4 Mbps
Clustered VLIW [14] VirtexII-4000 517 slices 80 MHz 8 1 Mbps
XiRisc [17] ASIC (130 nm) 6000 kGE 100 MHz 100 0.1 Mbps
SODA [32] ASIC (180 nm) 1000 kGE 400 MHz 20 2 Mbps
ASIP [22] ASIC (90 nm) 63 kGE 400 MHz 3.5 11.4 Mbps
FlexiChaPa ASIC (65 nm) 53 kGE 400 MHz 2.35 17 Mbps
FlexiChaPa Virtex4 7012 slices 109 MHz 2.35 4.6 Mbps
aFull functionality without LDPC.

Table 14.7 summarizes turbo decoder implementations for UMTS turbo code ap-
plications on different state-of-the-art target platforms. The total gate count of the
ASIP core in the 65 nm standard cell technology without memories providing full
functionality but LDPC support is 53 kilogate equivalents (kGE). Compared to the
processors of [20] and [22] with 104 kGE and 63 kGE for the core’s logic, respec-
tively, FlexiChaP saves more than 15% of the area, but provides much higher flexi-
bility. The size of FlexiChaP and the ASIP of [22] differ considerably from a plat-
form like SODA. However, it is important to notice that the other processors provide
a much higher flexibility whereas FlexiChaP and the ASIP of [22] are only intended
for channel decoding. The clock frequencies listed are maximum values. They dif-
fer, among other things, because the target technology is not the same. FlexiChaP
outperforms the other processor implementations even if they all run with the same
clock frequency. This high performance is achieved due to the high internal mem-
ory bandwidth, the specialized data path pipeline, and the internal reconfigurable
data shuffling and reordering mechanisms. The overhead of FlexiChaP in compari-
son to a fully dedicated solution for an eight state duo-binary turbo-decoder is less
than 25%. This is mainly due to the fact that memory is the dominating part and
the memory sizes are the same for a dedicated implementation and the FlexiChaP
solution except for the program memory which is quite small. Moreover the ba-
sic building blocks of the data path pipeline like LLR and butterfly calculations do
hardly differ from a dedicated solution. Considering the FPGA implementation, the
processor presented in [14] is competitive in terms of area and throughput, but not in
flexibility. The solution of [14] is only able to decode turbo codes with eight states
and code rates of 1/3 and higher, convolutional codes are not supported at all.

Postlayout analysis without LDPC support shows a clock frequency of 350 MHz
and a size of 0.75 mm2 in a 65 nm CMOS technology. First estimates for the core’s
logic power consumption are 100 mW. Fig. 14.11 depicts the ASIP layout with an
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Fig. 14.11 ASIP layout after place and route. The total size is 0.75 mm2 without the network
interface [29].

additional Network-on-Chip (NoC) interface. This instance of FlexiChaP without
LDPC support is currently in fabrication.
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Chapter 15
Dynamically Reconfigurable Systems
for Wireless Sensor Networks

Heiko Hinkelmann, Peter Zipf, and Manfred Glesner

Abstract In this chapter, we explore the design of a coarse-grained reconfigurable
architecture for wireless sensor network nodes, which applies frequent runtime re-
configuration to obtain the required combination of high energy efficiency and pro-
grammability for the target domain. We particularly examine the effect of the recon-
figuration overhead on total system efficiency, and propose a novel reconfiguration
mechanism to reduce this overhead. Comparing the energy consumption, area, and
performance of our architecture to processor and ASIC designs, our experiments
show the low total energy consumption achieved, the low reconfiguration overhead,
and the specific region of the architecture in the design space between processors
and ASICs. In particular, large energy-savings of factor 2 to 6 and speed-ups of
factor 6 to 14 compared to processors are obtained on average. Overall, our work
shows the high suitability of frequent runtime reconfiguration for the design of very
energy efficient but yet programmable embedded system architectures.

15.1 Introduction

Emerging technologies like ubiquitous computing, smart environments, wearable
computing and—of particular interest for our research work—wireless sensor net-
works (WSN) all rely on the availability of small and efficient embedded system
platforms in large quantities. While low area consumption and programmability are
important cost factors, it is typically energy efficiency which constitutes the most
critical design challenge for WSN nodes. Lifetimes of up to several years often need
to be achieved with the energy budget of a small battery only. Processors typically
cannot provide high energy efficiency for data processing on the nodes, whereas
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ASICs are usually too costly. Therefore, the development of new architectures for
energy-constraint embedded systems becomes important for achieving the desired
balance between high energy efficiency, small size, and flexibility.

The objective of our research work is to study specifically the suitability of a
new type of reconfigurable architecture to provide this balance [16, 11]. Character-
istic for this approach is the extensive use of frequent runtime reconfiguration of
a small coarse-grained heterogeneous data path. Frequent runtime reconfiguration
is however controversial: On the one hand, it allows efficient cycle based hardware
reuse and hence keeps the data path small, flexible and cost-efficient. On the other
hand, it is usually associated with a large energy and performance overhead. Yet, in
contrast to this common experience, the presented results will show that the recon-
figuration costs for our new architecture remain small even in the worst case. Thus,
this architecture approach is shown to be indeed well suited to achieve the required
combination of high energy efficiency, small size, and flexibility.

A key factor to achieve these low reconfiguration costs is a novel reconfigura-
tion mechanism developed in the scope of this project, constituting an additional
important result of our research work [14]. Due to its good scalability and easy
adaptability, it is well suitable to be adopted for other reconfigurable architectures
and application domains as well as for design automation tools for such systems.

15.1.1 Outline

The following sections of this chapter begin with a short review of WSNs and re-
lated work (Sect. 15.2). Then, the design of our reconfigurable architecture is in-
troduced, including the datapath design (Sect. 15.3), the proposed reconfiguration
mechanism (Sect.15.4), and the overall sensor node system (Sect. 15.5). Detailed
analysis results evaluating the energy efficiency, area, and performance of our ar-
chitecture in comparison to processor and ASIC reference designs are provided next
(Sect. 15.6), followed by a short presentation of a developed prototyping platform
(Sect. 15.7). The chapter concludes with a brief discussion of possible utilisation
of the achieved results beyond our research project (Sect. 15.8) and a concluding
evaluation (Sect. 15.9).

15.2 Motivation and Background

A typical WSN node (mote) consists of a small processing unit, sensors, a RF
transceiver, and a battery for autonomous power supply [1]. For most applications,
the motes must be small, cheap, and achieve long lifetimes up to several years. En-
ergy consumption is therefore the most critical and limiting factor in WSNs today.

A node consumes energy mainly for wireless communication and for processing.
A trade-off exists between both factors, since local data processing can be applied
to reduce wireless communication demand and vice versa [25, 7]. Significant re-
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duction of communication costs can be achieved, e.g., by reducing retransmissions
through forward error correction [28] or by application-specific pre-processing of
sensor data. Moreover, local data processing can be useful for smart functionality or
required for providing security via encryption and authentication.

How costly local data processing is depends on the mote architecture. Most ex-
isting nodes use small processor architectures, e.g. [10, 21]. However, processors in
general suffer from low energy efficiency, because low power consumption is out-
weighed by long execution times. Local data processing is therefore often too costly
on such platforms and hence highly limited, representing a severe drawback.

ASIC architectures on the other hand provide best energy efficiency, often several
orders of magnitude better than processors [3]. However, the large variety of WSN
applications differs so much in functionality [7, 26], that individual ASIC designs
would often not achieve the high volumes required to compensate their high design
costs. A programmable platform is needed instead. The idea to use reconfigurable
computing for designing more energy efficient programmable mote platforms was
discussed, e.g., in [25]. Our own approach studies a new reconfigurable architecture
concept for this purpose.

Our approach differs from previously presented reconfigurable architectures
like [4, 5, 20, 22, 19] in several ways. First, we optimise our architecture for low
energy consumption, and achieve substantially lower power values for the entire ar-
chitecture of few mW only [16]. Second, from architectural perspective, dynamic
reconfiguration is applied extremely frequently to enable efficient resource sharing
of a small coarse-grain data path, possibly having a different configuration in every
clock cycle. Hence, our architecture becomes much smaller than the pipeline or ar-
ray structures of [4, 20, 22, 19] for example. Solely RaPiD [5] follows a somewhat
similar approach. Yet, only two RaPiD cells (each 0.3 mm2 when scaled to 130 nm)
are already bigger than our complete architecture.

15.3 Design of a Reconfigurable Function Unit

Our objective to create a small, highly efficient and yet flexible mote architecture
is realised by applying frequent dynamic reconfiguration to a small heterogeneous
coarse-grain data path, while keeping the according reconfiguration overhead low.
The purpose of dynamic reconfiguration is to allow efficient inter-task and intra-
task resource sharing, thus requiring only few hardware resources. The data path is
integrated as a reconfigurable function unit (RFU) into a processor and serves as
energy-efficient accelerator for data processing of WSN functions [16, 11].

The RFU is designed flexible enough to support a large variety of WSN-typical
applications. Yet, some general, domain-specific customisation of the RFU architec-
ture to typical characteristics of the entire WSN domain can be made:

• Data processing is typically not based on continuous streams but rather on tasks,
e.g. packet processing or reaction to events. Short phases of active computing
will be followed by long phases in sleep mode.
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• High throughput is typically not required, since data rates are low. Nevertheless,
fast execution of tasks is of advantage. The earlier a node can finish its actual
tasks, the sooner it can enter low power sleep modes.

• Limited accuracy is usually sufficient for data processing, resulting from the
limited bit width of sampled sensor data. This affects favoured operand bit width
and granularity for the RFU.

15.3.1 Functional Coverage of the RFU

The large majority of functions in the WSN domain is based on two arithmetic
classes: either integer/fixed point arithmetic (DSP functions for sensor data process-
ing), or finite field arithmetic (common for communication-related functions). As
our main objective is the evaluation of different architecture concepts, it will be
sufficient to concentrate our studies on one of the two arithmetic classes, without
restricting the generality of the results.

The finite field arithmetic class has eventually been selected for this study, as it
allows to support common functions that can be part of almost any kind of WSN
application, like encryption, authentication, checksum calculation and forward er-
ror correction (FEC). The AES is part of common WSN standards [18] and used for
granting privacy, integrity and authenticity. FEC like BCH coding [29] can avoid
costly retransmissions [28]. Thus, total energy consumption is reduced if the en-
ergy invested in the computation of coding and decoding is outbalanced by larger
energy savings in wireless communication. This trade-off between computation and
communication costs can be optimised by selecting optimal code rates and lengths
depending on the actual channel quality. The RFU allows to adapt these coding
parameters quickly during runtime, by using its dynamic reconfigurability.

15.3.2 The RFU Data Path

According to the aforementioned design concepts and domain-specific require-
ments, a relatively small RFU data path with a task-based execution model is cho-
sen [11, 16]. Neither deep pipelines nor parallel processing of multiple tasks will
be required. Instead, frequent dynamic reconfiguration is utilised to execute tasks
sequentially on a limited amount of reconfigurable hardware resources.

The data path is composed of different types of dedicated operator blocks of 8-
bit granularity. The issue of arranging and interconnecting these heterogeneous re-
sources flexibly has been solved by the modular top level data path structure shown
in Fig. 15.1 [11]. It includes dedicated modules for multiply accumulate (MAC) op-
erations, inversion, local storage, and a memory interface. Few operators per module
are sufficient, because they can be reused flexibly by frequent dynamic reconfigura-
tion. Three global buses serve as highly flexible top level interconnects between the
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Fig. 15.1 Modular structure of the RFU data path.

modules and the RFU’s inputs/outputs. Each module is sized to be able to process
4 bytes in parallel, in order to obtain a balanced throughput with the 32-bit global
interconnect structures and avoid bottlenecks in the design.

Fig. 15.2 Single cell of the MAC module.

The core of the data path in Fig. 15.1 is the MAC module, which combines all
adder and multiplier operators. They are arranged internally in a 4 × 4 array of
identical cells, which are illustrated in detail in Fig. 15.2 [16]. Each cell comprises
one finite field (FF) multiplier, one FF adder, and three registers (8 bit granularity
each). Multiplication and addition results can be routed immediately to other cells
via output1 or stored temporarily in the local registers. The customised intercon-
nect structure of the cells and the MAC array provides efficient support for common
operation sequences like multiply-accumulate, addition of multiple operands, or in-
stant sum-of-products. The array has a preferred data flow direction from top to
bottom, but feedback and chaining of up to 16 cells are also possible. Horizontal
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concatenation of cells allows to configure larger operators (up to 32 bit) by using
dedicated interconnects between the multipliers of a row.

The Inversion module comprises four operator blocks working in parallel, each
being able to perform one 8-bit FF inversion or the very similar sbox and inverse
sbox special operations of the AES standard [6]. A byte-wise shift operation has
been integrated implicitly into the global buses, which allows to shuffle the four
bytes of one bus arbitrarily.

The Register and Memory modules provide extra local storage capabilities like
additional registers (e.g., for holding temporary variables or frequently used con-
stants) and a versatile local memory of 256 bytes, which is configurable either as
LUT or FIFO of selectable width and depth. The RFU also has its own interface to
the main memory, allowing it to perform autonomous memory accesses quickly.

15.4 Dynamic Reconfiguration

Fast dynamic reconfiguration of the RFU’s operators, memory blocks and intercon-
nects is an essential part of regular task execution on the RFU, so these hardware
resources can be reused flexibly for performing different computation steps in every
clock cycle. Also, dynamic reconfiguration is applied for reusing the entire RFU
for the execution of different tasks sequentially over time. For this fast and effi-
cient intra-task and inter-task reconfiguration, a novel multi-layered reconfiguration
mechanism has been developed [14].

15.4.1 Intra-task Reconfiguration

Intra-task reconfiguration of the RFU’s 426 configuration bits is efficiently realised
by partial multi-context switching and can be performed without causing latency.
The actual configuration of all bits is defined through a set of multi-context config-
uration tables (MCT). Each MCT is driving one frame, i.e. the complete configu-
ration bits of one RFU data path component (a module or a bus), resulting in the
overall frame structure illustrated in Fig. 15.3 [14]. A different context can be se-
lected in every clock cycle and for each MCT individually, which is controlled and
synchronised via a central run control unit using a novel tag-matching mechanism.
Unlike regular multi-context reconfiguration where contexts are only switched as
a whole [30], the splitting into many small context tables allows to switch frame
configurations individually and yet fully concurrently. A detailed description of the
intra-task reconfiguration concept is given in the following.

15.4.1.1 The Multi-context Configuration Table

The MCT forms the basic building block of our reconfiguration mechanism [14]. Its
structure is shown in Fig. 15.4. The MCT can hold several instances (= contexts)
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Fig. 15.3 The complete reconfiguration mechanism of the RFU.

of configuration data locally available. In each clock cycle, a different context can
be selected and applied to the actual configuration register. The selection is done
by using a tag-matching technique, which is illustrated in Fig. 15.5. Each context
is extended by a tag field and one validity bit. A new context is selected for the
configuration register if its associated tag matches a globally generated bit pattern
(global tag) and if its validity bit is ‘1’. The given example shows the selection of
context number two. The validity bits allow to keep configuration data of different
tasks in a MCT without interference, by activating only those contexts belonging to
the actual task. This is handled by a central task manager, which is explained later
in Sect. 15.4.2.

A variant of the MCT, the multi-frame MCT, allows to drive multiple frames
with identical structure by only one single multi-frame MCT, without restricting the
possibility to assign different configurations to each frame concurrently (see [14] for
a detailed explanation how this is solved). This has been applied for instance to drive
the 16 identical frames of the 16 MAC cells, thus saving a considerable amount of
memory compared to the hypothetical usage of 16 separate MCTs instead.

An important advantage of the MCT structure is its good scalability. The bit
width of the configuration data and the number of contexts (table depth) can be
chosen for each MCT individually, as can be seen in Fig. 15.3 and Table 15.1 for the
RFU. In total, the RFU table structure comprises eight MCTs of different size, one
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Fig. 15.4 Structure of the MCT. Fig. 15.5 Operating principles of the MCT.

multi-frame MCT driving the 16 frames of the MAC module, and one 21 bit wide
register (not shown) that remains static during one task.

Table 15.1 Parameter settings for all tables.

Table name MAC MACo Inv Reg Mem MIF Bus1 Bus2 Bus3 MPT Cmds
Config. width 21 6 8 10 6 6 11 11 11 8 16
Table depth 24 8 8 8 8 8 8 8 8 64 8
Frames 16 1 1 1 1 1 1 1 1 – –

15.4.1.2 Run Control via Tag-matching

The operation of all MCTs is controlled and synchronised through a central control
signal, called the global tag. This global tag is generated from a different recon-
figurable table being part of the RFU’s run control unit. Each entry of this micro-
program table (MPT) consists of a 3-bit control word and a 5-bit data value used
as global tag, as shown in Fig. 15.6. In each clock cycle, the run control unit can
address a different MPT entry and thus control the selection of different contexts in
the MCTs. The order of MPT entries defines the sequence of consecutive operations
over multiple cycles, including the possibility of jumps and loops inside the MPT
by selecting one of eight reconfigurable command codes via the 3-bit control word
in order to allow a better table utilisation for long sequences with repeating patterns.

One major advantage of using tag-matching is that it saves a considerable amount
of memory compared to a direct addressing scheme of the MCTs: it requires to store
only one small tag (5 bit) instead of addresses for all MCTs (would be 29 bit in total)
in each MPT entry. Even if including the overhead for tag fields in all MCTs, tag-
matching thus requires 60% less storage cells than direct MCT addressing [14].

Overall, the run control unit allows to control sequences of operations completely
autonomously, thus unburdening the processor in its role as external control unit
significantly. Operations on the RFU can be initiated by the processor in two ways:
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Fig. 15.6 Tag generation by the MPT and run control unit.

A single operation can be started via the single-cycle execution (ESR) instruction,
which addresses a single MPT entry and hence selects a specific configuration for
a single operation. The EMR instruction can be used to initiate sequences of opera-
tions over multiple cycles, which are then carried out autonomously by the RFU as
described above. Thus, even very long sequences—up to the autonomous execution
of an entire task lasting hundreds of cycles—can be started with a single EMR in-
struction. By the two instructions, intra-task reconfiguration (i.e., context switching)
is practically transparent to a software programmer.

15.4.2 Inter-task Reconfiguration

Before a new task can be started on the RFU, all its required configuration data must
be present in the MCTs and MPT to allow delay-free intra-task reconfiguration. The
objective of the inter-task reconfiguration is therefore to reconfigure the MCTs and
MPT prior to task execution by loading new content from an external memory to the
tables. As this process causes non-negligible latency, the concept of reconfiguration
profiles [14] is applied to minimise overhead. It ensures that just as many data as
necessary is loaded, and maximises the throughput of configuration data through the
memory interface (which is a bottleneck for reconfiguration latency). Each task has
its own 32-bit profile, which specifies exactly how much data needs to be loaded for
each table. A dedicated configuration control unit (Fig. 15.3) evaluates the profiles
to assign all following configuration data automatically to the correct tables.

A revolving replacement strategy is used to load new configuration data to the
MCTs and replace older data. A task manager keeps track of which configuration
belongs to which task. If a recently executed task is started again, the task man-
ager recognises if configuration data of this task is still (partly) present in the tables.
In this case, it just activates the validity bits of this task’s configuration contexts
and deactivates the others, instead of loading the configuration data again from the
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memory. Thus, additional reconfiguration time is saved. In the best case, no recon-
figuration is required for switching between two tasks.

The inter-task reconfiguration process is controlled fully autonomously by the
RFU’s configuration control unit. Hence, a complete reconfiguration can be initiated
with a single reconfiguration instruction (CRT) by the processor, which just passes
the start address of the profile as the only required parameter (like a unique task ID
from user’s perspective). Thus, all the complexity of the reconfiguration mechanism
itself is hidden from the users.

15.5 General System Architecture

The RFU is embedded into a RISC processor, thus forming a hybrid computing core
for our programmable sensor node platform. While the RFU’s role is to execute data
processing tasks at low energy costs, the processor mainly serves for performing
control functions.

Two sensor node architectures have been designed accordingly, one based on the
LEON2 32-bit RISC processor [8] and the other on Atmel’s 8-bit ATmega AVR
processor [2]. Figure 15.7 shows the tight integration of the RFU into the LEON2
processor’s data path as a second function unit in parallel to the ALU, which is
a well-known coupling concept for minimizing the communication costs between
processor and reconfigurable unit [33, 24, 23]. The same integration concept has
been implemented also for the ATmega processor.

Fig. 15.7 Inner structure of the LEON2 core, showing the integration of the RFU.
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As shown by Vassiliadis et al. [31], a few basic instructions are sufficient to let
the processor control the RFU. In our case, these are two instructions for single-
cycle and multi-cycle execution and one for configuration (ESR, EMR and CRT,
see Sect. 15.4), which have been added to the SPARCV8 and AVR instruction sets
respectively. The ESR instruction takes one clock cycle, whereas the duration of the
EMR and CRT instructions is variable: Their execution times can range between
two and several hundreds of clock cycles. During such multi-cycle instructions, the
processor is not blocked but can perform regular instructions meanwhile. The next
RFU instruction then resynchronises the processor and the RFU, simply stalling the
CPU until the RFU has finished its previous operation.

Figure 15.8 illustrates the entire sensor node system for the LEON2 version [16].
Separate on-chip memories for data, instructions, and configurations are proposed
(Harvard architecture style). The configuration memory is directly accessed by the
RFU and serves as external repository for the configuration data of all tasks (see
Sect. 15.4.2). The RFU also has its own master interface to the system bus, allowing
it to access the main memory autonomously. This avoids a known bottleneck for
such hybrid systems and unburdens the processor from data copying to and from
the RFU.

Fig. 15.8 General system architecture of our wireless sensor node platform.

15.6 Evaluation Results

The presented RFU architecture is evaluated regarding chip area, performance, and
energy consumption in order to analyse how it compares to classical architectures
like RISC processors and ASICs, which occupy well-known characteristic regions
in a design space. Since our main objective—the identification of architecture-
specific characteristics—implicates a fair and unbiased comparison on the same
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level of optimisation, comparing our VHDL model to real chip implementations
is not feasible. All architectures have therefore been evaluated as VHDL models on
the same level of synthesized gate netlists in a standard cell technology [16, 11].

15.6.1 Test Settings

The system in Fig. 15.8 is the basis for all three LEON2 based architectures, and a
similar system has been designed for the ATmega architectures. The conventional
processor platforms are designed without RFU, so all tasks are run in software only.
The ASIC architectures are designed by extending these processor platforms with
specific ASIC cores for all tested benchmark functions: one ASIC core for CRC
calculations, one for AES de- and encryption, and one for BCH coding and decod-
ing. All three ASIC accelerators are attached to the system bus as memory-mapped
peripherals.

A set of benchmark tasks is defined that will be run on every architecture. Four
tasks are included: (1) The computation of a 8-bit CRC checksum for a 128-bit
packet [29]; (2) The decoding of a (15, 10, 3) BCH code word [29]; (3) The en-
cryption of a 128-bit data block according to the AES standard [6]; (4) The key
generation for the AES encryption task, which needs to be run prior to encryption.
For a fair comparison, all software parts are written in hand-optimised assembler
code for best possible efficiency on each architecture.

15.6.2 Synthesis Results

Synthesis was done in a 130 nm standard cell technology from UMC using the
Synopsys Design Vision tool set. Clock gating was automatically inserted to include
the effects of this important power reduction technique in our analyses.

Table 15.2 denotes the obtained area results, given as total cell area in μm2. As
can be seen, the RFU has a remarkably small size. It adds just 0.45 mm2 to the sys-
tem size, which increases from 2 mm2 to 2.5 mm2 for a LEON2-based sensor node
with two 32 KByte SRAM on-chip memories [32], and from 1.7 mm2 to 2.2 mm2

for an Atmega equivalent. Importantly, this points out that the RFU is not dominat-
ing the total system size. The reason for the RFU’s small size is found in the efficient
reuse of hardware resources through inter-task and intra-task reconfiguration.

15.6.3 Evaluation of Energy Efficiency

While small area consumption is an important cost factor, the most critical design
parameter for the WSN domain is energy efficiency. Therefore, the product of power
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Table 15.2 Area results.
System component Total cell area Percentage
On-chip Memories [32] 1,680,000 μm2

Instruction Mem. 32 KB 840,000 μm2

Data Mem. 32 KB 840,000 μm2

LEON2 architecture 337,300 μm2

ATmega architecture 66,900 μm2

RFU 454,200 μm2 100.0%
RFU data path 231,100 μm2 50.9%
RFU config. tables 186,800 μm2 41.1%
RFU control units 36,300 μm2 8.0%

ASIC architecture 468,000 μm2 100.0%
BCH core 260,800 μm2 55.7%
AES core 199,500 μm2 42.6%
CRC core 7,700 μm2 1.7%

consumption and execution time needs to be investigated. The Synopsys PrimeTime
tool is used for estimating power consumption at gate level based on the switching
activity of the synthesized gate netlists [16].

15.6.3.1 Reconfiguration Overhead

Tables 15.3 and 15.4 show the resulting energy consumption and execution times of
all benchmark tasks executed on the RFU, from which the impact of the reconfigura-
tion costs on total energy efficiency and performance can be concluded. Assuming
a worst case scenario in which a complete reconfiguration of the RFU would be
required prior to each task, common experience would usually let us expect a very
large overhead on total efficiency. However, our results prove that this is not the case
for our architecture. The dynamic reconfiguration costs never reach a critical level,
neither for latency nor energy consumption. This is a direct effect of the novel re-
configuration mechanism applied (see Sect. 15.4). Tables 15.5 and 15.6 summarise
the required effort for inter-task and intra-task reconfiguration respectively [14].

15.6.3.2 Comparison of Alternative Reconfiguration Mechanisms

The latency overhead for dynamic reconfiguration of the RFU has also been anal-
ysed in [14] under the assumption that different common reconfiguration mecha-
nisms were used. This comparison of our approach with common related work has
been made with a simple frame addressing scheme (which is in similar form still the
basic concept for typical FPGA reconfiguration today), an advanced frame address-
ing scheme with wildcard bits [9], and regular multi-context switching [30].
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Table 15.3 Latency in [clock cycles].

CRC BCH AES
enc. key.

LEON2 930 2893 1474 538
AVR 1184 3978 3120 834
LEON2 RFU

Execution 10 230 115 58
Reconfiguration 19 54 68 32

AVR RFU
Execution 35 438 144 101
Reconfiguration 19 54 70 32

LEON2 ASIC 74 56 52
AVR ASIC 136 77 369

Table 15.4 Energy consumption in [nJ].

CRC BCH AES
enc. key.

LEON2 126.0 408.2 251.4 88.1
AVR 45.3 170.2 134.4 39.0
LEON2 RFU

Execution 2.3 56.7 52.5 13.3
Reconfiguration 3.4 9.7 12.2 7.7

AVR RFU
Execution 5.1 60.2 50.2 17.2
Reconfiguration 2.2 6.3 9.2 4.0

LEON2 ASIC 13.8 8.6 13.0
AVR ASIC 14.0 9.0 43.5

Table 15.5 Inter-task reconfiguration: the numbers denote how many configuration data entries
need to be loaded to each table for a task.
Task MAC MACo Inv Reg Mem MIF Bus1 Bus2 Bus3 MPT Cmds
BCH 21 3 0 5 0 0 3 1 3 17 1
AES keygen 8 1 6 2 5 0 2 4 0 11 2
AES enc 22 5 5 6 6 0 6 6 2 36 2
CRC 3 1 0 2 0 0 1 0 2 3 1

Table 15.6 Intra-task reconfiguration activity: the numbers denote how often frame configurations
change during one task.

Task M M M M M M M M M M M M M M M M M I R M M B B B
A A A A A A A A A A A A A A A A A n e e I u u u
C C C C C C C C C C C C C C C C C v g m F s s s
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 o 1 2 3

BCH 71 71 71 71 26 26 20 0 0 0 0 0 0 0 0 0 3 0 5 0 0 2 2 3
AES 24 24 0 0 24 0 0 0 24 0 0 0 24 0 0 0 1 25 3 24 0 2 22 0
keygen
AES 100 102 101 99 100 102 101 99 100 102 101 99 100 102 101 99 45 81 83 46 0 86 83 2
enc
CRC 0 0 0 0 0 0 0 0 0 0 0 0 3 3 3 3 1 0 2 0 0 1 0 2

The summarised results in Table 15.7 denote pure reconfiguration latency. For
tasks like the CRC requiring almost no intra-task reconfiguration (see Table 15.6),
our mechanism provides comparable latencies to existing techniques, whereas in
cases with high dynamic reconfiguration demand like the BCH and AES tasks, it
achieves large improvements. When compared to execution times, it becomes clear
that our mechanism is the only variant which achieves acceptably low costs for fast
dynamic reconfiguration.

15.6.3.3 Reconfiguration Power

The power consumption of the RFU’s main components is analysed over time,
which is illustrated in Fig. 15.9 exemplarily for different phases of the AES task [16].
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Table 15.7 Latency comparison: numbers of clock cycles required for reconfiguration by different
mechanisms.

Execution time Frame addressing Wildcard addressing Multi-context Ours
BCH 230 372 103 238 51
AES keygen 58 198 134 112 29
AES enc 115 2035 580 210 64
CRC 10 18 9 42 14

The energy consumption during each phase is proportional to the shaded area repre-
senting the power-latency-product. Alternating phases of configuration and execu-
tion can be observed, first for the key generation and then for the encryption.

Fig. 15.9 Power consumption of the RFU architecture during the AES task.

The power consumption of the RFU control units represents the costs for inter-
task reconfiguration during the configuration phases, and for intra-task reconfigura-
tion during the execution phases. None of them has critical influence. This is quite
remarkable, taking into account the high reconfiguration activity denoted in Ta-
ble 15.6: Some data path components switch configurations up to 100 times between
20 different contexts during the AES encryption (2nd execution phase in Fig. 15.9).

The power consumption of the RFU data path largely depends on how many of
its subcomponents are actively used. E.g., only 5 MAC cells are used during key
generation, but all 16 cells are used during encryption. When the RFU is completely
inactive, it consumes only negligible power, as shown in the last phase named ‘next
task’. This important effect of shutting down the RFU efficiently is achieved through
clock gating and operand isolation techniques. During some phases in Fig. 15.9,
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the processor’s power consumption decreases significantly. This is because the pro-
cessor is not utilised for large fractions of time and hence experiences only little
switching activity on average.

15.6.3.4 Architecture Comparison

Finally, we compare the RFU architecture with the conventional reference architec-
tures. For this purpose, the energy and latency results of all benchmark tasks are
given in Tables 15.3 and 15.4 for the LEON2 and the AVR systems [16]. For the
ASIC architecture, the key generation is included in the AES encryption task and
hence not listed separately. It should be noted here that the clock frequency in WSN
nodes is usually not driven to the possible maximum (which might be different for
each architecture) but chosen rather low in order to save power. In all of our experi-
ments, a 10 MHz clock frequency was used.

Compared to the processor architectures, the RFU achieves shorter execution
times of factor 6 to 10 (up to 32 if considering the peak value of the CRC task) with
the LEON2, and factor 6 to 14 (up to 22) with the AVR. More importantly, it also
achieves significant energy savings of factor 4 to 6 (up to 22 for the CRC task) for

Fig. 15.10 Architecture-characteristic regions in the energy vs. latency design space; C = CRC,
B = BCH, E = Enc., K = Keygen [16].
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the LEON2, and factor 1.8 to 2.5 (up to 6) for the AVR. This clearly shows the high
potential of an RFU integration compared to a simple processor architecture, which
is found in most state-of-the-art sensor nodes today. In the case of the CRC task,
the RFU achieves even better results than the ASIC, which can be explained simply
by the fact that a very light-weight ASIC core has been preferred here (see area
values in Table 15.2), whereas the RFU can use its large amount of MAC resources
for a fast parallel computation. But in general, the energy consumption of the RFU
lies right in the middle between ASICs and processors, while its execution times
are more close to ASICs. This can be seen best in Fig. 15.10, which illustrates
the typical domains occupied by the different architectures in a latency vs. energy
design space.

The 8-bit ATmega AVR is slower than the 32-bit LEON2 but also has lower en-
ergy costs. However, the energy consumption of the integrated RFU is independent
of the processor—it consumes roughly the same energy with both processors, indi-
cating that its high energy efficiency can be achieved invariably with any RISC pro-
cessor architecture. The ASIC implementations for the AVR are slower than those
for the LEON2, and also have higher energy requirements. At the same time they
differ much more than those of the LEON2. This is because the AVR version suf-
fers significantly from the lower data transfer speed of the 8-bit architecture and
becomes less efficient the more data is required for a task computation.

15.7 Prototyping of the Sensor Node System

For functional verification under real conditions and for demonstrations of sensor
network applications, the proposed sensor node architecture shown in Fig. 15.8
has been prototyped on a FPGA-based platform. A new rapid prototyping plat-
form specifically dedicated to wireless sensor networks has been developed for this
purpose [13, 12]. It features a Spartan3-2000 FPGA providing sufficient logic re-
sources for hardware emulation and interfacing, a flexible low-power 868 MHz
radio transceiver, and an autonomous power supply using four rechargeable AA
batteries. The platform can be equipped with various different sensor types, hence
being flexibly usable for a wide spectrum of WSN applications. The platform is not
intended for power analysis due to the high power consumption of the FPGA, but
highly suitable for functional verification. It was successfully used to show that the
RFU-based architecture concept is well applicable to real wireless sensor networks.

Additionally to the prototype platform, a base board for supporting real-time de-
bugging and deployment was developed [12]. It connects the nodes by a secondary
Ethernet-based deployment support network, thus providing strong aid of online
monitoring and debugging of several nodes without influencing the primary wire-
less network. Specific debugging interfaces can be implemented together with the
sensor node architecture inside the FPGA, thus granting deep insight into internal
processes in the monitored sensor node during runtime.
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A demonstration application has been developed on the prototype platforms, re-
alising the localisation of a sound source by a wireless sensor network of five nodes,
each being equipped with a small acoustic sensor. The RFU is utilised to encrypt and
decrypt the transmitted packets in this scenario. The application has been demon-
strated successfully at the SPP1148 booth at the FPL conference 2008 [15].

15.8 Generalisation of the Results

The presented results have shown that the large energy savings achieved by the
RFU in comparison to processors are an architecture-characteristic feature and not
depending on specific functionality. This supports the assumption that similar im-
provements in energy efficiency can be achieved also for other functions than the
analysed benchmark tasks. The same architecture concepts can be applied to con-
struct other RFUs with different function modules, e.g. an RFU supporting integer
arithmetic for sensor data processing, or one that merges both arithmetic classes
(see Sect. 15.3.1 and [17]). In general, our proposed architecture concept is not even
restricted to the WSN domain, but could also be imagined for the design of energy
efficient yet flexible embedded systems in other application areas.

Particularly the newly developed reconfiguration mechanism could be adopted
well for other reconfigurable architectures, due to its modular structure, good scal-
ability and easy adaptability [14]. It is well suited for coarse-grain architectures
featuring fast dynamic reconfiguration, and could also be integrated into design au-
tomation tools for such systems. In cooperation with the research group of Prof.
Merker (see Chap. 8), this was investigated also for FPGAs. Possible FPGA exten-
sions for realising our reconfiguration mechanism efficiently with fine-grain fabrics
as well as a complete tool chain for the synthesis of runtime reconfigurable systems
on such FPGAs were proposed. Our results show a promising potential for the auto-
mated realisation of efficient dynamically reconfigurable systems on future FPGA
structures [27].

15.9 Conclusion

The architecture concept of frequent dynamic reconfiguration of a small heteroge-
neous data path was analysed in this research work, and a novel mechanism for
efficient dynamic reconfiguration was proposed. The coarse granularity and hetero-
geneity of the RFU provided the desired high energy efficiency, while the dynamic
reconfigurability kept the architecture small and flexible. The way how fast dynamic
reconfiguration was efficiently utilised for extensively reusing few heterogeneous
data path resources distinguishes our RFU from other architectures. Different to
common experience, the extensive use of dynamic reconfiguration causes no criti-
cal energy and performance overhead for our RFU, even in a worst case scenario.
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Our experiments comparing the RFU to ASICs and processors show that the
RFU occupies a characteristic design space region (see Fig. 15.10), which is located
right in the middle between processors and ASIC implementations. Since ASICs
are usually too costly in the WSN domain, programmable platforms like the RFU
or processors are often the only economically feasible options. Compared to the
LEON2 processor, the RFU achieves large energy savings of factor 4 to 6. Even
when compared to a low power 8-bit processor like the ATmega, the RFU reduces
the energy consumption by factor 2 on average. Overall, our results demonstrate
that the frequent dynamic reconfiguration of small heterogeneous data paths is a
highly suitable architecture concept for energy-constraint embedded systems like
WSN nodes.
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Chapter 16
DynaCORE—Dynamically Reconfigurable
Coprocessor for Network Processors

Carsten Albrecht, Jürgen Foag, Roman Koch, Erik Maehle, and Thilo Pionteck

Abstract This chapter presents DynaCORE, a dynamically reconfigurable copro-
cessor architecture for network processors. The architecture takes over computation-
ally intensive tasks from network processors and provides dynamically exchange-
able hardware assists for complex payload processing. According to the actual traf-
fic profile, DynaCORE autonomously determines an optimal set of hardware assists.
The hardware assists reside in a grid of exchangeable tiles which are connected by
a runtime adaptable network-on-chip. System simulation, hardware architecture as
well as reconfiguration management strategies are presented within this chapter.

16.1 Introduction

Network applications substantially demand high computational power. As network
link performance already achieves about 10 Gb/s (OC-192) and 40 Gb/s (OC-768),
only a few ten nanoseconds per packet are available to process incoming packets
in real-time. Typically, systems requiring such high computational power are im-
plemented as ASICs, yet the flexibility required in network applications hamper
such solutions. Frequently changing protocols and standards as well as changing
traffic profiles ask for more flexible solutions than typically provided by hardwired
ASICs. For such constrained design spaces, runtime reconfigurable architectures
offer a good trade-off between performance and flexibility. On the one side, tasks
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implemented as hardware assists (HAs) onto FPGA resources provide much higher
performance than software solutions, on the other side HAs can be exchanged at
runtime, providing the flexibility required for the application area.

Based on this idea, the DynaCORE project was set up. DynaCORE is a run-
time reconfigurable coprocessor for network processors (NPs) and allows com-
putationally intensive tasks to be offloaded from the NP. The NP still performs
header processing while payload processing like encryption/decryption, compres-
sion or network intrusion detection are done within DynaCORE. By exploiting the
runtime reconfigurability of modern FPGAs such as Xilinx Virtex-4, DynaCORE
autonomously adapts the types and number of HAs to the requirements given by
actual traffic characteristics. An adaptable, fault tolerant runtime reconfigurable
network-on-chip (NoC) is employed to provide the communication infrastructure
for a varying number and different sizes of HAs within the FPGA. A detailed de-
scription of these hardware features, the rule-based reconfiguration control logic
and an application example are given in this chapter which is organised as fol-
lows. Section 16.2 provides an overview of NPs and system requirements in the
area of network applications. The overall system architecture of DynaCORE is in-
troduced in Sect. 16.3 and the corresponding SystemC simulation model is given in
Sect. 16.4. Sections 16.5 through 16.7 highlight key aspects of DynaCORE which
are the adaptable NoC, the reconfiguration control logic and technical realisation of
the runtime reconfiguration. A system demonstrator using the FlexPath NP architec-
ture designed at the TU München as an NP is presented in Sect. 16.8, before, finally
the chapter closes with concluding remarks in Sect. 16.9.

16.2 Network Processors

Over the years, a variety of hardware devices have been created to satisfy the in-
creasing demand for bandwidth and computational power. Current implementations
combine ASICs, application-specific instruction processors (ASIPs), hard-wired but
weakly programmable co-processors, field programmable gate arrays (FPGAs), and
general purpose processors (GPPs).

The generic NP architecture comprises two parts: a control and a data plane.
The control plane forms the slow path. It is responsible for protocol management
and exception handling. The data plane is the core of an NP. The control plane
can be sufficiently executed by a GPP whereas the data plane realises the fast path
by combining basic hardware systems as mentioned above. Generally, an NP is a
hybrid device consisting of software programmable parts and special hardware units
for packet processing. Its basic design feature is a chip-level multiprocessor block.
Two programming models are used for high performance system software: Run-to-
completion and pipelining. The first one replicates a single task on all processors,
the latter distributes stages of processing over different processors. The level of
parallelism is increased by multi-threaded processors. Helper units are applied in
two ways. Some perform pre- or post processing such as classification, transmission
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scheduling, or buffer management independently, others support the multiprocessor
block by providing frequent and computational-intensive tasks such as table look-
ups (search engine), checksum computation, or semaphore management.

High-end NP devices are e.g. Hifn 5NP4G [10] or Intel IXP2400 [12]. These
NPs differ in their principle programming models. While the Hifn 5NP4G im-
plements run-to-completion, the IXP2400 is based on functional pipelining. The
Hifn 5NP4G supports its packet engines by a set of co-processors whereas only a
few co-processors and hardware units are added to the pipelining approach of the
IXP2400.

16.2.1 Requirements

For the last ten years, the composition of Internet backbone traffic has been rather
stable in respect of the protocol layers 1 to 4 of the OSI layer model. In contrast to
lower layers, higher layer protocols vary more frequently. In general, there is a trend
towards applying secure connections established on any layer. On the top layers the
secure variants of FTP and remote shell applications form an appreciable share of
traffic, on the lower layers the integration of secure variants such as IPsec become
more and more important [7].

A considerable number of publications deals with the analysis of Internet Proto-
col (IP)-based backbone traffic. It consists of about 85.1% of TCP packets or 95.7%
of TCP-based data volume. The residual traffic is mainly dominated by UDP. Only
about 2% of packets and less than 1% of the data volume make up the non-TCP/UDP
part [24]. Most secure connections of higher-layer protocols are established on top
of TCP. Nevertheless, web applications using the HTTP(S) protocol generate the
lion’s share [9]. NPs as mentioned above provide bandwidths of 4 Gb/s. So, the
IXP2400 for example applied to the backbone would have to deal with 3.8 Gb/s
TCP traffic. With regard to the statistics this amount includes at least 0.5 Gb/s of
traffic requiring payload processing.

In the area of edge routers the traffic composition deviates. Virtual private net-
works (VPNs) often combine encryption with compression so that the computa-
tional effort is high. It has to be assumed that most routers transport similar packet
flows without any need for encryption or compression. Conversely, a small number
of routers generate a high amount of encrypted traffic. In those routers the ratio of
encrypted to unencrypted traffic is several times higher than in a backbone. Reliable
numbers, however, can hardly be given because of the lack of publicly available
statistics on edge-router traffic.

Packets demanding high computational effort such as encrypted or compressed
data usually use just part of the maximum transfer unit. Design parameters such
as buffer sizes and time-out values are to be adjusted to best ratio of performance
and resource utilisation. Therefore, DynaCORE is designed to deal with average-
sized packets. Worst-case assumptions base on 1 Gb/s incoming traffic stream and
a packet size of 507 bytes. Thus, DynaCORE has about 4 ms to process a packet as
well as for a dynamic exchange of hardware assists, if applicable.
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16.3 System Architecture

DynaCORE (Dynamically adaptable COprocessor based on REconfiguration) is a
loosely-coupled coprocessor architecture for NPs. It is based on a runtime reconfig-
urable FPGA and targeted to time consuming payload processing tasks. A typical
application scenario for DynaCORE as an accelerator within an edge router is de-
picted in Fig. 16.1. The NP performs standard jobs based on header processing
such as bridging, IP forwarding, and quality-of-service (QoS) protocols. Payload
processing tasks such as encryption/decryption, compression, or network-intrusion
detection are off-loaded from the NP via standard Gigabit Ethernet network inter-
faces to DynaCORE. By making use of standard network interfaces, the design of
DynaCORE is to a large extent independent from a specific NP. The NPs described
in Sect. 16.2 can be used as well as the FlexPath architecture designed at the TU
München (see Chap. 17). The NP performs header-based pre- and post-processing
as necessary in order to off-load payload processing to DynaCORE.

The internal architecture of DynaCORE is shown in the upper part of Fig. 16.1.
The integral parts are a dispatcher, a reconfiguration manager (RM), reconfigurable

Fig. 16.1 DynaCORE system integration and internal system architecture.
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hardware assists (HAs), and a partially reconfigurable internal interconnect. The
system is completed by receive and transmit units converting data between the frame
format used for communication with the NP on the one side and the DynaCORE-
internal protocol on the other side.

The dispatcher [1] recognises the type of processing requested for a particular
packet and dispatches the packet to an appropriate HA. The rules on the basis of
which the dispatcher decides to which of the HAs a particular packet shall be routed
are supplied by the RM. In case there is no HA providing the requested functionality
the RM is notified and the packet is passed to a software-based fallback unit referred
to as software-based hardware assist (see below).

The reconfiguration manager (RM) is the central control component within Dy-
naCORE and realised as a processor-based subsystem. Its behaviour is thus mostly
determined by software running on an embedded processor core. The RM is sup-
plied with information from the dispatcher as well as with status information from
monitors within the HAs. It maintains a global view on the system state and cycli-
cally computes a suitable system configuration for the current and expected near-
future request pattern. If necessary, the FPGA is reconfigured. The actual process of
reconfiguring the FPGA is also controlled by the RM.

The hardware assists (HAs) are the actual data processing units and comprise
the processing core, data counters for monitoring purposes, and a generic interface
which makes the HA compatible with the communication protocol used within Dy-
naCORE. The processing core is generally an off-the-shelf IP core for a certain
algorithm. By means of the counter values which are periodically sent to the RM,
the degree of utilisation of the processing core can be determined.

The software-based hardware assist is a particular HA which includes a proces-
sor core and allows for a variety of algorithms to be executed in software. This HA
makes use of a hard-wired PowerPC 405 processor core as available in Virtex-4 FX
FPGAs. In order to save configurable logic resources, the processor is used stand-
alone, i.e. without any peripherals or memories attached to it. It merely uses its
caches for storage of instructions and data. Software is loaded into the caches by
means of an FPGA-internal JTAG connection under control of the RM [14].

The internal interconnect consists of static and reconfigurable parts. While there
are static point-to-point connections between the external I/O interface and the trans-
mit/receive units as well as between these units and the dispatcher, a reconfigurable
network-on-chip (see Sect. 16.5) is used for connecting the static parts of the system
to the reconfigurable HAs. The reconfigurable part of the interconnect together with
the HAs resides in the reconfigurable area as depicted in Fig. 16.1.

16.4 Model

For testing and analysis purposes of DynaCORE, a formal model and simulation
opportunities are necessary to support design decisions in an early stage. The ap-
plication of reconfiguration capabilities in particular makes performance analysis
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difficult and demands additional tests to verify the system behaviour. Current hard-
ware can be modelled as discrete event-based systems. In combination with dynamic
reconfiguration the modelling concept moves to dynamic structure systems [26]. In
the following the basic theory details are introduced and applied to the model of Dy-
naCORE which leads to a tile-based, dynamically reconfigurable SystemC model
with constant complexity.

16.4.1 Principles of Theory

Usual hardware models base on discrete event-based system (DEVS) description.
Dynamically reconfigurable systems are systems which cannot intuitively be de-
scribed by a single system model. Instead, multiple models and a transfer function
to switch between them are needed to describe the entire system. The dynamically
reconfigurable system presented here has a core module which is responsible for the
system behaviour. It executes any controlling and management functionality.

Barros [5, 26] introduced a controller-based formalism to describe dynamically
structured discrete event-based systems (DSDEVS). It extends the formalisms for
standard discrete event systems and hierarchical setups of DEVS, called discrete
event-based system networks (DEVN). In [5] the proof of closure under coupling
is given. DEVS simulators are able to combine models for execution or even use
parallel simulator kernels by assigning an own simulator kernel to each model [6].

The formalism to describe DSDEVS applies the DEVS and DEVN relations. The
core model is the controller χ of the DSDEVS. The controller itself has different
states and two transition functions to react on external and internal events. A reaction
can lead to a simple state transition within the current controller model. It may
also lead to a state transition that switches to a state of another controller model.
So, this recursive definition yields a controller model the states of which are again
models of the system. Barros proved that DSDEVS are a subset of atomar DEVS
and that DSDEVN and DSDEVS are also closed under coupling [5]. Thus, there is
no need for additional effort to model and simulate those systems if there is a DEVS
simulator.

16.4.2 Modelling DynaCORE

The model of DynaCORE following the formalism of Barros is described by the
following 4-tuple: DSDEVNΔ = 〈XΔ, YΔ, χ, Mχ〉. Δ is the identifier variable of
the system. XΔ is the domain of all inputs and YΔ is the range of all valid output.
In this case, XΔ = YΔ input and output of the system both have to be well-formed
in the sense of the exchange protocol with the NP. Finally, Mχ contains the model
description of the controller as a DEVS [26]: Mχ = 〈Xχ, Sχ, Yχ, δχ

int , δ
χ
ext , λχ, τχ〉.

The sets Xχ and Yχ describe the inputs and outputs of the controller. Sχ is the set
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of states, the controller may take on. δint : Q × Sχ → Sχ and δext : Sχ → Sχ are
the transition functions. δext reacts on external events, δint is dedicated to internal
events. The domain Q extends the state space by time information so that an internal
event arises if the hold time of a state expires. The hold time is determined by
τ : Sχ → R

+
0,∞. The output of a state is determined by λχ : Sχ → Yχ.

The different configurations of the system are included in the state definition.
Each system architecture requires its own representative state. A state sχ ∈ Sχ

of the controller model Mχ is a 6-tuple: sχ = 〈Dχ, {Mχ
i }, {Iχ

i }, {Zχ
i,j }, ξχ, V χ〉.

Dχ contains all modules except the controller itself applied in this state, {Mχ
i }

consists of all models of components in Dχ, and Iχ
i includes all modules on which

module i ∈ Dχ has impact on. Zχ
i,j is the chaining function of output and input

of concatenated modules given in Iχ
i . ξχ is the serialisation of the events in a non-

parallel model. Applying SystemC [11] for simulation, the SystemC kernel provides
and executes ξχ. Finally, V χ contains all decision parameters for χ to raise an event
handled by δχ

int.
The most crucial point is the definition of the transition functions δχ. Their qual-

ity dominates the success of the system. δχ
ext provides an interface for the NP to

raise events from outside. This option is neglected in the following to the benefit of
focusing on internal adaptation and parametrisation of δχ

int.
For a system with three exchangeable HAs A, B, C and a static part providing

the basic modules for operation Fig. 16.7 shows a finite state machine describing the
states and their interdependencies. This automaton is set up from a complete graph
by removing all edges that would lead to a reconfiguration of more than one HA,
i.e. only edges with limited costs are kept [4]. Because of the HA placement these
transitions allow exchanging only a single HA per reconfiguration. Based on this
state graph δχ

int is defined by attributing each edge with rules for decision making.
Each rule has the form:

IF ∀h ∈ {A, B, C} : eval(su, sv, lh, Th) THEN su → sv.

So, the rule evaluates the current load lh of each HA h and compares it to a threshold
given by Th. Obviously the evaluation depends on the edge introduced by (su, sv).
In case the premise becomes true δχ

int performs the transition su → sv . The applica-
tion of a rule-based description with the semantics of RERAL [8] for the transition
function allows for easy extensibility and a compact form.

16.4.3 Simulation

The crux of designing high bandwidth applications is the internal interconnect. The
analysis of its performance demands sufficiently detailed models of the interconnect
itself as well as of its interfaces. Here, the bus model is a simplified model of the pro-
cessor local bus (PLB, CoreConnect library) [13]. Its complexity is kept simple but
the timing and arbitration characteristics, including QoS features, are implemented.
The bus throughput is limited by 2 Gb/s. The examined interconnects are established



342 Carsten Albrecht et al.

by one and two buses, respectively. The bus arbitration of the dual-bus model is
marginally modified. Bus requests are performed on both buses simultaneously and
grant is taken with priority from the first bus. Thus, the bus utilisation in the dual-bus
model is irregular [4]. In case both buses are occupied a grant request is queued.

A complete system model applying a bus-based interconnect is shown in
Fig. 16.2. The HAs are modelled at a high abstraction level. They consist of a bus-
interface and a core model which is generic and time accurate. Only the compression
core manipulates the packet size in a deterministic way based on statistical results.
The interface executes all needed communication functionalities such as sending,
receiving, buffering as well as forwarding for pipelined processing. Moreover, mon-
itoring to collect system state information such as load distribution is incorporated
in the interfaces. Driven by counters collected data is sent to the RM frequently.
The static part models are basically similar to the HA models. For the software in-
stance used as a fallback HA the performance parameters are scaled down to meet
the degraded performance of embedded software compared to hardware.

Fig. 16.2 Bus-based model applying one or two PLB-like bus models.

The principle to perform runtime reconfiguration in a SystemC simulation model
is basically similar to OSSS+R described in Chap. 7 or ReChannel [23]. The recon-
figurable parts are broken into tiles which have a SystemC framework model [2].
This framework allows the use of any method and provides generic interfaces. The
tile-based modelling method keeps the complexity of a model constant and inde-
pendent of the number of states of χ.

As introduced in Sect. 16.2, the workload for DynaCORE is a fraction of (edge)
router traffic. Internet traffic as well as file transfers or other streaming applica-
tions have certain characteristics. Two main qualities are self-similarity and bursti-
ness [15, 16]. In [3], an application-oriented traffic generator applying stochastic
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models for generating synthetic traffic to simulate and test network devices is pre-
sented. It is used to model and generate test streams for the DynaCORE simulation
model. The simulation results of the bus models [4] are based on a traffic stream
multiplexed of four b-modelled streams [25]. Each stream represents a different
class of DynaCORE processing. The application classes used here are Deflate (A),
AES (B), and DES (C). A pipelined process is also established by Deflate and DES.
All four streams are multiplexed adapted to the bandwidth limit of 1 Gb/s.

Fig. 16.3 Throughput and latency of the bus-based model for single and dual-bus mode [4].

The single- and dual-bus models are evaluated for certain performance issues.
An excerpt of the complete examination [4] is given in Fig. 16.3. It depicts the most
requested parameters of network devices: throughput and latency. The throughput
shown in Fig. 16.3(a) unveils that the single bus is not capable to deal with the
complete input bandwidth. The latency approves that there is a performance break
down at about 600 Mb/s. Higher data rates are well processed by the dual-bus model.
The latency is limited on an acceptable level and the output achieves the data rates
of the input side. Internally, though, a high amount of buffer memory is necessary
when bursts occur or a reconfiguration is executed. Reconfigurations are simulated
with a configuration data size of up to 520 KByte for four tiles at once. In the
experiments the configuration data size is assumed to one, two, and four tiles. So the
bus is occupied for 480 μs at maximum to transfer the data to the reconfiguration
interface. In these cases, even the dual-bus system becomes a bottleneck because of
a limited degree of parallelism. Taking all simulations into account, the system has
to be designed for a performance of at least 1.5× input bandwidth. Additionally,
the bus system does not scale. The PLB, e.g., is just capable of connecting eight
instances. Even in this small sample model seven interfaces are consumed. Thus,
a more scalable and adaptive communication infrastructure is required.

16.5 Runtime Adaptive Network-on-Chip

Network-on-Chips offer high degrees of flexibility, scalability and parallelism.
These characteristics prove NoCs as an ideal communication infrastructure for flexi-
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ble systems such as DyanCORE. By combing NoC principles with runtime reconfig-
urable FPGAs, a runtime adaptable NoC called CoNoChi (Configurable Network-
on-Chip) was set up. CoNoChi [20, 17] reuses the infrastructure for performing a
dynamic exchange of HAs and applies this to NoC switches and links as well. These
can be inserted or removed from the communication network at runtime, so that only
the required number of switches and links have to be instantiated. The network pro-
tocol supports the dynamic relocation of HAs, the generation of processing chains
consisting of multiple HAs, and mechanisms to guarantee QoS. CoNoChi switches
operate in virtual cut-through mode and are equipped with four full-duplex 16-bit
links. Routing bases on dynamic routing tables provided by the RM of DynaCORE.

16.5.1 Architecture

A detailed view of the modular NoC architecture is given in the right part of
Fig. 16.1. CoNoChi resides within a grid of equally-sized and individually reconfig-
urable tiles. Each tile may contain one of four tile types: a network switch (type S), a
horizontal link (type H), a vertical link (type V) or part of an HA (type 0). HAs may
span over multiple adjacent tiles and are connected to the network by means of a
generic interface. Each tile provides special communication units at fixed positions
at the edges of the tile. These units, called bus macros, allow communication across
the border of adjacent tiles. In Fig. 16.1, bus macros are shown as two small white
rectangles connected by a line.

CoNoChi distinguishes physical and logical addresses. Physical addresses are
bound to switches and are used for routing. Logical addresses are evaluated by HA
interfaces and switches. They enable the support of several tasks within one HA and
provide smooth processing in case HAs are relocated. The complete protocol stack
is depicted in Fig. 16.4. It is organised in three layers: a data link layer, a network
layer and an application layer. The data link layer is processed by switches while the
link layer and the AT field of the application layer are analysed by the interfaces.
The Context ID and Type of Proc. fields of the application layer are used by the
DynaCORE dispatcher to handle and identify data streams belonging together.

Fig. 16.4 CoNoChi protocol stack [20].
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Within CoNoChi, several message classes are defined. For distinction, the Type
and priority (Prio) fields of the data link layer are used in combination with the
AT field. A payload class is used to transport user data to and from HAs. If state
information of HAs is required by the RM a monitor class is used. A Log Addr
class provides HA interfaces with their logical addresses as well as with physical
and logical addresses for packet forwarding. Packet forwarding allows the setup of
processing chains when packets processed by one HA have to be sent to another HA
for further processing. A NoC Msg class is used for NoC internal messages, e.g. to
enable/disable links of a switch. Reconfiguration data can also be transmitted via
the NoC, using a Rec Data class.

16.5.2 Runtime Adaptation

An example of a reconfiguration scenario including network topology adaptation is
presented in Fig. 16.5. Here, HA 1 will be replaced by two smaller HAs 2 and 3.
As for the new HA 2 no free connection to the network exists, the network struc-
ture has to be adapted, i.e. a third switch is inserted. To guarantee full connectivity,
special precautions have to be taken not to isolate parts of the NoC during recon-
figuration. Representing the network topology as a hierarchical graph with switches
as nodes and links as edges, only inner nodes of the NoC graph can be removed so
that the NoC graph is not separated in two subgraphs. Additionally, a link between
two switches can only be removed if there is another path between them. These pre-
conditions have to be checked by the RM in advance. When these conditions are
fulfilled, the routing tables of switches adjacent to the network tiles to be reconfig-
ured are updated by the RM so that no packets are sent along the link. In addition,
links of switches to the tile under reconfiguration are disabled by special NoC mes-
sages so that potential glitches caused by the reconfiguration process are blocked.
After reconfiguration, the new switch is introduced to all switches by updating their
routing tables, and the disabled links are reactivated.

Fig. 16.5 Dynamic exchange of processing modules with network adaptation [18].

16.5.3 Fault Tolerance

CoNoChi is prepared to cope with different kind of faults [19]: single event up-
sets (SEUs), single event functional interrupts (SEFIs), and permanent hardware
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faults. SEUs and SEFIs are mainly caused by radiation and describe the inversion
of a memory cell. Depending on the semantics of the memory cell, processed data
or configuration data is changed. In the context of CoNoChi, the first one leads to
faulty NoC packages while the latter impacts functionality. The problem of bit flips
in the packet header is addressed by the EC field of the protocol stack. Payload faults
are not considered as the application area tolerates temporary faults. SEFIs and per-
manent hardware faults both would lead to a malfunction of CoNoChi. While SEFIs
can be corrected by rewriting configuration data, permanent hardware faults require
a rearrangement of CoNoChi. Thus, the type of a fault has to be determined in or-
der to apply the proper compensation mechanism. As hardware overhead for error
detection and compensation has to be kept low, a stepwise mechanism is applied to
determine the type of faults.

A failure exists if a network packet is corrupted, if it is not sent to the correct
destination, or if it is delayed too long. All these cases can be detected by means
of test packets sent in regular intervals to all switches by the RM. The last switch
on each path under test returns the test packet to the RM. If a test packet returns
corrupted or does not return at all, a fault in the system is detected. Yet, its location
is unknown. Before the defect tile is localised the test is repeated so that SEUs can
be excluded.

The procedure of detecting the defect tile starts with dividing the path under test
into overlapping segments from the RM to each switch along the path. For each
segments a test packet is sent which has to be rebounced by the last switch of each
segment. When a faulty segment is identified, the routing tables of the surrounding
switches are updated to bypass this segment. After this, the fault has to be corrected.
Therefor the exact tile showing the defect does not need to be determined. The
procedure starts with the tiles containing the last two switches of the path under
test. At first, these switches are reset and new routing tables are sent. After this,
the test is repeated. If the test packets return correctly, then an SEU in the switches
occurred. If the tests still fail, a SEFI or a permanent hardware error is assumed.
In this case, the configuration data of each tile is read back and compared with the
configuration data originally written in. In case of a mismatch a SEFI occurred and
the original configuration can be rewritten. Then, the test of the corresponding tile
has to be repeated, as hard errors may also affect the readback of configuration data.
If a mismatch cannot be detected, then a hardware fault occurred.

16.6 Reconfiguration Management

For a successful application of the reconfiguration management the point of recon-
figuration has to be well determined and the overhead should be limited for avoid-
ance of degrading effects. During reconfiguration the system is only partially avail-
able and, thus, provides reduced performance. The analysis is set up on a compari-
son of two variants utilising the decision graph given in Fig. 16.7. The first variant
is the basic method whereas the second one reflects an optimisation of the basic
method taking its analysis results into account.
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16.6.1 Basic Method

The parameter set for the simulation runs are determined by test runs. The dual-bus
model meets the processing requirements and is not too complex to be repeated for
a statistical coverage. The parameters include HAs of 400 Mb/s, 512 KByte overall
buffer size, a hardware/software processing ratio of 1 : 10, and a deflate compres-
sion of 1 : 0.7. System parameters are evaluated every 50 μs and the reconfiguration
data size is 520 KByte. The interval is rather short and the amount of data is very
large so that these values form a very ambitious environment. The load thresholds
for each HA function is set on 10% as a low level and 90% as a high level. Exceed-
ing the high level will lead to an additional HA if another deceeds the low limit. The
overall simulated time is about 3 s and the simulation run is repeated 34 times. The
data streams consist of two to six IPsec/IPcomp-streams and are processed as de-
scribed in Sect. 16.4.3. For standardised analysis the ratio of average output stream
to average input stream is investigated. The average of all simulation runs of this
ratio is x̄ = 0.8837. The 95% confidence interval of the actuarial expectation is
0.8517 ≤ μX ≤ 0.9156. The reasons for a ratio less than 1 are at least two-fold:
part of the stream is compressed, and during reconfiguration packet loss may oc-
cur.

16.6.2 Optimised Approach

The benchmark of the reconfigurations is drawn by investigating 3597 reconfigura-
tions out of ten simulation runs. A norm is needed to classify the quality of each
reconfiguration. The norm for δχ

int is computed off-line after a run and is set-up by
three criteria:

• The buffer contents and its behaviour over time indicates the load of a module.
If there are almost exhausted buffers all over the system, the system has to deal
with a high load at all whereas exhausted buffers at certain modules point out
hot spots in the system. Increasing or decreasing buffer load shows significant
changes in the load profile. An increasing load in particular indicates a too low
performance of the module for the offered load.

• Another feature is the change in the output data rate. A short term success is an
increasing data rate during the first three observations after a reconfiguration.
The decision is made by comparing the input data rate shifted by the latency
of the system with the current output. If the output is greater, the system draws
from stock and frees buffer capacity which is a positive feedback. Otherwise a
negative feedback is drawn.

• Finally, a long term interval is observed. The comparison is performed analo-
gously. The long term interval aligns itself with the short term one lasts until the
next reconfiguration starts. Occassionally, the interval does not exist because of
an immediately launched reconfiguration reaching a non-adjacent state.
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Applying these criteria to the detected reconfigurations almost two-thirds are rated
positive. The distribution of positive and negative transitions is not uniform. Neg-
ative transitions mainly occur at the centre A − B − C of the decision graph of
Fig. 16.7 whereas most positive ones are on the scope of the graph. The main reason
for the negative rates seem to be the fixed thresholds. States are kept as long as there
is not any HA with a load less than the low level.

Applying these criteria to the simulation results of Sect. 16.6.1 each transition
has positive and negative rates. Based on the ratio of these rates, the transitions are
extended by a moment of inertia Θ. So, the set of variables V χ evaluated to raise
an internal event is extended by ∀u, v : {Θu,v }. The integration of the moment of
inertia into the transition rules is as follows:

IF θu,v < Θu,v − 1 ∧ ∀f ∈ {A, B, C} : eval(u, v, lf , tf,u,v)
THEN θu,v ← θu,v + 1, ∀(u, v′), v 
= v′ : θu,v′ ← 0

IF θu,v ≥ Θu,v − 1 ∧ ∀f ∈ {A, B, C} : eval(u, v, lf , tf,u,v)
THEN u → v, θu,v ← 0

θ is a counter for keeping the multiple sequential decision for the same transition. If
the decision counter exceeds a certain level Θ, the usual transition rule is executed.
If the decision sequence is interrupted by another one, the counter θ is initialised.

Figure 16.6 shows the effect of Θ. The top bar shows the basic method that
switches the state instantly if the threshold is exceeded. The bottom bar resembles
the optimised approach. A state is kept after matching the threshold for a certain
period to avoid reactions on short term phenomena. The determination of individu-
ally adapted Θu,v utilises the ratio of positive and negative rates. Based on the test
runs all transitions are rated. Depending on the ratio a moment Θ ∈ [3, 8] ⊂ N is
added. This interval is determined by test runs applying a single Θ for all transitions.
A high percentage of positive rates per transition assigns a small Θ. In Fig. 16.7
each transition is attributed with a transition index, the ratio of rates and its individ-
ual Θ.

Fig. 16.6 Basic and optimised method to determine point of reconfiguration.
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Fig. 16.7 Decision graph attributed by rate ratios and individual Θ’s.

The repetition of the 34 simulation runs with absolutely the same parameters
except the modified δχ

int yields a new average ȳ = 0.9023. Its 95% confidence
interval for the actuarial expectation is 0.8738 ≤ μY ≤ 0.9309. Because of the
identical input data and parameters the simulation runs can be statistically tested
on a significant difference by a paired test. The null hypothesis H0 for a sign test
assumes that x̄ = ȳ, its counterpart H1 assumes x̄ 
= ȳ. On a significance level of
95% the null hypothesis has to be refused. It has to be assumed that the difference
of the averages x̄ and ȳ is significant and, thus, the optimised method achieves a
better result. A stronger statistical test assuming a normal distribution for the paired
differences which cannot be refused is a paired t-test. It is also successful on a
significance level of 95% for the data compared here.

Another benefit of the optimised method is given by absolute values for again
the same ten runs evaluated for the determination of Θ. The total number of recon-
figurations is reduced to 2339 instead of 3597. A reconfiguration occupies the bus
system for about 480 μs to transfer the reconfiguration data. So, the effort to adapt
the system is strongly decreased and resources for processing are freed.



350 Carsten Albrecht et al.

16.7 Technical Aspects

Technical properties and constraints of the target platform influence several design
decisions or required special consideration also at higher abstraction levels. In the
tiled grid of CoNoChi the size of the tiles must be consistent with the granularity
at which the underlying FPGA can be reconfigured. The smallest unit of reconfig-
uration in a Xilinx Virtex-4 FPGA is a configuration frame which affects 16 CLB
rows, i.e. 32 slices, along in a column. Therefore, a CoNoChi tile vertically extends
over a multiple of 32 slices. Horizontally, the overhead for communication with
neighbouring tiles gives a realistic lower limit of 12 CLB columns, i.e. 24 slices, for
the width of a tile. For 16-bit bidirectional communication with four neighbours 96
slices are occupied by the portions of bus macros located within the tile. Thus, in a
minimum-sized tile 672 slices remain for the implementation of actual functional-
ity. For a number of HAs, however, this amount is not sufficient. For example, the
AES decryption core used in the demonstrator described in Sect. 16.8 requires more
than twice as many slices. On the other hand, choosing a larger tile size before-
hand would result in a waste of logic resources. Therefore, CoNoChi is designed to
support adjacent tiles to be merged as well as to be split up again later. The FPGA
development tools, including Xilinx’ early access partial reconfiguration (EAPR)
tools, however, do not provide any support for scenarios with reconfigurable regions
of varying number or shape. Therefore, the custom solution described below had to
be developed. A detailed description of the technique is given in [22].

Technically, each CoNoChi tile is represented by a partially reconfigurable re-
gion (PR region) in the floorplan of the system. Adjacent PR regions as well as
PR regions and static parts of the system are connected by bus macros. In order
to realise a tile merge, the floorplan must be adapted so that it contains one fewer
PR region while one PR region extends over the area previously occupied by two.
Moreover, the adapted floorplan must not include bus macros located entirely within
the enlarged PR region. Followingly, the top-level design which instantiates recon-
figurable modules and bus macros also has to change. It is thus necessary to run the
EAPR implementation tools all anew as if there was an entirely new design. The
resulting partial bitstream for the enlarged, merged tile, though, will eventually be
configured into an active FPGA containing the original design. It is therefore cru-
cial that the tools as they are run for the adapted floorplan produce a result which is
compatible with this original design. At first sight, this does not seem to be a seri-
ous issue as only the clearly contoured area of the merged tile will be reconfigured
and as the boundary of that area corresponds exactly to the outer boundary of the
two tiles in the original design. The affected PR regions, however, may also contain
resources used by static parts of the design. For example, I/O buffers required for
external communication may reside within the area and also have signals routed to
them. The EAPR tools take care of such situations by first preventing PR modules
to use resources already used by static parts of a design and then merging the na-
tive circuit descriptions (NCD) of PR modules and static parts. This EAPR feature,
though, cannot be used across different floorplans and different top-level designs as
the static parts, including bus macro instantiations, have to be re-implemented and
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may thus use resources differently. The solution is to force the common static part,
i.e. almost everything excluding bus macros, to be implemented in exactly the same
way in any scenario of merged or non-merged tiles. This can be accomplished by
building a hard macro block from the initial implementation of the static part, a task
which is not trivial, but technically feasible as shown in [22]. Derived scenarios with
merged tiles then have to use an adapted top-level design which instantiates the static
hard macro “as is”. Figure 16.8 shows FPGA editor views of a simple example of
a system comprising four tiles (left) and of the same system with two tiles merged
(right). Using this technique, the resulting partial bitstreams of different scenarios
can safely be intermixed.

Fig. 16.8 FPGA editor views of separate and merged tiles.

For the actual reconfiguration of the FPGA, the internal configuration access port
(ICAP) is used. In Xilinx Virtex-4 FPGAs the ICAP features a 32-bit data interface
which can be clocked at up to 100 MHz. In case of a Virtex-4 FX60 FPGA, the
configuration data for the entire device which amounts to 2.5 MB can be written
within 6.6 ms. A minimum-sized tile as described above can be reconfigured within
at most 200 μs. This is the worst-case parameter which has to be taken into account
by the RM when scheduling the reconfiguration.

16.8 Evaluation

The applicability of the DynaCORE approach and the technical feasibility of its ar-
chitecture were shown by means of proof-of-concept implementations. Based on the
individual concepts presented in the previous sections of this chapter, a demonstra-
tor was realised using a Xilinx Virtex-4 FX60 (XC4VFX60) FPGA as a platform.
This FPGA particularly features an ICAP interface, two hard-wired PowerPC 405
processor cores, and two Gigabit Ethernet MAC components enabling the use of up
to four Gigabit Ethernet interfaces with only little extra logic. The architecture of
the demonstrator is depicted in Fig. 16.9. It comprises receive, dispatch and trans-
mit units, a reconfiguration management component based on a PowerPC-based
subsystem, and three reconfigurable hardware assists. Two distinct Gigabit Ethernet
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interfaces are used for communication with an NP-alike testing environment and for
status information, respectively.

Fig. 16.9 Demonstrator architecture.

The resource requirements of the individual parts of the demonstrator are shown
in Table 16.1(a). The figures indicate that about 50% of the total number of slices
available in an XC4VFX60 FPGA were utilised for the demonstrator implementa-
tion. Table 16.1(b), in addition, shows the amounts of FPGA slices required by the
individual functionalities supported in the setup.

Table 16.1 Resource requirements.

(a) Demonstrator
Part Slices
Top-level logic 69
Base system 3,421
Reserved area for HA #1, #2, #3 3 × 2,944

Total 12,322

(b) Individual HAs
HA functionality Slices
AES encryption 1,326
AES decryption 1,567
3DES encryption/decryption 1,343
XOR encryption/decryption 69

A complete system of NP and DynaCORE was set up with the FlexPath NP
demonstrator (see Chap. 17) as the NP. This setup was first established with the in-
dividual demonstrators running in Lübeck and Munich, respectively, utilising an
Ethernet-over-TCP tunnel connecting both demonstrators through the DFN net-
work. This configuration allowed to run non-timecritical interoperability tests. In
a more realistic scenario, both demonstrators were directly connected using their
Gigabit Ethernet interfaces. This system of FlexPath NP and DynaCORE demon-
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strators was presented at the SPP1148 booth of FPL’08 [21]. Artificial network traf-
fic was generated by a hardware traffic generator, processed by the FlexPath NP
part and partially forwarded to the DynaCORE part. The latter determined whether
or not it was necessary to reconfigure the FPGA in order to fulfill the request, pro-
cessed the packet using an appropriate HA, and sent the result back to the FlexPath
NP part for post-processing. The requested type of processing as well as the load
of the HAs could be observed at an additional PC serving as the debug station as
shown in Fig. 16.9.

16.9 Summary

The increasing gap between computational power and line speed combined with the
short-term and long-term requirements of traffic profiles, i.e. a varying traffic mix-
ture over time and changes in the protocol norms and applications, demand high
flexibility, adaptibility, and performance of network devices. The solution proposed
here is a dynamically reconfigurable coprocessor DynaCORE as a loosely coupled
add-on for NPs. Beside device-dependent components its architecture bases on IP-
cores employed as HAs for time-critical deep packet processing tasks, a RM to
adapt the system, and a topology-adaptive NoC called CoNoChi. The application
of a NoC is motivated by a performance analysis based on a formally derived sim-
ulation model. It is used for evaluating performance and functional issues. For the
implementation of the runtime reconfigurable system a tile-based design method is
introduced. Each tile may comprise a single module or forms part of a module in a
tile compound. The technical design issues are demonstrated in combination with
the FlexPath NP. The RM algorithm is analysed based on the simulation model of
DynaCORE and traffic pattern models. Applying the results for optimising the al-
gorithm leads to a significant improvement of the reconfiguration management and,
thus, system performance.
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Chapter 17
FlexPath NP—Flexible, Dynamically
Reconfigurable Processing Paths in Network
Processors

Rainer Ohlendorf, Michael Meitinger, Thomas Wild, and Andreas Herkersdorf

Abstract This chapter presents the results of the FlexPath network processor (NP)
project. Based on observations on current NP implementations and relevant Internet
traffic scenarios, a new NP architecture is defined that makes use of reconfigurable
packet processing paths in order to improve the system performance. We propose
to extend state-of-the-art processor-centric NP architectures with specific hardware
units in order to classify the incoming traffic into separate processing classes. For
each traffic class, we can provide an optimized processing path, i.e. a functional
unit traversal sequence within the NP. In addition, we propose to offload significant
shares of the traffic to a dedicated hardware path in order to bypass the CPU cluster
and save precious programmable processing resources. We also address the problem
of multi-processor load balancing in the context of multi-core network processors.
The concepts have been evaluated on an analytical and simulative level, and finally
a demonstrator has been implemented on an FPGA in order to prove the claimed
performance advantage by measurements.

17.1 Introduction

FlexPath is a network processor (NP) concept with flexible, dynamically reconfig-
urable packet processing paths. The basic idea of a FlexPath NP is that the way of a
packet through the system is not fixed, but may vary depending on packet content or
system status. We want to obtain an optimal utilization of the provided system re-
sources, high data throughput and low packet processing latency along with defined
quality-of-service (QoS) criteria.
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Current NP architectures consist of a heterogeneous mix of processing resources
(e.g. general-purpose or networking ASIP processors, hardware accelerators, etc.).
In addition, the great variety of application protocols in the data networks impose
different processing requirements on the packet processing infrastructure. This ob-
servation led us to the question, whether it would not be beneficial to differentiate
the incoming traffic into different application classes according to specific process-
ing requirements, and assign them to architectural entities, which are optimized for
the respective application domains. In the field of parallel processor cluster NPs, all
packets have to be processed by the CPU cluster. If hardware acceleration is needed
to achieve complex tasks in real-time, the accelerator is also controlled by a CPU
and the interrupt rate seen by the processor cluster may even increase in contrast to
a pure software solution (run-to-completion model) [10]. The FlexPath NP strives
to achieve a better overall performance by two basic measures:

• Relieving general-purpose processor resources by moving recurring standard
tasks to hardware units that achieve better performance at lower cost (chip area),
thus saving the flexibility of programmable processors for applications that re-
quire intelligent software processing.

• Providing different resource traversal patterns (processing paths) that are op-
timized for the individual application, and access them directly after packet
reception and classification on the receive interfaces. As the processing require-
ments change over time, a run-time reconfigurable solution is desired that al-
lows adaption towards the current load situation during system runtime.

In contrast to most other projects inside this book, reconfiguration in our project
is not achieved by partial dynamic reconfiguration of FPGA resources. The timing
requirements faced in FlexPath NP are much harder than in the other applications
presented in this book. The partial dynamic reconfiguration of an FPGA takes about
10–100 ms; however, the reconfiguration of the packet classification rule base must
be achieved within a packet inter-arrival time. We do not intend to reconfigure our
system after each packet, but when a reconfiguration becomes necessary, it has to
be fast enough not to interrupt the incoming packet stream. Assuming a minimum
frame size of 40 Bytes at Gigabit speed the maximum allowed reconfiguration time
is in the order of 200–300 ns (see also [6]). Therefore, we switch between different
processing paths for the various packet types by (re-)writing memory contents in
the packet classification unit. Another advantage of this approach is that we are thus
not constrained to using a reconfigurable hardware platform (FPGA), but a FlexPath
NP can be implemented in conventional ASIC technology.

The rest of the chapter is structured as follows: In Sect. 17.2 we introduce the
FlexPath NP concept. The concept will be evaluated in Sects. 17.3 and 17.4 using
formal analysis and simulation results. In Sect. 17.5 we present our FPGA demon-
stration platform. After describing the architecture, several experiments demonstrate
the advantages of our concept. Finally, we conclude the chapter by summarizing the
main benefits of a reconfigurable architecture in the high-performance network pro-
cessing field.
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Due to space limitations, we reference mainly our own publications in this chap-
ter and only the most important related work. For a full coverage of related work we
refer the reader to the respective references listed in our own publications.

17.2 FlexPath NP Concept

In most commercial NP architectures a cluster of programmable processing ele-
ments (PEs) is responsible for packet processing. Usually hardware accelerators
speed up the processing for special tasks like packet storage or cryptographic al-
gorithms. The cluster itself may be programmed as pipeline, i.e. each PE performs
only a small task on each packet, or as a run-to-completion system. In the latter case,
each PE performs the full processing for one packet. Nevertheless, each packet tra-
verses the PE cluster. Hardware accelerator management or hand-over of control
packets to the control plane is done by a data plane PE.

Regarding the protocol mix of a typical backbone router traffic (see [18]) the pro-
cessing requirements are very heterogeneous. For the majority of packets (75–85%
TCP, roughly 10% UDP) IP forwarding is sufficient. With the increasing share of
real-time applications in the Internet, also quality-of-service (QoS) techniques such
as DiffServ become important features in network nodes. Here, packets are marked
with different forwarding priorities, in order to give high-priority traffic an expedited
forwarding compared to best effort traffic. In addition, modern router environments
may also deploy new services like virus-scanning or other forms of deep packet
processing in the future. In this case, only the pure TCP acknowledgment packets
without payload (roughly 25% of the TCP packets) are limited to IP forwarding,
whereas for all other packets deep packet processing may be performed. Another
5–8% of the traffic consists of cryptographic packets, i.e. at least in an edge router
environment these packets are potentially candidates for en- or decryption. Most of
the remaining packets contain control protocols (less than 2–3%) that are processed
by a control plane CPU. Control protocols are usually complex to implement but
have relaxed timing requirements.

In contrast to most other commercial architectures we want to take care of the
different processing requirements of each packet already at the input and find an op-
timal way through the system for each packet. We think that it is not efficient to send
each packet to a processor first, that decides afterwards about the further path (e.g.
hardware accelerator or control plane). In such a system, the interrupt rate for the PE
cluster is higher than the packet rate. In a FlexPath NP packets are classified in hard-
ware already at the input. A dispatcher decides about the further path of the packets.
Since packets are directly sent to an appropriate processing instance, the interrupt
rate of the PE cluster can be reduced and headroom for processing is created.

The path decision is influenced by two important characteristics:

• Application dependent path decision: The protocol type of each packet is taken
into account. Control packets are sent directly to the control plane, encrypted
packets directly to a hardware crypto core for decryption. Packets that must be
processed by a processor are sent to the PE cluster.
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• Load dependent path decision (Load Balancing): This is important when having
multiple instances of functionally identical processing elements, like the PEs in
the PE cluster. So, not only a decision about the processing element type (like
PE) is important, but also a decision to which specific PE. This decision is
dependent on the current load situation in the NP.

In order to classify the incoming packets according to their specific application
class, it is necessary to inspect the protocol headers in hardware. In addition to
extracting relevant header fields, we can also use hardware to perform some basic
recurring tasks of network processing. In this way, we even achieve IP forwarding
capability without the need of PE intervention, as we will show later. When we are
able to bypass the PE cluster and process certain packet types fully in hardware, we
call this the AutoRoute path.

17.2.1 Application Dependent Path Decision

The decisions about the most suitable processing path have to be made on a per-
packet basis. In the FlexPath NP, this decision is taken by a hardware assist called
Path Dispatcher [12, 14] (see Fig. 17.1) that contains a reconfigurable rule base.
This rule base determines the particular processing path depending on the incoming
packet type. Based on the packet types we see a variety of alternative processing
paths in the FlexPath NP:

• Packets may be sent to a number of co-processors (e.g. authentication or de-
cryption) before being handed over to the PE along with the obtained results.
Computing amount and packet event rate of the PE cluster are reduced com-
pared to a processor-centric architecture.

• Packets with relatively simple and regular processing requirements, like plain IP
forwarding, can be processed completely in hardware (AutoRoute). Additional
FlexPath-specific hardware is needed, that will be introduced in the following.

• All other packets are sent directly to the PE cluster as in a processor-centric NP.

The Pre-Processor unit performs basic functions like packet header parsing, ex-
traction of pertinent header information (destination/source addresses, L4 port num-
bers, priority bits, protocol IDs), packet prioritization and classification and calls
the next-hop lookup engine. Thus, the Pre-Processor retrieves sufficient informa-
tion about the incoming packet which enables the Path Dispatcher to take decisions
about the further handling of the packet. Packets traversing the PE cluster also ben-
efit from the pre-processing, since basic integrity checks are already performed.

The Post-Processor [7] performs basic egress packet modification operations like
MAC address exchange, TTL decrement, and IP checksum calculation. Together
with the functionality of the Pre-Processor and the next-hop lookup engine, these
operations are enough to perform IP forwarding and finish the packets in hardware
on the AutoRoute path. The Post-Processor may also perform basic packet modifi-
cations like IPsec header insertion instead of a PE.



17 FlexPath NP 359

Fig. 17.1 Packet flow within the FlexPath NP.

Alternating path decisions for packets from the same connection (e.g. TCP pack-
ets with payload vs. TCP acknowledgment packets) may lead to packet reorder-
ing. As shown in [5], packet reordering can have a significant performance penalty
on network throughput, especially when considering the dominating TCP protocol.
Therefore we propose the Path Control unit to re-sequence the packets at the egress
side on a per-flow basis (see [8]). This also creates additional freedom in processor
assignment, which is important for the load balancing schemes discussed in the next
section.

17.2.2 Load Dependent Path Decision

The path assignment performed in the Path Dispatcher not only differentiates be-
tween software and hardware processing, but is also used for load balancing within
the processor cluster. In contrast to proposals from prior art publications [4, 17, 16],
we differentiate the incoming traffic in our Path Dispatcher unit, and can—in co-
operation with the Packet Distributor—implement different load balancing strate-
gies for different traffic classes. The Packet Distributor provides several queues for
the different traffic classes and features a multi-processor interrupt controller that as-
sociates the queues with the PEs. In addition, our Path Control unit solves the prob-
lem of packet reordering, which is specifically addressed by every scheme found
in prior publications and that limits the efficiency of the presented load assignment
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schemes. We provide a scheme that optimizes the NP performance with respect to
QoS requirements and maximizes the PE utilization.

For stateless processing applications like IP forwarding, we propose a prioritized
spraying of the packets over all PEs in the processor cluster. For each traffic class
we provide a single queue, into which packets are assigned by the Path Dispatcher.
The packets can then be fetched from any free PE for processing according to pre-
defined priority levels that correspond to the QoS requirements of each traffic class.
In contrast to the spraying described in [4], where packets are assigned to different
queues with a one-to-one association between queue and PE, our spraying is effec-
tively performed after a common queue (one-to-n association). By spraying packets
over a multitude of PEs from a single queue we can exploit a pooling gain effect
and insure that the packets suffer minimal delay before being processed.

Packet spraying is not suitable for stateful networking applications, where a flow-
specific state has to be maintained and accessed for every packet. The problems
associated with distributed state information is twofold:

• Packets from the same flow might be processed by two different PEs at the
same time. In order to preserve integrity, the state information would have to be
secured by locking semaphores, thus PEs would idle during conflicting accesses
and effectively waste time.

• Even if only one packet is processed at a time, the state information has to be
kept in a centralized shared memory to provide access for all PEs in the proces-
sor cluster. The simulations performed in [11] have shown that shared memory
architectures do not scale well to a larger number of cores. Alternatively, a local
copy of the state information might be generated, but complex cache coherency
measures would have to be installed to insure data consistency over several par-
allel copies.

Therefore, we propose to basically maintain a fixed flow-to-PE mapping for those
application classes. We periodically monitor the load on the individual processors
and reconfigure some flow-to-PE assignments when mandated by a large load im-
balance within the processor cluster.

Configuration and updating of Path Dispatcher and Packet Distributor is the task
of a software process (called Path Manager) running on the NP control plane CPU.
This software process has to monitor the system status like processor loads, register
IPsec connection setups etc. in order to decide if a system reconfiguration improves
the system behavior.

17.3 Formal Analysis

We have performed analytical investigations on the effect of hardware offloading for
the overall NP performance [10]. We choose a multi-processor NP with six parallel
microengines as a reference architecture. We assume a clock frequency of 232 MHz
and with a CPI of 1.0 we can derive a processing budget of 573 instructions per
packet for minimum sized packets at 1.2 Gbit/s (2× OC-12 Sonet/SDH speed). This
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architecture is then compared in terms of the available instructions per packet pro-
cessing budget to a FlexPath NP with one or two RISC CPUs and AutoRoute traffic
shares varying between 0% and 100% (see Fig. 17.2).

The FlexPath NP has fewer PEs than the reference architecture and the dual-
core FlexPath NP has 30% lower nominal processing performance (MIPS). Con-
sequently, directing about 30% of the traffic towards AutoRoute would compensate
this difference. In addition, it can be seen in Fig. 17.2 that offloading higher percent-
ages of the traffic towards AutoRoute significantly increases the available instruction
budget for the remaining traffic that traverses the CPU cluster.

Fig. 17.2 Instruction Budget in Reference Scenario vs. FlexPath NP for Varying AutoRoute Traffic
Shares.

Roughly a quarter of the Internet traffic consists of TCP acknowledgment packets
without further payload. These packets are prime candidates for AutoRoute, as they
only need to be forwarded and no payload processing is applied to them. In addition,
those packets are of minimum length and thus impose the highest interrupt rates onto
a processor cluster.

In mobile GPRS networks only traffic going to the local base stations is subject
to intensive protocol processing. The majority of packets are part of route-through
traffic to and from neighboring radio network controllers (RNC). Here, we are able
to offload up to 90% of the traffic, assuming that up to 10 chained RNCs aggregate
traffic towards a single serving GPRS support node (SGSN). Exploiting such high
traffic offload means that we are able to address the CPU-assigned applications with
relatively high computational power and do not waste precious programmable re-
sources for doing standard tasks that can be more effectively performed in hardware.

17.4 Simulative Exploration

As the analytical investigation of the FlexPath NP architecture has shown encour-
aging results, we have refined our investigations on a simulative level. We have first
investigated the expected performance improvement of FlexPath in comparison to
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processor-centric architectures. Then, we investigated the proposed load balancing
strategy. As we have not yet implemented load balancing on our FPGA demonstra-
tor platform (Sect. 17.5.2) we show the simulation results in detail.

17.4.1 FlexPath NP Architecture Evaluation

We investigated the expectable system performance by a set of simulations on a
trace-based SystemC architecture model [11]. The goal of these simulations is to
estimate the achievable NP throughput on a System-on-Chip (SoC) platform with
standard RISC cores and the FlexPath-specific hardware offload and AutoRoute fea-
tures. We realize the functional entities presented in Fig. 17.1 on SoC execution re-
sources with a central on-chip bus system (see Fig. 17.3). In order to calibrate the
simulation model with real-world figures, we have profiled an open IP stack that we
adapted to run on a preliminary hardware system with readily available IP cores.
We implemented this initial prototype on a Xilinx Virtex-II Pro development board
that consists only of the Memory Management unit (see Sect. 17.5), Pre-Processor,
memories and a single PowerPC. Based on the extracted execution traces of the IP
forwarding software and the access patterns of the BlockRAM and SDRAM memo-
ries, we have investigated potential system bottlenecks and scalability behavior with
respect to clock frequencies, number of parallel processors and different memory
technologies. The simulation model features a cycle-accurate model of IBM’s Core-
Connect PLB bus, thus the simulator is well suited to cover the effects of multiple
masters accessing the shared media over a common communication infrastructure.

Without being depicted in separate figures, three main results of the performance
simulations are summarized in the following.

Fig. 17.3 SystemC Performance Model of the FlexPath SoC Architecture.
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The first result of the simulations is that in order to scale up the processing per-
formance of the regarded NP, it is more beneficial to increase the number of RISC
processors rather than increasing the processors’ clock frequencies. It also became
clear that scaling the system to more than four CPU cores requires higher capac-
ity NoC interconnect structures and distributed memories, in order to avoid running
into either a communication or memory access bandwidth bottleneck.

Providing a separate fast SRAM for the software increases the system perfor-
mance, as reads from the SDRAM with the used Xilinx memory controller have
quite a long access latency and the code does not fit into the caches of the Power-
PCs on the FPGA.

Finally, we investigate the performance of a FlexPath NP architecture with a
single CPU, using the hardware offload possibilities of Pre-Processor and Post-
Processor and AutoRoute forwarding. The individual performance figures for the
different scenarios had to be omitted from this chapter for space reasons, but can be
found in [11] and [13].

17.4.2 Load Balancing in FlexPath NP

In order to evaluate the proposed load balancing schemes, we have performed a set
of simulations using real traffic traces obtained by CAIDA [2, 3] that are processed
by a FlexPath NP with QoS-aware IP forwarding and IPsec encryption. The traffic is
split up into high-priority forwarding and best effort forwarding when spraying the
stateless traffic. The packets for IPsec encryption are assigned to dedicated CPUs.
We developed a functional simulation model of our FlexPath NP that exactly resem-
bles the packet pre-processing, Path Dispatcher, queuing and Path Control functions.
In order to obtain performance figures, we have considered processing delays from
measurements with a combined IP forwarding/IPsec stack, but this time omitted the
memory access and DMA effects. A model of the Path Manager process monitors
the CPU cluster load every 50 ms and optimizes the flow-to-CPU assignment by
reconfiguring the Path Dispatcher rule base if necessary.

Figure 17.4 shows the packet loss rate of our combined scheme compared to
the most recent load balancing scheme proposed by Kencl and Shi in 2006 [16]. As

Fig. 17.4 Packet Loss Rate in FlexPath NP versus Reference Implementation.
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Kencl and Shi assign the entire traffic to CPU-specific queues, head-of-line blocking
effects can be observed for the forwarding packets. Forwarding packets that arrive
behind an IPsec packet are affected, as the processing latency for IPsec is up to a
factor of 300 larger compared to plain forwarding. Consequently, a certain number
of packets are lost, even when provisioning a CPU cluster that has enough process-
ing power to handle the entire traffic. In the FlexPath scenario, we reach a lossless
operation beyond nine processors in the cluster.

Fig. 17.5 Packet Latencies per Traffic Class.

Figure 17.5 illustrates packet latencies for the before mentioned setup. As Flex-
Path differentiates the traffic classes in the Path Dispatcher before the input queues
of the processor cluster, we can insure proper prioritization of the QoS packets. It
can be seen that the best effort packets suffer a longer latency (and a significant
packet loss) while the processor cluster is overloaded with the IPsec and QoS traffic
for a smaller number of CPUs. As more CPUs are added, the latencies of best effort
and QoS converge as the processing consists of exactly the same forwarding func-
tion for both traffic types. In contrast, since [16] does not consider traffic classes,
and with the head-of-line blocking effects caused by the IPsec packets, significantly
higher processing latencies for both the QoS and best effort traffic can be observed.

17.5 FPGA Demonstrator

17.5.1 Architecture

In order to verify our FlexPath concept with real measurements rather than with sim-
ulation results only, we have developed a Multi-Processor System-on-Chip imple-
mentation of a FlexPath NP on a single Xilinx FPGA [9]. The block diagram of our
system is depicted in Fig. 17.6. As interconnect we are using the CoreConnect Pro-
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cessor Local Bus (PLB) with two PowerPC 405 CPUs connected that are used for
packet processing. One CPU always runs the data plane stack, whereas the second
CPU can be configured to perform control and/or data plane functions. The stack
supports IPv4 forwarding and features an IPsec implementation, which is limited to
manual keying. In the following we describe in short the architecture of our system:

Fig. 17.6 Block diagram of FlexPath NP architecture.

• Memory Management: The Memory Management unit is an autonomously
working DMA engine, which stores incoming packets in the main memory.
A packet descriptor is created and handed over to Path Control and Path Dis-
patcher. The packet descriptor contains pointers to the packet data in the mem-
ory. When receiving a packet descriptor at the transmit side (e.g. from the Path
Control), the packet is read out again and sent to the Gigabit Ethernet Media
Access Control (GEMAC).

• Pre-Processor: The Pre-Processor parses the incoming packets, performs in-
tegrity checks (e.g. IPv4 header checksum) and extracts a set of important
header fields depending on the protocol stack of the incoming packet. All this
information is passed on to the Path Dispatcher for processing path selection.
The Pre-Processor may also initiate a hardware next-hop lookup.

• Path Dispatcher: Based on the extracted fields from the Pre-Processor, the Path
Dispatcher evaluates the runtime reconfigurable rule base for every incoming
packet (see [12, 14]) and makes a path decision.

• Context Generation Engine: Depending on the outcome of the packet classifi-
cation, the Context Generation Engine either stores the extracted header fields
from the Pre-Processor for later usage within a CPU or hardware accelerator.
If the packet is eligible for AutoRoute, the correct instructions for the Post-
Processor have to be generated and stored in memory. In this case the packet
descriptor is directly sent to the egress Path Control.
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• Path Control: The architecture of the Path Control is divided into two modules.
The ingress part adds a flow ID and a consecutive sequence number to each
packet descriptor to preserve the original input sequence. The egress part checks
the packet sequence and performs the re-sequencing if needed (see [8, 19]).

• Post-Processor: The Post-Processor performs the egress packet manipulations.
It is designed as a pipeline engine working at line speed (see [7]). It is pro-
grammed by specific assembler like instructions sent along with the packet.
These instructions either have to be created by a CPU or the Context Genera-
tion Engine in case of AutoRoute.

• Packet Distributor: We have not yet implemented a fully functional version of
the Packet Distributor as described in Sect. 17.4. In the current state, the func-
tion of the Packet Distributor is implemented by the Multi-Processor Interrupt
Controller (MP-IntC) and a set of registers that store a single packet descriptor
for each provisioned processing path.

Fig. 17.7 Floorplan of FlexPath NP Demonstrator.

We built up our demonstrator on a Xilinx ML410 prototyping board with a
Virtex-4 FX 60 FPGA. The board contains an external DDR2-SDRAM and two Gi-
gabit Ethernet PHYs. The operating frequency of our system is 100 MHz. Besides
the two PowerPCs, the FlexPath NP consumes about 16,000 slices out of the 25,280
available slices on the Virtex-4 (63%). Additionally, we are using 77 (33%) built-
in SRAM-blocks with 2 kbit each. Figure 17.7 shows the floorplan of our system.
Most of the modules are arranged around the central PLB. The most slice consuming
modules are the Memory Management, Context Generation Engine, Post-Processor
and the Path Dispatcher (cf. Table 17.1).

The goal of this demonstrator is to validate the benefits of a FlexPath NP com-
pared to a processor-centric architecture. As we are limited to using the two Pow-
erPC hard macros provided by the FPGA (soft core CPUs would offer a worse
area-performance tradeoff), we can not achieve the same throughput performance
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Table 17.1 Resource usage on a Xilinx Virtex-4 FX60.

Module Slices BlockRAMs
Memory Management 3285 5
Path Dispatcher 1446 14
Ctx. Generation Engine 1978 4
Pre-Processor 682 1
Post-Processor 1615 3
MP Interrupt-Ctrl. 187 0
Path Control 1288 14
Others/Glue Logic 5525 36

Σ 16006 (63%) 77 (33%)

of commercially available NPs. However, the FlexPath-specific hardware modules
have been designed to work at 3.2 Gbit/s (32 bit data path running at 100 MHz in
our FPGA design). Both the processing performance as well as the hardware mod-
ules could be scaled towards a higher performance, if the design was moved from
an FPGA to standard cell ASIC technology.

17.5.2 Experiments

In the following section we show measurement results obtained from the FPGA
demonstrator. We especially focus on the following four aspects of a FlexPath NP
architecture:

• Pre-classification of packets in hardware (i.e. Path Dispatcher) is helpful to en-
hance the performance of a NP.

• The FlexPath NP allows to combine the packet distribution techniques of dedi-
cated assignment and packet spraying and exploit the benefits according to the
simulations performed in Sect. 17.4.2.

• Additional hardware support by Pre-Processor and Post-Processor and making
use of the AutoRoute processing path further enhances the NP performance
and relieves the processor complex in accordance with the results obtained in
[11, 13].

• We have also built up a common demonstrator with the DynaCORE group from
the University of Lübeck (see Chap. 16 and [15]). The DynaCORE was used
as an off-chip hardware accelerator for the AES encryption function within
our IPsec scenario. We could demonstrate the direct calling of co-processor
resources from the CPU and forwarding the encrypted packet back from the
accelerator via the AutoRoute path to the actual transmit interface.

17.5.2.1 Demonstrator Setup

We imposed the following traffic mix consisting of two different TCP flows on our
NP system. The first flow is a traffic according to the simple IMIX specification [1]
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with a data rate of 100 Mbps and a resulting packet rate of 34.5 kpps. This traffic can
be entirely forwarded on the IP layer, which is an example of a stateless networking
application that may be performed either in software or AutoRoute. A second flow
consists of a sequence of 512 byte packets with constant packet inter-arrival time,
that can be configured to various data rates. This flow is considered to enter an
IPsec tunnel at the router, such that the payload has to be AES encrypted and tunnel
headers added before the packets can be forwarded towards the egress interface. The
IPsec traffic belongs to the class of stateful networking applications, for which we
have to insure processing by the same processing element.

The Path Dispatcher can separate the two connections by their IP addresses and
assigns different paths for them. Since we differentiate the incoming traffic only
based on the IP addresses—and not the full IP 5 tuple—we have to perform a full
Security Policy Database (SPD) check in software for all potential IPsec packets.
The database is implemented in the IPsec stack and tells whether a packet must be
encrypted, forwarded without encryption or discarded at the router.

In our configuration, the data plane CPU 1 can process IP forwarding as well as
IPsec packets. CPU 2 is also used as data plane CPU, but only has IP forwarding
capabilities. In the following, we examine six configurations:

1. All packets are processed by CPU 1. This is the simplest case without using the
FlexPath-specific capabilities and will be used as a reference. CPU 2 is used as
control plane processor.

2. All packets are processed by CPU 1 with packet pre-classification by the Path
Dispatcher resulting in an assignment to different input queues for IP forward-
ing and IPsec traffic. There are two different software entry points for packets
fetched from either queue. Again, CPU 2 is used as control plane processor.

3. The forwarding traffic is assigned exclusively to CPU 2, while the IPsec traffic
remains exclusively assigned to CPU 1.

4. The forwarding traffic is sprayed among CPU 1 and CPU 2, while IPsec traffic
is only assigned to CPU 1.

5. CPU 1 is processing IPsec traffic, while the forwarding traffic is routed via
AutoRoute.

6. IPsec traffic is processed by both DynaCORE and CPU 1, while forwarding
traffic is sprayed among CPU 1 and CPU 2.

17.5.2.2 Single Data Plane CPU (Scenarios 1 and 2)

The results of the first two scenarios are shown in Fig. 17.8. Without any IPsec
traffic traversing the NP, the CPU load is 70% in scenario 1, while the CPU load
is reduced to only 37% in scenario 2 due to partially offloading the SPD check to
the Path Dispatcher. The available processing performance of the system can thus
almost be doubled by exploiting the hardware offload possibilities offered by Flex-
Path. When increasing the IPsec traffic data rate, the CPU load increases rapidly.
An additional traffic of 1.6 Mbps (0.4 kpps) in scenario 2 already doubles the load
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Fig. 17.8 Measurement Results for Scenarios 1 and 2.

of the CPU, which proves that encryption in software is very computationally ex-
pensive. At the same time, the output packet rate of the forwarding traffic decreases.
All IMIX packets can be served when there is no IPsec traffic in the system. With
an IPsec data rate of 400 kbps we already observe a loss rate of 8% for the IMIX
packets—even though the CPU load is still below 80%. This effect was traced back
to the long processing latency of IPsec packets of more than 1 ms. During this time,
the ingress path is blocked. As soon as all input queues are filled, incoming packets
are discarded at the system input. This leads to a packet loss even though there is
enough processing power left between two IPsec packets.

The CPU load reaches its maximum of almost 100% with an IPsec data rate of
2.8 Mbps in scenario 2. Whereas for smaller IPsec shares there is no IPsec packet
loss, we see an increasing loss rate for higher IPsec data rates. Since the processing
effort per IPsec packet is high, each lost packet reduces the CPU load significantly,
leaving more room for IP forwarding. For higher IPsec input data rates the CPU
load and overall forwarding rate vary depending on the IPsec data rate and thus
IPsec packet inter-arrival time.

17.5.2.3 Two Data Plane CPUs (Scenarios 3 and 4)

In the following two scenarios, we use the second PowerPC as an additional data
plane CPU. In scenario 3 all IPsec packets are assigned to CPU 1 and the entire IP
forwarding traffic is assigned to CPU 2. We see a constant processing load of 30%
for CPU 2 in Fig. 17.9 independent from the IPsec data rate. No IMIX packets are
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lost in the NP. The load of CPU 1 starts from zero and increases linearly with the
IPsec data rate.

Fig. 17.9 Measurement Results for Scenarios 3 and 4.

In the spraying scenario for the forwarding traffic (scenario 4), the IMIX packets
are processed by both CPUs. Without IPsec packets, one would expect the same
load for both CPUs. However, we observe a load of 26% on CPU 1 and 10% on
CPU 2. The reason for this imbalanced load distribution is due to the specific imple-
mentation of the spraying mechanism in our demonstrator. When there is a packet
in the spraying queue, the Interrupt Controller will notify both CPUs. The CPU that
reacts first by reading out the Interrupt Service Register will get the packet. As long
as both CPUs are idle, this will always be CPU 1, since it has the higher bus prior-
ity. When increasing the IPsec data rate, CPU 1 will mainly process IPsec packets,
while CPU 2 will take over the forwarding packets. The curves for the CPU loads
finally approach the values observed in scenario 3 for high IPsec loads.

The cumulative CPU load in scenario 4 with IMIX packets sprayed on both CPUs
(26%+10%) is larger compared to the forwarding load in scenario 3 (30%). In con-
trast to CPU 2, the stack on CPU 1 also includes code for the IPsec implementation.
This leads to a larger executable and more cache line replacements, although the for-
warding functionality is the same. In addition, interrupting both CPUs in the spray-
ing scenario leads to the execution of the interrupt service routine in both CPUs,
although processing is performed only on one CPU. This increases the overall CPU
load.

A decline of the IMIX output data rate can be observed in both scenarios, when
reaching 100% processor utilization from IPsec packets. At this point, the second
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CPU still has sufficient headroom for processing additional traffic. The effect can
be explained with head-of-line blocking in the ingress data path pipeline of our NP
demonstrator. In the simulation scenario investigated in Sect. 17.4.2, packets arriv-
ing at the Packet Distributor with a full queue destination are discarded, keeping the
ingress pipeline free for non-blocked destinations. Since the current implementation
lacks this feature, packets are discarded at the MAC buffer as soon as one CPU path
is blocked. This leads to a discard of packets with arbitrary destination. With a full-
fledged Packet Distributor we would not expect a packet loss for the IMIX packets
here.

17.5.2.4 AutoRoute (Scenario 5)

In this scenario we use the full hardware AutoRoute path for IP forwarding packets.
All IPsec packets are guaranteed to be processed by the CPU. The results shown in
Fig. 17.10 are similar to those seen in scenario 3 (Fig. 17.9). The load of CPU 1
is increasing linearly with the IPsec data rate and all IMIX packets are processed
in a lossless fashion. When the load of CPU 1 reaches 100%, we see the same
head-of-line blocking effect as discussed before. The same throughput as before
can be achieved with only a single CPU now. The compute performance of the
second CPU is saved by the AutoRoute packet path, which now remains avail-
able for another IPsec connection, for example. In this scenario, the AutoRoute
path is also not fully loaded; it could handle much more forwarding traffic than the
100 Mbps.

Fig. 17.10 Measurement Results for Scenario 5.
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17.5.2.5 DynaCORE (Scenario 6)

In a last step, the FlexPath NP demonstrator was coupled with the DynaCORE sys-
tem, developed at the University of Lübeck (see Chap. 16 and [15]). As could be
seen in the results discussed before, IPsec encryption requires a processing effort,
that is about a factor of 300 greater than that of pure IP forwarding. Therefore, it
is desirable to move the AES encryption function into a dedicated hardware assist.
The remaining parts of the processing, such as header processing, IPsec database
checks and tunnel header insertion are still performed on the data plane CPU. Both
systems communicate via a standard Gigabit Ethernet link. A proprietary tunneling
protocol on top of the Ethernet layer was defined for packet exchange.

An incoming IPsec packet is first sent towards CPU 1 in the FlexPath NP. A mod-
ified and smaller stack performs the SPD check and constructs the tunnel header just
like in the previous scenarios. Instead of applying the AES encryption, the packet
is sent to DynaCORE with the tunneling protocol that also contains information
about the connection parameters (i.e. cryptographic key). The two tunnel headers are
stored in the packet context and are inserted into the packet by the Post-Processor
in order to avoid costly copy operations from the CPU. After transmission on a sep-
arate Ethernet port to DynaCORE, the packet payload is encrypted according to the
parameters communicated in the DynaCORE header. The processed packet is then
sent back towards the FlexPath NP. At this stage, processing of the packet is almost
complete. If the Pre-Processor finds an appropriate lookup result for the address in
the outer IP header, the packet can actually be AutoRouted towards the final in-
terface. The Post-Processor only removes the DynaCORE header—the remaining
header fields can be left unchanged, since they have been prepared in the correct
form by the CPU before sending the packet over to DynaCORE. Consequently, the
packet has to traverse the CPU only once.

Although the communication between network processor and accelerator via
Ethernet is certainly not the most efficient way, it has proven very helpful to couple
the two demonstrator systems, that have been developed at two remote sites without
much problems.

17.6 Conclusion

In this chapter, we summarized the main contributions of the FlexPath NP project.
We have proposed a novel network processor architecture, that uses run-time recon-
figurable processing paths to improve the performance. In contrast to most works
in the field of reconfigurable computing, we do not reconfigure functional units
during system runtime, but change the flow of packets through the system by mod-
ifying memory contents of a reconfigurable classification rule base. We can thus
extend the scope of reconfigurable systems also to ASIC implementations. We fur-
ther show how exploiting reconfigurability improves the performance in a field with
very high computational and timing requirements. Extensive hardware offload that
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allows bypassing the CPU cluster for significant shares of the network traffic has
been demonstrated. Performing the hardware offload with a range of generic op-
erations leads to a solution that is not restricted to a specific application. We thus
preserve the flexibility associated with programmable NP solutions. For our demon-
strator we used standard RISC processors instead of proprietary PEs, in order to
simplify software development and having access to standard tool chains. Finally, a
novel load balancing scheme was proposed that considers the different requirements
of several networking traffic classes in the load assignment process.

The FlexPath NP architecture was derived based on an analysis of current Internet
protocols and applications. The concept has been evaluated and refined using both
formal analysis and SystemC-based simulation platforms. Finally, we have imple-
mented a complete NP demonstrator on an FPGA development board and were able
to show by measurements that the expected performance benefits can be achieved
in an actual implementation.

Based on the results of this project, we would suggest further research towards
reconfiguring CPU resources with dedicated hardware assists (e.g. crypto cores).
This has to go along with an appropriate path reconfiguration scheme implemented
in the Path Manager. In addition, the concept of reconfigurable processing paths and
specific hardware offload could also be extended to NPs with proprietary PEs rather
than standard RISC CPUs.
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Chapter 18
AutoVision—Reconfigurable Hardware
Acceleration for Video-Based Driver Assistance

Christopher Claus and Walter Stechele

Abstract Using dynamically reconfigurable systems makes sense especially when
a high degree of flexibility is demanded and the application requires inherent paral-
lelism to achieve real time constraints. The AutoVision architecture is a new Multi
Processor System-on-Chip (MPSoC) architecture for video-based driver assistance
systems, using run-time reconfigurable hardware accelerator engines for video pro-
cessing. According to various driving conditions (highway, city, sunlight, dark-
ness, tunnel entrance), different algorithms have to be used for video processing.
These different algorithms require different hardware accelerator engines, which are
loaded into the AutoVision chip at run-time of the system. The aim of this project
was to find out how to use fast dynamic partial reconfiguration to load and oper-
ate the right hardware accelerator engines in time (without loosing a single video
frame), while removing unused engines in order to save precious chip area.

18.1 Introduction

In future automotive systems, video-based driver assistance will improve safety.
Video processing for driver assistance requires real time implementation of com-
plex algorithms. A pure software implementation does not offer the required real
time processing, based on available hardware in automotive environments. There-
fore hardware acceleration is necessary. Dedicated hardware circuits (ASICs) can
offer the required real time processing, but they do not offer the necessary flexi-
bility. Video algorithms for driver assistance are not standardized, and might never
be. Algorithmic research is expected to continue in future years. So a flexible, pro-
grammable hardware acceleration is required. Specific driving conditions (e.g. high-
way, country side, urban traffic, tunnel) require specific optimized algorithms. Re-
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configurable hardware offers high potential for real time video processing, and is
adaptable to various driving conditions and future algorithms.

Today’s systems for driver assistance offer features such as adaptive cruise con-
trol and lane departure warning. Both video cameras and radar sensors are used. On
highways and two-way primary roads a safe distance to previous cars can be kept
automatically over a broad speed range. However, for complex driving situations
and complex environments, e.g. urban traffic, there are no established and reliable
algorithms. This is a topic for future research.

Algorithms for video processing can be grouped into high level application code
and low level pixel operations. High level application code requires a high degree of
flexibility, and thus is good for a standard processor implementation. Pixel manipu-
lation on the other hand requires applying the same operation on many pixels, and
thus seems to be a good candidate for hardware acceleration.

Hardware acceleration for image processing algorithms is beneficial:

• if reading/writing of consecutive areas in memory is demanded. This allows for
burst transfers of pixel data.

• if the processing of huge pixel neighborhoods using regular scans over the im-
age is required. The central pixel and its complete neighborhood could be pro-
cessed in one hardware clock cycle due to inherent parallelism.

• if the algorithm requires multiple scans over input and intermediate images,
which can be done using a deeply pipelined structure.

• if the processing in hardware leads to a significant data reduction. Then embed-
ded CPUs can continue to work on this intermediate result.

In the AutoVision project only the performance intense parts are accelerated by
coprocessor engines, which usually leads to a significant data reduction. The rest of
the algorithm, the high level application code, is implemented fully programmable
on one standard PowerPC (PPC) CPU cores to remain easily updateable and allow
flexibility for new algorithms. In addition, the application code running on one of
two available PPCs is able to trigger a reconfiguration process. Hence the copro-
cessors available on the system can be exchanged during run-time, which allows a
much larger set of hardware accelerated functionality than would normally fit onto
a device. This process makes use of the partial dynamic partial reconfiguration ca-
pabilities of Xilinx Virtex FPGAs. If a coprocessor is exchanged the remainder of
the system, containing for example the video-input and video-output, remains fully
operational. Beside supplying the reconfiguration controller with the information
where to fetch the reconfiguration data (partial bitstream) the second PPC is respon-
sible for verifying and visualizing the reconfiguration.

In Sect. 18.1.1 recent work is surveyed. Section 18.1.2 presents a typical exam-
ple where reconfigurable video processing can be applied. In addition, the copro-
cessor engines are introduced. An overview of the AutoVision architecture is given
in Sect. 18.2. The concepts and optimizations that led to the utilization of Dynamic
Partial Reconfiguration (DPR) in video-based driver assistance systems is presented
in Sect. 18.3. The results obtained are presented in Sects. 18.4 and 18.5. Finally this
contribution is concluded with an outlook on further plans in Sect. 18.6.
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18.1.1 State of the Art & Related Work

The idea of using hardware acceleration as a solution for computationally intensive
applications for real-time visual recognition has been developed many years ago.
Since then, companies begun to manufacture System on Chips (SoCs) to be used in
automotive or robotic environments. One of them is Mobileye [16], who presented
their EyeQ chip with two ARM cores and 4 dedicated coprocessors for object clas-
sification, tracking, lane recognition and filter applications. Dedicated hardware cir-
cuits (ASICs) can offer the required real-time processing, but they do not offer the
necessary flexibility. Video algorithms for driver assistance are not standardized,
and may never be. Algorithmic research is expected to continue in the future. Thus
a flexible, programmable hardware acceleration is needed. In their second genera-
tion of the EyeQ chip (EyeQ2), Mobileye introduced three programmable Vector
Microcode Processors to enhance the flexibility of the system.

But the problem, that unused coprocessors persist on the device while they are
not needed and thus occupying a lot of resources remains. FPGAs can be used to
cope with that problem by updating their configuration information when needed
as already mentioned in Sect. 18.1.1. Various authors addressed the problem of fast
DPR, to be used in the signal and image processing domain.

Manet et al. [15] present an evaluation of DPR for real signal and image pro-
cessing applications. Although some other applications are mentioned, the focus is
on applying DPR for Software Defined Radio (SDR). For fast reconfiguration in
their system an Internal Configuration Access Port (ICAP, see Sect. 18.3.3.1) con-
troller for Virtex-4 devices has been implemented, which achieves a throughput of
350 KB/ms at a frequency of 100 MHz. This is close to the theoretical maximum of
400 KB/ms at 100 MHz on Virtex-4, as the input data width of ICAP is 4 bytes.

Another project that requires fast DPR is reported in [17]. Shelburne et. al.
present the Metawire approach that uses fast DPR to emulate a Network-on-Chip
(NoC). As especially the NoC router nodes consume a lot of resources on an
FPGA, the Metawire architecture uses the configuration circuitry as a relatively
high-performance NoC. The configuration information of a block RAM (BRAM)
is read by the ICAP and written to another BRAM afterwards. To accelerate this
process an overclocked Virtex-4 ICAP is used, which is capable of providing a band-
width in excess of 200 KB/ms.

In [3] Bomel et al. present the fast downloading of partial bitstreams for DPR via
a standard Ethernet framework on a Virtex-II Pro device. Similar to the implemen-
tation presented in [15], Bomel et al. use an ICAP controller attached to the On-chip
Peripheral Bus (OPB). Their measurements show an obtained ICAP throughput of
up to 50 KB/ms (400 Kbit/ms).

Contrary to the FlexPath project (Chap. 17) where reconfiguration is performed
by switching between different processing paths according to various packet types,
in AutoVision complete functional units, namely the coprocessor engines, are phys-
ically exchanged on the device. Further differences between the abstraction level
concerning the reconfiguration of interconnects and functional modules are de-
scribed in [12].
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18.1.2 Typical Scenario & Hardware Accelerators

In general, a large number of different coprocessors could be implemented on a
System-on-Chip (SoC) in parallel. However, this is not resource efficient, as depend-
ing on the application, just a subset of all coprocessors will be active at the same
time. In this section a typical scenario is presented which shows that it is necessary
for the hardware to adapt to a changing environment. The hardware accelerators
used for this scenario were implemented for a proof-of-concept study.

With hardware reconfiguration, hardware resources can be used more efficiently.
Coprocessor configurations can be loaded into an FPGA whenever needed, depend-
ing on the application. This especially makes sense when the driving situations are
mutually exclusive (day-time/night-time driving, forward/backward driving, high-
way/urban environments).

The following typical driving scenario is considered: A car is driving at daytime
on a highway, where other cars can be detected by feature points on their silhouette
or shape. Then the car is approaching a tunnel. Here it is meaningless to search for
feature points as it is more important for the driver to see what is inside the tunnel.
Thus an algorithm for contrast enhancement on the dark tunnel entrance is desirable.
Inside the tunnel, due to the low luminance level, only the lights of other vehicles
are promising features and have to be distinguished from tunnel lights. Therefore
another algorithm is used. When the car is leaving the highway and enters an urban
environment, a detection of pedestrians according to their motion seems beneficial.
This scenario could be arbitrarily extended by other situations such as changing
weather conditions (rain, fog, snow etc.). In the AutoVision project this specific
typical scenario is used as a proof of concept.

For the image processing in the situations described above several different hard-
ware accelerators for pixel processing, so called Engines, are required. The Engines
are attached as bus masters to the Processor Local Bus (PLB). This design allows for
direct memory access (DMA) of the Engines without involving the PowerPC (PPC)
cores in the pixel transfer, which leads to a great offload of the CPUs. Simultaneous
read and write transfers are supported by the two separate read and write data busses
of the PLB, each 64-bit wide.

The extraction of feature points on the shape of a car for instance is done by
a hardware accelerator called the ShapeEngine. The contrast enhancement near
gloomy tunnel entrances is done by the ContrastEngine. The pixel-level processing
inside the tunnel can be accelerated by a coprocessor, called the TaillightEngine.
Finally in urban environments, Optical Flow, which is calculated using two sepa-
rate accelerators, can be used to detect moving objects, such as pedestrians or cy-
clists. A detailed description about the organization and performance of the Taillght-
Engine, the ShapeEngine and the OpticalFlow can be found in [1, 10, 11] respec-
tively. An implementation of the TaillightEngine on the Erlangen Slot Machine,
which originates from a collaboration between the ReCoNodes (see Chap. 3) and
the AutoVision project, can be found in [2]. The input images and the processed
output from all the engines described above can be seen in Fig. 18.1.
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As can be seen from this scenario, different driving conditions require different
algorithms and thus different accelerators for image processing. As most of these
situations are mutually exclusive it is meaningful to load the desired functionality
only if required instead of implementing all Engines for the image processing algo-
rithms in parallel.

Fig. 18.1 Unprocessed input and processed output of the ShapeEngine (a), the ContrastEngine (b),
the TaillightEngine (c) and the Optical Flow (d).
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18.2 AutoVision Architecture

The AutoVision system has been implemented on a Xilinx Virtex-II Pro device with
two embedded PPC cores. The incoming pixel data is buffered in on-chip RAM re-
sources (BRAMs) inside the Video-Input core. If enough data is buffered for a burst
transfer, the Video-input core transfers the data into the DDR SDRAM, which acts
as frame buffer. The DMA-capability of the Video-input core, and using bursts in-
stead of single-pixel-transfers, leads to a reduced PLB utilization. The same applies
to the Video-Output core which is used to fetch processed data and send it to the
output pins of the FPGA e.g. for displaying it on an external monitor.

In [8], the Erlangen Slot Machine (ESM) (see Chap. 3) was compared against the
Virtex-II Pro based system from the AutoVision project in terms of suitability for
reconfiguration and embedded video processing. By combining the advantages of
both platforms a modified platform for reconfigurable embedded video processing
has been developed. In this section the modifications, namely a digital Video input
and output, a combination of on-chip BRAM and off-chip SRAM for intermediate
pixel storage and the usage of an embedded CPU are summarized.

In the current AutoVision demonstrator, the analog input has been replaced by
a fully digital interface, which delivers 25 frames per second in progressive scan
mode, and connects a CameraLink camera via a custom accessory board to the
FPGA pins. The IP core Video-Input, responsible for writing the incoming pixel
data into the DDR SRAM, is connected to the PLB, as can be seen in Fig. 18.2.

Fig. 18.2 Blockdiagram of the AutoVision Project.

Various tests have proven that it is beneficial to use fast RAM (on-chip block
RAM) for convolution processes. Instead of loading the same pixel various times
from the main memory, storing a few pixel lines inside a local memory attached
to the hardware accelerator represents a resource efficient alternative. Details about
the modular concept of the hardware accelerators can be found in Sect. 18.2.1. Pro-
cessing images in that way is almost as fast as storing the complete image inside the
expensive on-chip block RAM.
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One important design consideration was to use a random access framebuffer to
display image data on a monitor using standard frequencies. This was necessary in
order to cope with the problem that the image data has to be transferred multiple
times over a central bus or crossbar if the output frequency (60 Hz, 75 Hz etc.)
is higher than the input frequency (25 Hz, 30 Hz etc.). Once the image data to be
displayed has been sent to another custom accessory board on which two SRAMs
for double buffering are used, it can be displayed at any desired frequency. As soon
as an image has been processed it can be written into one of the framebuffer SRAMs,
while the image stored in the other SRAM is read out and displayed on the monitor.

In [8] it has been concluded that an on-chip CPU is beneficial in order to gain fast
access to the image data from both hardware and software. Instead of using a central
bus or crossbar which connects the main memory, the CPU and the accelerators,
another solution has been implemented. By connecting various HW accelerators,
or the ICAP controller directly to a Multiport Memory controller, a tremendous
speedup due to longer burst transfers and address pipelining can be achieved.

By utilizing the reconfiguration controller described in Sect. 18.3.3.1 it is possi-
ble to ensure that the reconfiguration is fast enough, so that during this process no
video frame is dropped.

For additional information on the AutoVision architecture the interested reader
is referred to [6] and [7], where the AutoVision concept is presented.

18.2.1 The AddressEngine—A Pixel Processing Pipeline

The AddressEngine (AE) can be seen as a wrapper around a user-defined pixel op-
eration. It is a pixel processing pipeline that can independently initiate transfers
from and to the DDR SDRAM for fast pixel access (fetching and storing pixels).
The pixel data is transferred from the DDR SDRAM to the AE using direct mem-
ory access (DMA). After the AE has received the start address of the picture to be
processed, it fetches the pixel data, processes it and writes it back into the main
memory. The pixel data to be processed does not necessarily have to be a full im-
age. The processing solely of a region of interest (ROI) within an image is also
supported. A maximum of 16 64-bit words when connected to a PLB via the LIS
IPIF are grouped in a full burst. By connecting the AE directly to the Multiport
Memory Controller (MPMC) via the LIS Native Port Interface (LIS NPI), 32 64-
bit words can be transferred in one single burst. The maximum resolution currently
supported is an image size of 1024 × 1024 pixels, independent of the color depth of
the pixels.

Figure 18.3(a) shows the architecture of the AddressEngine. In the basic con-
figuration it consists of six main modules, namely the InputFSM, the Local Input
memory, the Matrix, the User Logic, the Local Output Memory and the OutputFSM.
A bus interface, the so called LIS-IPIF [19], can be used to attach the AddressEngine
to a PLB bus.
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Fig. 18.3 Blockdiagrams of the AdressEngine in basic configuration and the MatchingEngine.

The module InputFSM is mainly responsible for reading the image data and stor-
ing it temporarily into the Local Input Memory (LIM). This includes sending re-
quests and providing the calculated addresses to the main memory.

The LIM consists of BRAMs and is used as intermediate storage for all pixels
currently required by the processing function. This is beneficial because if the same
pixel has to be accessed multiple times from the external memory (e.g. when neigh-
borhood operations are required) the processing time can be reduced dramatically by
utilizing a local memory. Thus the number of bus transfers is reduced significantly.

The Matrix represents the processing window and is shifted from left to right
over the image. It consists of registers in order to access one pixel and its complete
neighborhood in one clock cycle. If the Matrix jumps into the next row the next
complete image line is requested from the main memory. Hence, this avoids stalling
the complete pixel processing pipeline.

The User Logic can be understood as a user-defined pixel operation on a central
pixel and its neighborhood. Depending on the implementation of the User Logic the
AE is responsible for feature point detection, contrast enhancement or the calcula-
tion of the Optical Flow.

To avoid stalling the pixel processing pipeline at the output, a Local Output Mem-
ory (LOM) lying between the User Logic and OutputFSM is necessary. It is used for
collecting the result pixels and preparing a burst transfer to the main memory, which
results in a lower bus utilization compared to the transfer of individual pixels.

Finally, the OutputFSM is responsible for setting up the process to write the result
pixels back into the main memory at the correct position.

By extending the basic configuration described above and by flexibly connecting
the main modules with each other more powerful hardware accelerators, such as
the ShapeEngine, TaillightEngine or Optical Flow can be generated. Introducing
so called Intermediate Local Memory (ILM) further deepens the image processing
pipeline and prevents intermediate pixel data from being written back into the DDR
SDRAM when pixel processing is not completed yet.

In Fig. 18.3(b) a block diagram of the MatchingEngine is depicted. The Matchin-
gEngine is one of two building blocks of the Optical Flow core. The main func-
tionality of the MatchingEngine is to search for corresponding pixels in consecutive
frames. The accelerator searches within a predefined window (15×15) and is able to
deliver one result every clock cycle. One major difference between the original pro-
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cessing pipeline of the AE and the MatchingEngine is that the input path of the latter
must read data from two separate images. Thus the input processing path consists of
two read pipelines. The read arbiter and the two Input FSMs fill both read pipelines.
The User Logic of the MatchingEngine is configured to check whether a correspon-
dence between pixels in consecutive frames within the predefined 15-by-15 window
is found. Another elementary difference between the AE and the MatchingEngine is
that the former writes back a complete image to the DDR SDRAM, while the latter
one exports a list of correspondences.

By analyzing the conceptual differences between the AE in Fig. 18.3(a) and the
MatchingEngine in Fig. 18.3(b) it is obvious that both Engines are fundamentally
different. Although all of the Engines are based on the AE, their internal structures
greatly differ from each other. Therefore a reconfiguration of the complete func-
tional block has to be performed in order to save resources rather than just parame-
terizing the functionality by updating configuration registers.

18.3 Fast Dynamic Partial Reconfiguration

Dynamic partial reconfiguration (DPR) is the ability to reconfigure a certain por-
tion (partial) during run-time (dynamic) of the device. Currently this feature is only
offered by Xilinx Virtex and Spartan devices. Thus some of the approaches (e.g.
bitstream modification) described in this section are Xilinx specific but can be ap-
plied to other future devices. However, the approaches for higher configuration data
throughput and interconnect optimizations are generally applicable.

18.3.1 Motivation for Fast Reconfiguration

A requirement for future video-based driver assistance, especially when used for
safety critical applications, is that video frames must not be dropped. This require-
ment again leads to the fact that the reconfiguration of an Engine has to be as fast as
possible , or at least so fast that the real-time requirement (processing of at least 25
fps) is not violated. Depending when and how often the system has to be reconfig-
ured, the reconfiguration process can be separated in Inter Video Frame Reconfigu-
ration and Intra Video Frame Reconfiguration.

18.3.1.1 Inter Video Frame Reconfiguration

The Inter Video Frame Reconfiguration (InterVFR) is defined as exchange of a re-
configurable module between two consecutive video frames. InterVFR is required
to e.g. exchange the ContrastEngine with the TaillightEngine in the typical scenario
described in Sect. 18.1.2. The time to process an image with the ContrastEngine is
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denoted as Ti1. The processing time required by the TaillightEngine is denoted as
Ti2. The reconfiguration time for the exchange is denoted as TR in Fig. 18.4(a). If
Ti1 + TR < 40 ms, then interVFR is possible.

Fig. 18.4 Inter and Intra Video Frame Reconfiguration.

18.3.1.2 Intra Video Frame Reconfiguration

The Intra Video Frame Reconfiguration (IntraVFR) is defined as exchange of recon-
figurable modules within one video frame. The hardware accelerator for the Optical
Flow can serve as an example here. It consists of two engines, namely the Cen-
susEngine and the MatchingEngine, which are executed sequentially. The time to
process an image with the CensusEngine is denoted as Ti1. The processing time re-
quired by the MatchingEngine is denoted as Ti2. The size of the partial bitstreams
for the CensusEngine and the MatchingEngine is considered to be the same. Thus
the reconfiguration time for both Engines is equal and denoted as TR in Fig. 18.4(b).
If Ti1 + Ti1 + 2xTR < 40 ms, then intraVFR is possible.

18.3.2 Bitstream Modification

Basically there are two ways to decrease the size of a bitstream: using compression
techniques and removing unnecessary data. While almost all approaches in literature
use the former (e.g. [13]), the Combitgen tool [4] removes redundant configuration
frames. Bistream compression can then be applied to further reduce the bitstream
size, if desired.

18.3.2.1 Combitgen

A frame is the smallest accessible entity on the FPGA. It is one bit wide and has
a height of the complete device in Virtex-II, a height of 16 CLBs in Virtex-4 and
20 CLBs in Virtex-5. Configuration frames can be grouped into so called columns.
These represent a number of consecutive frames, which are used to configure a CLB,
a Block-RAM, a Block-RAM Interconnect switch matrix, DSP silces etc. In order to
write frames into the configuration memory a pipelined approach is used as shown
in Fig. 18.5.
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Fig. 18.5 (Re-)configuration process: The bitstream data can either be shifted from the frame
buffer into the FDRI or copied into the MFWR. From both registers the bitstream data is written
in the configuration memory in one clock cycle.

The first frame of data is written into the frame data input register (FDRI). A sec-
ond frame is shifted through the frame buffer while the entire first frame is loaded
in parallel into the configuration memory latches. To guarantee that the last frame of
data is written into the configuration memory, a pad frame is required. Thus, writing
a single frame of data in that manner requires at least two frames: the data frame
itself, followed by the pad frame to flush the data frame out of the FDRI.

In principle, two flows are available to generate partial bitstreams. Module-based
and Difference based [18]. The Module-based flow is used when more than two
modules should be exchanged during run-time. Depending on the area defined by
the user constraints a partial bitstream is created containing all the configuration
frame information of this area. The Module-Based Reconfiguration Flow is only
able to write whole columns into the bitstream, rather than just frames. In summary
this flow can create partial bitstreams for an arbitrary number of modules but might
contain large amounts of unnecessary data.

The Difference-based Reconfiguration Flow is recommended by Xilinx only if
small design changes between exactly two designs are needed. In this flow a bit-
stream is created containing only the differences of the two different designs. Thus
single, often non-continuous configuration frames make up the partial bitstream.
Contrary to the module based flow, this flow can create partial bistreams for at most
two modules but with almost zero overhead.

Combitgen combines the advantages of these design flows into one program,
while attempting to avoid their disadvantages. It reads several toplevel bitstreams,
processes them and writes out one partial bitstream for each of the toplevel ones that
are able to reconfigure from any other toplevel to this one. The bitstreams are read
and executed like the on-chip configuration logic would, as can be seen in Fig. 18.6.
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Fig. 18.6 Data Flow of Combitgen with 3 toplevel bitstreams as input and 3 resulting partial bit-
streams with unnecessary pad data removed.

The configuration data extracted form every toplevel bitstream is instead writ-
ten in a separate array, the so called pseudo FPGA configuration memory. After all
toplevel memories are filled they are compared frame by frame. If there is a differ-
ence found in a frame between any of the numerous toplevel bitstreams it is marked
in a differential frame bitmap. This contains one bit for every frame on the FPGA.
After the comparison process is complete, all these marked frames are written out
into partial bitstreams, one for every toplevel bitstream. Unlike the partial bitstreams
created by the Module-based flow, the partial bitstreams created by Combitgen con-
tain single frames instead of columns, which can greatly reduce the amount of con-
figuration data within a partial bitstream. However, it remains possible to be able to
configure from any toplevel possible to any other remains.

In order to further decrease the bitstream size, the Multiple Frame Write (MFWR:
write only one frame to the MFWR register and copy it to multiple addresses, see
Fig. 18.5) command is used whenever there are identical frames on the chip. This
feature is provided by the Xilinx tools and can be used to get rid of the problem that
when writing a single frame to the configuration memory another one is required to
flush the pipeline. Unlike the Xilinx tools for bitstream generation, Combitgen also
uses the MFWR command to write single unique frames without the requirement
of pad data, and thus can save the extra padding words and achieve both a smaller
bitstream size and a shorter reconfiguration time.

18.3.3 Hardware Modification

18.3.3.1 ICAP Controller

To utilize the Internal Configuration Access Port (ICAP), which allows read and
write access to the configuration data, a controller has been implemented to achieve
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a throughput rate close to the theoretical maximum. This controller, presented in [9],
consist of some logic to load the bitstream data, stored in an external memory, and
provide the maximum amount of data per clock cycle to the ICAP. The ICAP In-
put Width is 8 bit in Virtex-II and 32 in Virtex-4 and Virtex-5 devices. In [9], a
frequency of 100 MHz was used to send data to the ICAP, although ICAP on Vir-
texII is specified for 66 MHz. However, higher frequencies are possible by using
a simple handshaking protocol. By indicting a busy status, the ICAP notifies the
controller that it currently is not able to process incoming data. Compared to the
implementation in [9] some additional optimizations have been made. The ICAP
controller can now be easily connected to any Virtex-II, Virtex-4 or Virtex-5 device.
The ICAP input width (IIW ), as well as the burst size BS can be configured.

Most of the approaches described in literature use a FIFO as intermediate buffer.
In order to obtain higher throughput and thus shorter reconfiguration times many
authors concentrate on techniques to keep the FIFO filled all the time. As can be
seen in Eq. (18.2) another possibility to obtain higher throughput is to manipulate
the frequency. In literature only Shelburne et al. [17] use the ICAP beyond the spec-
ified 100 MHz. To safely pass data from one clock domain to another asynchronous
clock domain, asynchronous FIFOs are used. To guarantee that the FIFO used for
intermediate storage of the bitstream data remains filled all the time, high speed in-
terconnects are necessary. Therefore it is possible to connect the ICAP controller
either to a PLB Bus or to a Multiport Memory controller (MPMC) via custom inter-
faces without any modification (see Sect. 18.3.3.2). To verify that the FIFO remains
full all the time, Eq. (18.1) has to be fulfilled. The left side of the equation deter-
mines how many bits per second can be written into the FIFO, which of course is
dependant on the frequency the FIFO is fed with. The right side of the equation
determines how many bits per second can be read from the FIFO and fed into the
ICAP.

BS [cycles] ∗ DW [bit]
BS [cycles] + L [cycles]

∗ f1 [MHz] > IIW [bit] ∗ f2 [MHz] (18.1)

The number of bytes that can be written to the ICAP per clock cycle is dependent
on the ICAP Input Width (IIW). As long as the asynchronous FIFO is full, IIW bits
can be written into the ICAP per clock cycle. The data width (DW) determines the
input and output width of the asynchronous FIFO and is dependent on the incoming
data. If a 64-bit wide Processor Local Bus is used, to connect the DDR SDRAM
memory and the ICAP controller, the input data width DW of the ICAP is set to 64.
The burst size (BS) determines how many packets with a size of DW are transferred
within a burst. If BS is set to 16 and DW is considered to be 64 bit, 128 bytes can
be transferred in one burst. The memory access latency (L) is used to specify the
number of cycles from the point the data is requested until the first word appears at
the input of the ICAP controller. This value is strongly dependent on the implemen-
tation of the memory controller. Once it has been assured that the FIFO remains full
during the whole configuration process, the throughput TP can be calculated using
Eq. (18.2).
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TP
[
byte

s

]

= f [Hz] ∗ IIW [byte] ∗ BF [0, 1] (18.2)

The frequency used to write data to the asynchronous FIFO is the 100 MHz
frequency from the PLB. The frequency used to read from the FIFO can be any
frequency that can be generated with a Digital Clock Manager (DCM). Results of
the throughput obtained by utilizing the ICAP controller on Virtex-II Pro and Virtex-
4 devices with an asynchronous FIFO as described above, can be found in Sect. 18.4.

18.3.3.2 Optimizing Throughput Through Modular Design

As mentioned in Sect. 18.3.3.1 the ICAP controller can be attached to either a PLB
via the LIS IP interface (IPIF) [19] or to the MPMC via the LIS Native Port Interface
(NPI). As the IIW in Virtex-4 and Virtex-5 devices has been increased to 32, it is
necessary to make sure that the FIFO remains filled and 32 bit per clock cycle can
be provided to the ICAP in order to achieve the maximum throughput possible in
Virtex-4 devices. For these tests a Virtex-4 FX device on an ML405 development
board from Xilinx was used. This device contains an embedded PPC core and the
bitstreams are stored in an DDR2 SDRAM which is accessed via the MPMC. Two
major changes in the MPMC allow for faster data transfer from the memory into the
ICAP’s FIFO. The MPMC allows burst sizes of up to 32 64-bit words. In addition,
address pipelining is supported which can be used to reduce the latency on the bus
by overlapping a new request with an ongoing transfer. Longer burst transfers and
address pipelining help ensure a proper filled FIFO, so that the maximum amount
of data can be fed into the ICAP every clock cycle.

In Fig. 18.7, three possible connections of the ICAP controller to a DDR or
DDR2 SDRAM are depicted. In Fig. 18.7(a) the ICAP controller is connected to the
PLB via the LIS IPIF. On the ML405, the DDR2 SDRAM controller from Xilinx is
used to interface the memory. As depicted in Fig. 18.7(b) the DDR2 SDRAM con-
troller has been replaced by the MPMC. This setup was not further considered be-
cause significantly higher throughput rates were obtained by using the setup shown

Fig. 18.7 Different interconnects used to connect ICAP and DDR SDRAM.
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in Fig. 18.7(c). Here the ICAP controller is connected directly to the MPMC via the
LIS NPI. The throughput of each of these setups by using different burst sizes was
measured and is shown in Table 18.1.

Table 18.1 Different connections of the ICAP controller and their performance at 100 MHz on an
ML405.
Setup Interface BS AP L f TP

Figure 18.7(a) LIS IPIF 16 No 31 100 281.93
Figure 18.7(c) LIS NPI 16 No 19 100 350.68
Figure 18.7(c) LIS NPI 16 Yes 19 100 400
Figure 18.7(c) LIS NPI 32 No 19 100 400
Figure 18.7(c) LIS NPI 32 Yes 1 100 400

Due to the modular design of the ICAP controller and the Engines no changes
are necessary when attaching them either to the LIS IPIF or the LIS NPI. Different
burst sizes for instance are supported by synthesis attributes (generics).

18.3.3.3 Bitstream Verification

If a device is reconfigured twice within 40 ms (intraVFR) a visual verification such
as the approach presented in [14] is not possible anymore. Thus another method to
verify the correctness of the reconfiguration process is used. After every reconfigu-
ration, the configuration memory is read back and compared against the bitstream
that was used to reconfigure the device. As some primitives, such as registers or
BRAMS change their state, this information has to be masked out. The read back is
done by the ICAP controller which writes the complete or parts of the configuration
memory to the DDR SDRAM. Afterwards a CPU can compare the read back data
with the initial bitstream used to configure the device.

As one PowerPC is already busy with the image processing the second PowerPC
will take over the task for bitstream comparison and thus extending the AutoVi-
sion architecture to an MPSoC. Beside the comparison of bitstreams the second
PowerPC is responsible for the reconfiguration management and can also be used to
decrypt the bitstream in order to visualize the updated FPGA configuration as shown
in [14] during interVFR. The configuration visualization and the novel ICAP con-
troller have been designed and implemented in an interdisciplinary project between
professor J. Becker’s and our group.

To verify that the device was configured correctly three test were used. The first
test was used to verify that the functionality is correct. In another test the on-chip
logic analyzer (Chipscope ILA) was used to monitor the correct command and data
sequences. Finally a readback of the configuration data via the JTAG Port has been
performed. The configuration data read back is used to compare against the initial
bitstream. Utilizing this verification method, changes on bitlevel can be easily de-
tected. The frequency on the read side has been increased until the configuration
process was not stable anymore.
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18.4 Results

A framework to speed up dynamic partial reconfiguration, by utilizing Combitgen
and the PLB ICAP controller has been presented in [5]. Further information about
how Combitgen and the PLB ICAP controller reduce the total reconfiguration time
can be found in this publication. I has been shown that the maximum throughput
for Virtex-II devices has been achieved. In order to achieve the same for Virtex-4
devices, the transfer from memory to ICAP has been optimized. As described in
Sect. 18.3.3.2 various test to obtain the maximum throughput by connecting the
ICAP controller either to the PLB or directly to the MPMC have been performed.
As depicted in Table 18.1 the reconfiguration throughput TP has been measured for
the setups shown in Fig. 18.7.

As can be seen in Table 18.1 the maximum TP could not be achieved without
address pipelining AP or increasing the burst size to 32. Only by connecting the
ICAP through the LIS NPI 400 KB/ms at a frequency of 100 MHz are possible. As
reported in Sect. 18.3.3.1, beside optimizing the transfer from the memory to the
ICAP, the frequency used to read from an asynchronous FIFO and provide the data
to the ICAP can be increased.

As the ICAP on Virtex-II Pro is specified only up to 66 MHz but no upper bound-
ary is provided, the maximum frequency for ICAP on Virtex-II has been determined.
Table 18.2 shows the result of an ICAP controller tested on different Virtex-II de-
vices. In all designs the same size for the reconfigurable region was used, which
results in the same bitstream size of 72064 bytes for all the designs. A hardware
counter was used to measure the number of cycles for each reconfiguration process.
The busy factor BF has been determined by several measurements. Up to a fre-
quency of 140 MHz the reconfiguration on various platforms was successful. Due to
production tolerances some of the tested devices achieved a frequency of 150 MHz.
But the universally valid maximum frequency for the Virtex-II Pro devices that have
been tested is 140 MHz. This has been verified by reading back the configuration
data and comparing it against the initial bitstream, as described in Sect. 18.3.3.3.
The results from the tests which have been performed to determine the maximum
frequency on Virtex-II Pro are depicted in Table 18.2.

At a frequency of 140 MHz a throughput TP of 129.97 MB/s has been achieved.
The same tests are going to be performed on Virtex-4 and Virtex-5 devices. Mea-
surements on Virtex-4 have shown that reconfiguration at frequencies of 140 MHz
is possible. In Table 18.3 the ICAP throughput reported by different authors is de-
picted and compared with our achievements.

As can be seen in Table 18.3, the maximum throughput has been achieved. On
Virtex-II Pro and Virtex-4 the maximum throughput for frequencies of 100 and
140 MHz has been achieved. As already mentioned, on Virtex-II Pro 140 Mhz is
considered to be maximum frequency that can be used to reconfigure the device
safely. The throughput of the Virtex-II device is strongly dependant on the busy sig-
nal of the ICAP. The measurements indicate a maximum value between 96 and 90
KB/ms due to the busy status of the ICAP. The theoretical throughput at 100 MHz
(which is 100 KB/ms) can never be achieved due to delays internal to the ICAP.
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Table 18.2 Performance measurements.
Frequency Cycle TR BF TP

[MHz] count [μs] [MB/s]
80 76656 958.2 0.94 75.21
90 76803 853.37 0.94 84.45
100 76711 767.11 0.94 93.94
110 76249 693.17 0.95 103.96
120 76020 633.5 0.95 113.76
130 76214 586.26 0.95 122.92
140 77624 554.46 0.93 129.97

Fig. 18.8 Performance chart.

Table 18.3 Throughput of ICAP controller on Virtex-II and Virtex-4 devices.

Source Device IIW Frequency Interconnect Meas. Theor. Maximum
type [bit] [MHz] throughput throughput reached

[KB/ms] [KB/ms]
[17] V4 32 144 custom Link 219.31 576 No
[15] V4 32 100 OPB 350 400 No
[3] V2 8 100 Ethernet 50 90–100 No
Claus et al. V2 8 100 PLB 90 90–100 Yes
Claus et al. V2 8 140 PLB 133 133 Yes
Claus et al. V4 32 100 MPMC 400 400 Yes
Claus et al. V4 32 140 MPMC 560 560 Yes

Thus the measured throughput is considered as the maximum achievable, since ev-
ery clock cycle that the ICAP is not busy, the maximum amount of data possible is
provided to ICAP. None of the authors in [3, 15] or [17] mention why the maximum
is not achieved, but it is most likely due to problems with transferring bitstream data
to the ICAP, which happens when a high speed peripheral (ICAP) is connected to
an interconnect for low speed peripherals, such as the OPB.

18.5 Performance of the Engines

All Engines in the AutoVision system are capable of processing one pixel plus its
complete neighborhood in one clock cycle. The execution time of an image with a
resolution of 640 × 480 pixels (VGA resolution) processed by an Engine running
at 100 Mhz can be estimated by 640 ∗ 480 ∗ 1

100 Mhz = 3.072 ms. The measured
processing time of almost all the Engines (depicted in Table 18.4) is close to that
value.

An exception constitute the execution time of the CensusEngine and the Match-
ing-Engine. Due to a deep pipeline (see [11]) the processing time of the Cen-
susEngine is a little longer than the execution time of the other Shape-, Taillight-
and ContrastEngine, and is nearly 4 ms. Beside the latency added by additional
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Table 18.4 Execution times and resource utilization of the coprocessors running at 100 MHz on a
VirtexII-Pro (XC2VP30) for an image resolution of 640 × 480 pixels.

Coprocessor Execution time [ms] # of LUTs # of Flip-Flops # of BRAMs
ShapeEngine 3.142 8450 (30%) 2281 (8%) 16 (11%)
TaillightEngine 3.18 3695 (14%) 2546 (9%) 12 (8%)
ContrastEngine 3.103 1002 (4%) 504 (2%) 6 (4%)
CensusEngine 3.95 3140 (11%) 1029 (3%) 14 (10%)
MatchingEngine 5.92 10787 (39%) 8171 (29%) 36 (26%)
Optical Flow 9.89 13927 (51%) 9200 (34%) 50 (34%)

pipeline stages, the additional 3.95 − 3.072 = 0.878 ms of the ContrastEngine
are spent for read and write data transfers. As can be seen in Fig. 18.3(b) the
MatchingEngine consists of two processing pipelines, which run simultaneous. As
the MatchingEngine is also capable of processing one pixel per clock cycle a the-
oretical execution time around 3.072 ms can be expected. The time difference is
caused by a bottleneck which was identified as the DDR SDRAM memory con-
troller in the current Virtex-II Pro based system. Measurements show that around
30 cycles pass from the first data request until the last data chunk of a 128 byte
burst appears at the input of the MatchingEngine. If two complete VGA resolution
images, 32-bit color depth each, have to be transferred form the DDR SRAM to
the MatchingEngine in 128 byte bursts, 2∗640∗480∗32 bits

128∗8 bit = 19,200 transfers are
required. The fact that a single transfer takes 30 cycles leads to a total execution
time of 19,200 ∗ 30 ∗ 1

100 MHz = 5.76 ms, which is close to the measured 5.92 ms.
By replacing the DDR SDRAM controller with an optimized controller, such as the
MPMC, would result in an additional decrease of the Engine’s execution time.

Additionally it can be seen that implementing all the coprocessors on the device
in parallel would exceed the available resources. Finally, the results in Table 18.4
show that even if the execution time of the MatchingEngine could not be improved,
the image processing time of the CensusEngine and the MatchingEngine plus the
reconfiguration time (around 4 ms on Virtex-II Pro and 1 ms on Virtex-4 per Engine)
is fast enough to perform IntraVFR. This results are going to be shown in our final
demonstrator.

18.6 Conclusion and Outlook

The AutoVision project has shown that fast DPR can be utilized in a real time en-
vironment, such as video based driver assistance, without violating the real time
constraints. This has been achieved through bitstream optimization, modifications
of the ICAP controller, optimizations in memory transfer and minimization of the
hardware accelerators’ resource utilization. In addition, an architectural concept for
these high performance hardware accelerators for video processing has been de-
veloped, which led to the implementation of various engines. As the whole system
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is implemented using a modular design approach, adaptions to other devices, plat-
forms and IP cores can be done easily.

The results obtained are going to be shown in a final demonstrator. With this
demonstrator for IntraVFR (see Sect. 18.3.1.2) it can be shown that fast dynamic re-
configuration can be applied in real-time systems in order to save precious on-chip
resources. Using the example of the Optical Flow, where two hardware accelerators
work sequentially, it should be demonstrated that two partial reconfigurations (from
CensusEngine to MatchingEngine and vice versa) within 40 ms are possible without
the loss of video frames. In addition, after each reconfiguration process the configu-
ration memory should be read back to verify its correctness. Finally, the fast DPR is
going to be shown on Virtex-5, in order to prove that the presented approaches are
also valid for state of the art devices.
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Chapter 19
Procedures for Securing ECC Implementations
Against Differential Power Analysis Using
Reconfigurable Architectures

Marc Stöttinger, Felix Madlener, and Sorin A. Huss

Abstract Side channel attacks have changed the design of secure cryptosystems
dramatically. Today a reasonable designed cryptosystem has not only to be crypto-
graphically secure, but to be resistant against side channel attacks as well. There-
fore many countermeasure techniques have been developed in the last years to avoid
exploitable information leaking. We introduce new concepts of countermeasure ap-
proaches against differential power analysis attacks to an essential operation of ellip-
tic curve cryptography in GF(2n). Similar to many other published countermeasures
we are focusing on the architecture layer to secure the cryptographic operations.
This type of countermeasures is geared to the well-known hiding methods in this
research field, but we apply them on a different implementation layer. For securing
the multiplication over GF(2n), an essential operation in elliptic curve cryptogra-
phy, we propose a countermeasure, which is highly scalable and thus allows to select
arbitrary trade-offs between performance and side channel resistance.

19.1 Introduction

Nowadays the demand for effective public key cryptosystems is clearly increasing.
Because of its low requirements and high performance the Elliptic Curve Cryp-
tography (ECC) scheme has been established as a new standard next to the RSA
factorization scheme for public key cryptography.

From a mathematical point of view ECC is regarded as secure. However, real-
world hardware implementations introduce additional properties besides the func-
tionality. These properties may lead to some information leakage in so-called
side-channels such as power consumption history, which is not considered at all
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by cryptographic algorithms. Thus, an unsecured implementation can lead to the
exposure of the secret key by using well-known side channel attack techniques [4].
We present a shuffling-based approach to secure ECC against side channel attacks
approaches such as the differential power analysis (DPA) [12].

The approach is applied to the most computing intensive part of ECC, the
GF(2n) arithmetic. We demonstrate that this application provides additional syner-
gistic effects, which clearly distinguish this work from other shuffling approaches.
We also introduce new concepts for a dedicated consideration of parallelism and
dynamic resource binding to avoid the exploitation of their specific power consump-
tion.

At the beginning of this chapter we will give a short introduction into the
mathematics of ECC. We will also introduce the novel enhanced Multi-Segment-
Karatsuba (eMSK) multiplication scheme, which is a main element of our approach
to secure ECC implementations. In Sect. 19.3 we will describe the basic concept of
side-channel attacks and classify the existing countermeasure approaches against
such attacks. Our approach to secure ECC implementations is then presented in
Sects. 19.4 and 19.5. Here, we describe the application of shuffling-based coun-
termeasures to the eMSK multiplication and give some experimental results that
demonstrate the feasibility of our approach. We also show, how this concept can be
extended to other operations like Elliptic Curve multiplication.

19.2 Elliptic Curve Cryptography

Beside the widely known RSA scheme the Elliptic Curve Cryptography is the most
established scheme for asymmetric cryptography. The security of ECC is based on
the difficulty of calculating the discrete logarithm on elliptic curves. It achieves the
same security level as a similar RSA-based solution with significantly shorter keys.
This is of special interest in the domain of embedded systems, where the available
memory is an important issue.

The mathematical theory of elliptic curve cryptosystems exhibits a strictly lay-
ered architecture as depicted in Fig. 19.1. The top layer forms the Elliptic Curve

Fig. 19.1 Scheme of the mathematical layer hierarchy for elliptic curve arithmetic.
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Arithmetic and exhibits the operations Point-Multiplication (k ∗ P ), Point-Addition,
and Point-Double on the elliptic curve. These operations are based on the arithmetic
operations in the underlying Finite Field Arithmetic. Each Elliptic Curve Arithmetic
operation requires the execution of multiple lower-level operations. Thus, an cryp-
tographic operation like a digital signature requires just two k ∗ P operations, but
many thousands of finite field operations.

19.2.1 Elliptic Curve Arithmetic

The elliptic curves are represented over a finite field F. They form an additive,
Abelian group with a well-defined addition operation and a neutral Element O,
which is called the point at infinity. They are defined by the simplified Weierstrass
equation, a cubic equation for a non-supersingular elliptic curves, defined by:

E : y2 + xy = x3 + ax2 + b (19.1)

with a, b, x , y ∈ F and b �= 0 . The points of the curve E are a set of solution to
solve the cubic in (19.1). In this chapter we concentrate on elliptic curves over the
finite field GF(2n) and their arithmetic implementation for hardware architectures.
For further more detailed information about elliptic curves we refer to [7].

The EC point multiplication k ∗ P as depicted in Fig. 19.1 is an accumulation of
points on the curve E :

P + P + · · · + P
︸ ︷︷ ︸

k times

= k ∗ P = R. (19.2)

To perform the k ∗ P computation the two elliptic curve arithmetic operations Point-
Addition and Point-Double are applied. The operation Point-Addition P + Q = R
is used to calculate the addition of two different points on an elliptic curve. The
operation Point-Double P + P = R is applied when P and Q are identical. Both
operations are composed of operations on the underlying finite field arithmetic as
shown in Fig. 19.1. It is possible to define them in different ways, varying in the
number of utilized finite field operations. They should be selected with respect to
the available system components to obtain the optimal performance. Most ECC so-
lutions are based on projective coordinates instead of affine coordinates. This allows
to minimize the extremely expensive finite field inversion, required otherwise.

19.2.2 Finite Field Arithmetic

The EC-level algorithms require a set of operations on the underlying finite field
GF(2n). Multiplication, squaring, and addition are the most common operations,
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which have to be executed on a large scale. All these operations are based on logical
shift and XOR operations in GF(2n).

Squaring and addition scale linearly with their bitwidth and thus can be im-
plemented efficiently as completely combinational logic in digital hardware. The
GF(2n) multiplication, however, may be prohibitively expensive for bitwidths of
cryptographic relevance. Thus, a computation scheme is needed, which combines a
combinational multiplier of reasonable size with a sequential algorithm to determine
the final result.

Such a computation scheme should be flexible enough to allow for an arbitrary
partitioning between the faster combinational and the slower, but more resource
efficient sequential part of the multiplication scheme.

The partitioning can be performed asymmetrically for both operands. The most
common approach for partitioning is the bit serial implementation with an 1 ∗ n bit
wide combinational multiplier. Another approach aims at a symmetric partitioning
for both operands. In this case an m ∗ m combinational multiplier has to be utilized.
For the implementation of DPA resistant implementations the symmetrical approach
is more promising. This is because power consumption of each operation depends
on as a many bits of both operands as possible.

19.2.2.1 Karatsuba Multiplication

In 1962 Karatsuba and Ofman [10] reported on a sequential multiplication scheme
denoted as Karatsuba-Ofman-Algorithm (KOA). It computes the product of two
m-digit numbers by dividing the operands into two m

2 -digit segments and by per-
forming multiple operations on these segments. Until today this scheme is the fastest
known sequential multiplication algorithm without precomputations. In addition to
its efficiency, the KOA is well-suited for our intended countermeasure approach as
we will explain in Sect. 19.4.1

The KOA computes the product of two finite field elements A and B by:

C = A · B = (A1x
m/2 ⊕ A0) · (B1x

m/2 ⊕ B0)
= T1x

m ⊕ [T1 ⊕ T2 ⊕ T3]xm/2 ⊕ T3 (19.3)

with T1, T2, and T3 given by

T1 := A1B1 (19.4)

T2 := (A1 ⊕ A0) · (B1 ⊕ B0) (19.5)

T3 := A0B0. (19.6)

It can be observed that one full multiplication is now realized by 3 multiplications of
half bitwidth and some addition operations. Obviously, a recursive KOA approach
is possible in order to derive a multiplication algorithm that splits the operands into
four, eight or, any number of segments being a power of 2. The KOA-based se-
quential multiplication scheme requires 3n multiplications for a partitioning into 2n

segments. The maximal supported bitwidth of the combined multiplication scheme
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is then determined by the product of the combinational bitwidth and the number of
segments.

E.g., a system featuring an 192 bit cryptographic bitwidth and an available finite
field multiplication of 18 bit would then require at least 192

18 = 11 segments. How-
ever, a design with 16 segments has to be implemented as the KOA scheme only
supports powers of 2. This design takes 81 finite field multiplications.

19.2.2.2 Multi-Segment-Karatsuba Multiplication

During our studies we observed that the restriction to powers of 2 is too limiting.
In the given example, a partitioning into 11 segments would be sufficient. While
the realization with 16 segments supports 16 ∗ 18 = 288 bit instead of the required
192 bit, this does not help in most cryptographic applications aimed to standard-
ized bitwidths. A smaller combinational multiplier may provide a better bitwidth
utilization, however this comes at the cost of a larger overall execution time.

To address this limitation, we proposed a novel modified multiplication scheme,
called Multi-Segment-Karatsuba (MSK) [5]. The MSK enhances the idea behind
the KOA and exploits special properties of the mathematical field GF(2n). It defines
arbitrary MSKk schemes, which partition the multiplication operands A and B into
k segments.

MSKk(A, B) =

(
k⊕

i=1

Si,0(A, B) · xi−1

)

⊕
(

k−1⊕

i=1

Sk−i,i(A, B) · xi−1+k

)

(19.7)

whereas

Sm,l(A, B) =

(
m−1⊕

i=1

Si,l(A, B)

)

⊕
(

m−1⊕

i=1

Si,l+m−i(A, B)

)

⊕ Mm,l(A, B),

S1,l(A, B) = M1,l(A, B) and

Mm,l(A, B) =

(
l+m−1⊕

i=l

Ai

)

·
(

l+m−1⊕

i=l

Bi

)

.

(19.8)

The MSKk scheme requires
∑k

i=1 i = (k+1)·k
2 multiplications. For k = 2 both,

the MSK2 and the KOA, are identical. While the MSK supports the subdivision into
any number of segments, the KOA still offers better scaling for a larger number of
segments. For any power of two, the classical KOA scheme is clearly more efficient.
A multiplication with 16 segments, e.g., would require a total of 81 multiplications
with the KOA, but 136 multiplications with the MSK16.

The advantages of the MSK come to place when the desired system parameters
(i.e., the number of segments) is not reachable by powers of 2. For the given 192
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bit example, the MSK scheme allows for an implementation with 11 segments. This
requires just 66 multiplications, compared to 81 multiplications of the classical KOA
scheme.

19.2.2.3 Enhanced Multi-Segment-Karatsuba Multiplication

To benefit from the advantages of both, KOA and MSK, we propose in the sequel the
enhanced Multi-Segment-Karatsuba (eMSK). The eMSK combines the efficiency of
the KOA scheme with the flexibility of arbitrary MSKn schemes. This is achieved
by applying multiple multiplication schemes for a smaller number of segments in a
sequential order. In most cases this combination of smaller MSK schemes will lead
to better results than one larger MSK scheme as we will demonstrate.

In case of our example it would be possible to create a design with 12 segments
for the multiplication of 192 bit. This segmentation is obtained by the application of
two KOA schemes and one MSK3 scheme and is denoted as eMSK2∗2∗3. Albeit this
sequential algorithm does support 12 segments, it requires only 54 multiplications,
which is 20% less than the corresponding MSK11 scheme.

The performance of the different sequential algorithms is compared in Fig. 19.2.
The graph denotes the number of required multiplications for an increasing number
of segments. It can be observed that the KOA curve forms a step-function whenever
the next power of 2 is reached. The MSK is only partially better than the KOA-
scheme. In contrast, the novel eMSK shows the best overall performance. In the
worst case it is identical to the KOA scheme, which is an upper bound for the eMSK
performance.

Fig. 19.2 Performance comparison of the Karatsuba-based sequential multiplication schemes.

To obtain the correct eMSK scheme for any set of bitwidths and the related num-
ber of segments one needs a dedicated algorithm. This algorithm has to identify
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the appropriate schemes for the recursive application that will finally lead to the
smallest number of multiplications.

This algorithm is given in Algorithm 19.1. It derives the eMSK from two de-
sign constraints, the overall bitwidth bw and the maximal available combinational
bitwidth comb. The overall bitwidth characterizes the security level of the design,
whereas the combinational bitwidth is limited by the available hardware resources.
The algorithm starts with a prime factorization of bw. A certain part of this prime set
will form the combinational multiplication and the remaining primes factors form
the set seqPrimes. For each of these prime numbers the corresponding sequential
multiplication scheme is applied. In two nested optimization loops the supported
bitwidth bw is decreased to the next power of 2 and the combinational bitwidth
comb is decreased down to 1. For each feasible combination the resulting sequen-
tial multiplication scheme is evaluated in order to find the optimal solution.

Algorithm 19.1 Generate eMSK Scheme
Require: Cryptographic bitwidth bw, maximal combinational bitwidth comb.

for all i in bw, bw + 1, . . . , NextPowerOfTwo(bw) do
optNumMults := ∞
BitwidthPrimes := PrimesOf (i)
for all j in comb, comb − 1, . . . , 1 do

CombPrimes := PrimesOf (j)
if CombPrimes ⊂ BitwidthPrimes then

seqPrimes = BitwidthPrimes \ CombPrimes
if NumMults(seqPrimes) < optNumMults then

optNumMults := NumMults(seqPrimes)
optSequence := seqPrimes
optCombWidth := j

end if
end if

end for
end for
return (optNumMults, optSequence, optCombWidth)

As a result of the eMSK scheme a large number of small basic multiplications is
obtained. The operands of these basic operations are formed from a sum of distinct
words taken from the input operands. The partial results have to be added at varying
positions of an accumulation register, which finally contains the overall result. All
basic multiplications are data-independent to each other, which means that they can
be executed in any order. This property stems from the commutative and associative
nature of GF(2n).

19.3 Side Channel Attacks

Side channel attacks (SCA) are a very efficient and elegant method to attack cryp-
tographic system implementations. These attacks are taking place in the scenario of
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either chosen plaintext or chosen chiphertext attacks. Even mathematically secure
algorithms may be susceptible to side channel methods. SCA exploit the properties
of the implemented cryptographic algorithm to access information on the processed
data and the secrets of the cryptographic device. The different behaviors of the im-
plementation while processing data generate a specific signature in different phys-
ical domains such as time or energy. This leaking information like the processing
duration, the power consumption, or the electro magnetic radiation, can be misused
to gain knowledge about the secrets of the cryptosystem.

In this chapter we focus on side channel attacks, which exploit the power con-
sumption of the target device, i.e. we address, the power analysis attacks. Using
only information leaks in the power consumption of a circuit, no further knowl-
edge about the implementation of a cryptographic algorithm is necessarily required.
Power analysis attacks can be ordered into two groups: the simple power analysis
attack (SPA) and the differential power analysis attack (DPA). Especially DPA has
been established as a common power attack method onto cryptographic implemen-
tations. During a SPA the attacker records the power consumption of the attacked
cryptosystem for different cryptographic operations. Afterwards, the attacker di-
rectly tries to interpret the measured power consumption and map this information
to the secret key of the cryptosystem. In general, the attacker tries to discover spe-
cific behavior properties depending on the cryptographic operation sequence. The
more powerful DPA exploits correlation methods to extract more information from
the measured trace about the cryptographic secret. This is achieved by monitoring
the power consumption Pt0 of a device at a certain point in time t0. Therefore,
the power consumption is measured many times for the same cryptographic oper-
ation and hereby varying publicly accessible input parameters. The variance of the
publicly input data is needed to determine deterministic properties of the implemen-
tation.

Equation (19.9) shows the composition of the power consumption figure Pt0 . It
stems from the sum of processing consumption Pprocess and the disturbance of the
environment modeled as Pnoise . Note that only Pprocess depends on the actual input
parameters. Equation (19.10) shows the variance behavior of the power measure-
ment for this single point in time. The behavior of the disturbance power Pnoise

is assumed to be a noise process with the distribution N (0, σ). Pprocess , in turn,
can be separated into two parts. The power consumption Pdata represents the input-
dependent arithmetic components, whereas Pop addresses the data-independent part
of the design. Therefore, Eq. (19.10) can be mapped to the more detailed descrip-
tion of the variance behavior given in Eq. (19.11). Considering the fact of monitor-
ing the same point in time t0 for a large number of traces, it can be assumed that
we will always measure the same, data-independent power consumption Pop . Thus,
the variance behavior of the measured power consumption simplifies as given in
Eq. (19.12).

Assuming an unsecured implementation, Var(Pt0) is now strongly related to
the variance behavior of Pdata . With this knowledge an attacker can use a set of
power measurements to estimate the unaccessible and secret parameter (i.e., key)
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of the cryptosystem. Similar to [1] and [13] the attacker can derive the key through
correlating a consumption hypotheses with the measured traces.

If the number of traces is sufficient, then the highest correlation will refer to
the actual key. Establishing a sophisticated power model is nontrivial. In addition
the efficiency of a DPA strongly depends on the chosen power model. A power
model characterizes the relationship between the possible intermidiate values of the
cryptographic operations and certain power levels. Adequate models require a deep
knowledge about the actual implementation. Two well-known power models for
DPA attacks are the Hamming distance power model (HDPM) and the Hamming
weight power model (HWPM) [16]. Both models are based on possible intermidiate
values. Figure 19.3 illustrates how DPA exploits one of the common power mod-
els for calculating the correlation between the hypothesis and the measured power
traces. The HWPM is a rather simple power model. For its exploitation an attacker
needs no knowledge of the architecture or the implementation of the cryptographic
device. She or he only has to know which cryptosystem has been implemented on
the device, because this model is based on the binary ones of a value written into
a register. From the plaintext or chiphertext scenarios the attacker can compute an
key-depended intermediate value and then use the HWPM and correlation meth-
ods to analyze the measured power traces. The more advanced HDPM estimates
the power consumption by guessing the changes of ones and zeros between two
computational steps. In order to use this power model for an exploitation of the in-
formation contained in the power trace the attacker needs some knowledge about the
architecture of the implemented cryptosystem. The advantage of analyzing the dif-
ferent states of a register is a more precise power model for CMOS technology based
architectures. When considering the very large system integration (VLSI) layer for
CMOS technology-based devices, the dynamic current during the switching process
is still higher than the static leakage current of the device. The more information an

Fig. 19.3 Workflow of a differential power analyze attack.
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attacker has about the implemented architecture the better the HWPM maps the
intermediate, precalculated values to estimated power levels.

Pt0 = Pprocess + Pnoise (19.9)

Var(Pt0) = Var(Pprocess) + σ (19.10)

Var(Pt0) = Var(Pdata) + Var(Pop) + σ (19.11)

Var(Pt0) = Var(Pdata) + σ (19.12)

19.3.1 Information Leaking of ECC Hardware Architectures

As already mentioned the more knowledge an attacker has of the cryptosystem im-
plementation, the more detailed power models can be established. In principle, each
cryptosystem has some weak points, where confidential information may leak from
the device. The amount of the possible leaking information depends on the imple-
mentation, the platform architecture, and the implemented cryptographic algorithm.
Any data dependend branches during cryptographic operations are vulnerable to
side channel attacks. Significant value changes are also susceptible to the differen-
tial power attack, like calculating and storing secret intermediate results.

The cryptographic security of an ECC cryptosystem is based on the hard math-
ematical problem of solving the discrete logarithm on an elliptic curve. The result
of this problem is a point on the elliptic curve. This point is rather simple to al-
locate with the knowledge of a base point and an order of Point-Multiplications
of different points. The base point is handled as the public key and the order of
Point-Multiplications as the secret key. The bits of the key value controls the num-
ber of Point-Double or a Point-Addition executions during the Point-Multiplication.
A Point-Double is performed if a key bit is zero, otherwise a Point-Addition is per-
formed for the computation of k ∗ P .

In order to attack an ECC based cryptographic scheme, an attacker may iden-
tify several vulnerable properties of the cryptosystem to start a DPA. Attacking the
Point-Multiplication is the most efficient way to a exploit secret information about
the ECC implementation. Even when running a SPA the secret can be interpreted
directly from the power trace, because of the different computation durations of
Point-Addition and Point-Double. For implementations of Point-Addition and Point-
Double with equal computation length, the scheme is still vulnerable to a DPA. In
that case, the secret key can be revealed bitwise starting with the second most sig-
nificant bit and ending with the least significant one. To estimate the current bit the
attacker has to hypothesize the state of the previous bit. The binary decision between
two possible values for each bit is the advantage of this iterative attack. Under these
circumstances the DPA is used to efficiently distinguish between the correlation of
two different hypotheses.

A second possibility to reveal the secret of an ECC cryptosystem is by analyzing
the intermediate values of the processed data on the Finite Field arithmetic. Tracing
and analyzing the power consumption of this arithmetic is more expensive than the
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previous one. The attacker has to evaluate more than two basic hypothesis corre-
lation results and thus cannot determine the secret by a binary decision. Based on
the bit length of the possible intermediate values the attacker usually has to cor-
relate 2bit length − 1 hypotheses with the recorded power traces. When attacking
the finite field arithmetic it is suitable to focus on the multiplying and the squar-
ing in GF(2n). Based on the mathematical properties of GF(2n) only these two
operations require a reduction. The need of performing a reduction depends on the
current operand values of these operations. This data dependency can be exploited to
estimate the processed data. Weak implementations of the arithmetic units, such as
modules featuring different processing times for multiplication and squaring, clearly
may be vulnerable to SPA. The attacker can thus distinguish between a multiplica-
tion and a squaring operation, he or she can then make sensible assumptions of the
performed operation in the EC arithmetic. Based on the different compositions a
Point-Addition or a Point-Double may be identified from the number of performed
multiplications and squaring over GF(2n). Based on this knowledge it is rather sim-
ple to extract the order of the performed operations in the EC arithmetic and finally
the secret k may be estimated.

19.3.2 General Countermeasure Techniques

Countermeasures against side channel attacks are one of the hot topics in crypto-
graphic engineering since their discovery by Kocher et al. [12]. Securing a cryp-
tosystem against side channel attacks by countermeasures does not lead to a per-
fectly secure cryptosystem. Instead, in general countermeasures increase the num-
ber of side channel measurements, which are required to extract the correct key
by stochastic methods like analyzing the Pearson correlation coefficient. Adding
a countermeasure to an unsecured design will not lead to an absolute SCA resis-
tant cryptosystem,but it increases the effort of attacking the system. However, the
number of needed power traces to successfully reveal the correct key is usually
taken as a factor of quality how resistant the implementation is against DPA. As the
Table 19.1 depicts, the concepts of counter measures can be divided into two main
groups namely, masking and hiding.

Table 19.1 Known countermeasures against power analysis attacks.

Circuit level Register level Algorithm level
Masking – Gate masking Operand blinding

Hiding
Time based – Clockless logic

Shuffling
Dummy operations

Amplitude based Noise generator
Dual-rail logic

Random precharge
Triple-rail logic

The countermeasure concept of masking combines random values with the origi-
nal values to randomize the power consumption. This technique can be used on dif-
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ferent implementation levels. A masking countermeasure on algorithmic level adds
a random additive or multiplicative value to the input data and thus misleads the esti-
mation of Hamming weight or distance. Applying this technique on the register level
it is also possible to implement arithmetic components, which contain masked logic
structures. In contrast, the hiding method disturbs the typical power consumption of
the cryptographic process by means of an artificially generated power consumption.
The two parameter characteristics of a power consumption value in a trace, i.e., time
point and amplitude, are the degrees of freedom to falsify the statistic analysis of the
DPA. Therefore, the hiding countermeasure can be catalogized in two groups. The
time based hiding methods disturbs the DPA by a significant reordering the power
consumption values over time. The amplitude based techniques try to increase the
Signal-to-noise (SNR) to hide the leaking information or to balance the power con-
sumption. Each of these methods is suitable for an application on different imple-
mentation layers. A very common balancing technique on the circuit level layer is
the dual-rail logic [18]. This technique tries to balance the power consumption by
implementing complementary design logic. However, designing such balanced cir-
cuits is very difficult and negatively affects both, the resource requirements and the
performance of an implementation.

Most of the published countermeasure techniques against power attacks are de-
signed to harden the private key AES algorithm [6, 2, 17, 16]. The research work
in the field of securing public key ECC against power attacks mostly focuses on
masking or dummy operations. The interesting operation of the EC cryptosystem
is the Point-Multiplication because its processing depends directly on the secret.
One obvious method is to add dummy operations to the Point-Multiplication [4, 9]
another approach is to mask this operation with a random value [4, 11, 3, 15]. Secur-
ing the Point-Multiplication via a randomized projective representation of the point
coordinates is also possible as published in [4, 8].

19.4 Countermeasure Through Reconfiguration

Most known countermeasures for hardware try to handle dynamic algorithms on top
of a static architecture. Existing countermeasures like masking and dummy opera-
tions as described in Sect. 19.3.2 either require additional resources and/or delay
the computation considerably. Adapting the dynamic randomness of the algorithm
to the architecture opens a new dimension of data independent power consumption
behavior. With FPGA-based hardware implementation designers have a very large
degree of freedom to develop dynamic hardware structures through reconfiguration,
which are extremely well-suited for masking and hiding purposes. We want to give
an overview on some new concepts to use the basic concepts of masking and hiding
in a more architecture-centric context. Additional composition of a mutating control
flow or a datapath with an algorithmic countermeasure will improve the resistance
against SCA too.
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We discuss new countermeasures which exploit a dynamic architecture in order
to hide the data dependent specific power consumption without the performance
drawbacks of other countermeasure approaches. The proposed countermeasures ei-
ther change dynamically the control flow or the data flow of a cryptographic opera-
tion to secure the implementation. In the first part we demonstrate how to apply this
new techniques on the eMSK multiplier to secure the finite field arithmetic. This is
followed by a description of mapping this hiding concept to the next abstract layer,
the Elliptic Curve Arithmetic, as an important base for our further research work.

19.4.1 Securing ECC on Finite Field Arithmetic Level

An effective way to harden an implementation against SCA is the addition of noise
to Pt0 . To achieve this, existing countermeasures either manipulate the time or the
amplitude domain. Our approach combines both domains to obtain optimal results.
Regarding the time domain, we perform a randomized rescheduling, where the ex-
ecution order is determined during runtime. This technique sounds similar to the
shuffling technique for AES in [16], but it is in fact to a large extent different to
plain shuffling. In presence of this randomized execution order, an attacker does
no longer know which operation will take place at a given point in time t0. Thus,
the data-independent power consumption Var(Pop) can no longer be assumed to
remain constant at t0 and Eq. (19.12) is no longer valid. Instead of Eq. (19.12) we
have to reconsider Eq. (19.11). The amplitude domain can be used to add noise by
exploiting the accumulation process of the eMSK. As the eMSK algorithm sums up
all n intermediate results rn in one common accumulation register, the results of
previous basic operations op(·, ·) affect the actual power consumption Pdata,i too:

i=n⊕

i=0

ri =
i=n⊕

i=1

op(data segmenti , ri−1) → Pdata

=
i=n⊕

i=1

Pdata,i + Pdata,i−1 (19.13)

Due to the randomized execution order, the influence of previous intermediate
results ri−1 is hidden and the noise of Pdata is increased. This property does not
hold for existing shuffling approaches, which target other cryptographic operations
(as detailed in [16]). Thus, the application of shuffling techniques to the amplitude
domain is a novel contribution of this research work.

By combining benefits from this shuffling method for the time domain and the
hiding method for the amplitude domain, our countermeasure improves the overall
resistance with nearly no drawbacks on the performance. We will detail this in the
next sections.

As stated before, the eMSK scheme allows to reschedule the execution order of
basic multiplications without changing the composite GF(2n) multiplication and
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all superior ECC algorithms. Thus, we can apply the proposed countermeasure to
our unsecured MSK multiplier, by rescheduling the basic multiplications. In order
to apply the proposed countermeasure, the control flow has to be changed from a
static schedule to a random-based dynamic schedule of the basic operations. We per-
form the rescheduling by swapping random elements of the execution sequence. By
swapping operations each basic multiplication will be performed only once with-
out additional management control. Algorithm 19.2 denotes the complete eMSK
multiplication with rescheduling. For comparison purposes we implemented the un-
secured version as well. Figure 19.4 depicts the implemented design with the data
path on the left and the control section on the right hand. The data path is identical
for both variants.

Algorithm 19.2 Multiplication with eMSK z ← x · y

Require: (x, y) Bitvectors
n := Number of Basic Multiplications
z := Accumulation Register
N [ ] := Array of all Basic Multiplications

if Execute first time then
N [ ] := {0, 1, 2, . . . , n}

end if
for i = 0 to n do

r ←rand(1, n)
Ntemp ← N [r]

N [r] ← N [0]
N [0] ← Ntemp

end for
for i = 0 to n do

ztemp ← Execute N [i]-th Basic Operation
z ← z + ztemp

end for
z ←reduce(z)
return z

The secured and the unsecured version only differ in their control unit. A runtime
replacement of the control unit by means of partial reconfiguration thus becomes
possible. The unsecured control unit simply consists of a program RAM for the
instructions and a corresponding program counter. The counter can be reseted by
an external trigger to start a new multiplication. The control unit of the secured
implementation is extended by a swapping unit and by a random number generator.
This random value is being used as an address to swap the corresponding RAM
entry with the first entry. As this simple swapping step only affects two program
entries at the same time, it has to be performed multiple times to obtain a global
randomization. To guarantee a sufficiently randomized shuffle effect, the swapping
operation is performed in every idle clock cycle of the hardened multiplier. During
our measurements we delayed the time between two multiplications to guarantee a
certain minimum amount of shuffling.
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Fig. 19.4 eMSK implementation with DPA countermeasure.

We implemented the 192-bit wide GF(2n) multiplications both with 6 segments
and with 24 segments to illustrate the scalability of our approach. For the eMSK6

this leads to 18 basic 32 bit multiplications, the eMSK24 needs 162 basic multipli-
cations to execute the composed multiplication. The operand selector combines the
input segments required for the computation of each basic multiplication. The multi-
plication result is then set up such, that it can be accumulated to arbitrary segments
of the 384-bit word. The accumulator can switch between a direct load, which is
required at the start of a new field multiplication, and the accumulator path for sub-
sequent execution steps. The accumulated result is then finally reduced to comply
to the mathematical field GF(2n).

While the Operand Selector and the Pattern Generator resources grow in size
depending on the number of segments, this is compensated by the smaller combina-
tional multiplier unit. Therefore, the MSK24 requires less resources than the MSK6

design and features a higher processing time.

19.4.2 Securing ECC on Elliptic Curve Arithmetic Level

SCA on the Elliptic Curve Arithmetic level exploits the sequential calculation of the
scalar multiplication on the curve. Our concept to secure the elliptic curve arithmetic
is based on the hiding method as detailed before. Adapting the technique to harden
the GF(2n) arithmetic on the more abstract layer seems to be a viable approach. For
a successful attack the variance of a data dependend power consumption at a certain



410 Marc Stöttinger, Felix Madlener, and Sorin A. Huss

time point has to be determined. Varying the time point of the operation execution
or the processing duration will cause the need for more data samples needed to
estimate the variance behavior of the overall power consumption.

We exploit parallelized processes to add noise to the power consumption. Based
on the composed algorithms to compute either a Point-Double or a Point-Addition
some multiplications over GF(2n) can be parallelized. A scheme of different paral-
lel processing GF(2n) multipliers for each basic operation of the elliptic arithmetic
clearly affect the computation time of the Point-Multiplication for each execution.
Utilizing this effect we use different schedules, based on different resource bind-
ings and control flows, for computing k ∗ P . Therefore, the interesting time point of
storing the intermidiate result of a Point-Double or a Point-Addition into a register
has a variance on its own and will add misleading traces to the correlation test. For
a suitably chosen projective representation, like the López-Daham projective [14]
coordinates with Z = 1, both basic operations of the elliptic curve arithmetic can
be parallelized very efficiently.

Figure 19.5 depicts a schematic of an elliptic curve arithmetic architecture with
autonomous multiplier units. Each multiplier has its own local memory for the pro-
cessing data. A bus connects the distributed memory architecture to provide the data
exchange between the autonomous processing units.

With five autonomous eMSK multipliers this architecture is massively parallel
thus providing a fast computation of Point-Multiplication. Each Point-Double and
Point-Addition is kind of a macro featuring a specific instruction order of operations

Fig. 19.5 Architecture of an arithmetic logic unit for ECC Point-Multiplication.



19 Securing ECC implementations against DPA 411

on the finite field arithmetic. Therefore, the data path and the control flow can be
strictly separated. The autonomous multiplier units, the unit for the finite field ad-
dition, and the bus handle the dataflow for a Point-Multiplication. The control flow
of the operations on the elliptic curve arithmetic is then implemented on a primitive
memory and program counter structure.

By extending the control unit structure with a more intelligent program counter
and offset addressing it is possible to map different control flows with different
resource utilizations within the program memory. Now it is possible to call via an
offset address different instruction orders for each Point-Double or Point-Addition.
To archive more randomness for the calculation k ∗ P , the binding of multipliers
for the operation is chosen randomly and will thus affect the processing time for
each execution. In case that a designer wants to increase the entropy of the runtime
to perform a whole Point-Multiplication, the architecture can be extended by more
eMSK multipliers each with a different number of segments.

As stated before, the number of segments of eMSK clearly affects both the power
consumption for each basic operation and the number of needed clock cycles. An ar-
chitecture with a heterogeneous multiplier structure introduces an additional degree
of freedom to distribute the execution time needed for storing the sensitive interme-
diated results of the Point-Multiplication. The varying power consumption for the
different multiplier types additionally makes it more difficult to find similar struc-
tures to determine the begin or the end of performed cryptographic operations. One
part of the future work will therefore concentrate on implementing an optimized ar-
chitecture that will fit on our target device to attack and thus to quantify this novel
scheme.

19.5 DPA Experiments on Countermeasures

We have set up a Side Channel Attack Lab to attack our own designs in order to
quantify the proposed countermeasures. One measurement setup inside this lab has
been built up to perform DPA attacks on FPGA implementations. Attacking our
secured implementations under real conditions gives a good feedback on the coun-
termeasures. Due to the size of our target FPGA we are not able to attack hardened
designs with a high resource consumption, e.g., the dynamic binding architecture
presented in Sect. 19.4.2, but we can evaluate the basic concepts on smaller de-
signs and abstract their impact on SCA attacks. Therefore, we will demonstrate in
an empirical experiment the practical resistance of our hiding method applied on the
eMSK.

The setup consists of a FPGA development board, an Agilent DSO6052A os-
cilloscope, and a computer running Matlab. As the target for our attacks we use
a SASEBO-G FPGA development board, which is the side-channel experimental
board developed by Advanced Industrial Science and Technology (AIST) and the
Tohoku University, Japan, in the METI project. Due to the structure and fabrication
characteristics of the board the physical errors in measurements are very small.
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19.5.1 Resistance of the Secured eMSK-Multiplier

In order to test the quality of our approach we attacked both the unsecured and se-
cured MSK implementation in our DPA lab. We set up two different scenarios for
the attack. First, we imagined an attacker without any knowledge about the imple-
mentation and used the HWPM. In the second scenario we performed a white box
attack, now using the HDPM. But for both scenarios we assume the attacker already
knows the time points where some vulnerable side channel information leaks from
the design during the execution of a multiplication. He or she has not to perform the
difficult estimation to find the leaking points in the power trace plot.

During the attack we regard the second operand as the inaccessible key, which
has to remain secret. To measure the different traces we generated 400,000 random
values for the first operand. The second operand was set to one of the 100 equally
distributed random values. After capturing the data sets for each scenario, we gen-
erated the key hypotheses with both the HWPM and the HDPM and correlated the
measured traces with the hypotheses.

First, we attacked the unsecured eMSK6 with both power models and 5,000 mea-
sured traces. The results of this attack are presented in Figs. 19.6 and 19.7. Each
figure shows the correlation plots over the monitored time window for all 100 key
hypotheses. As described in [1] and [13] an attacker can use these correlation plots
to get knowledge about the correct key. The correlation trace with the highest value
over all correlation traces refers to the best fitting key. This key is assumed to be
the single correct key, because the power consumption between the hypothesis and
the measured trace matches best. The black marked trace in both figures is the cor-
rect key hypothesis and shows the highest correlation value. In this case an attacker
would have found the correct key hypothesis and, thus, the attack would have suc-
ceeded. A deeper analysis shows that the HDPM attack succeeds after 80 traces,
the HWPM needs about 570 traces. Figures 19.8 and 19.9 illustrate the DPA results
of the secured eMSK6 implementation at 50,000 traces. In both figures the black
printed, correct hypotheses can not be distinguished from the other gray printed
hypotheses. For this design, 50,000 traces are not enough to determine the correct
hypotheses.

In the next step we attacked the secured implementation of the eMSK6 and the
eMSK24 with both the HWPM and the HDPM. We performed multiple attacks in
which we increased and the number of measured power traces by 25,000. Each
attack step was performed four times and an attack was regarded as successful,
if at least one of this four attacks revealed the secret operand. For both power
models a successful attack requires significantly more measured traces compared
to the corresponding unsecured variants. Table 19.2 documents the required traces
to succeed with the attack. While the eMSK6 can successfully be attacked with
75,000 traces, the eMSK24 design is not successfully attackable, even when running
100,000 traces. This clearly demonstrates the scalability of our proposed counter-
measure approach.
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Fig. 19.6 HWPM on unsecured eMSK with
5,000 traces.

Fig. 19.7 HDPM on unsecured eMSK with
5,000 traces.

Fig. 19.8 HWPM on secured eMSK with
50,000 traces.

Fig. 19.9 HDPM on secured eMSK with
50,000 traces.

Table 19.2 Success of DPA attacks.
Traces 80 570 50 k 75 k 100 k

Unsecured
eMSK6 HDPM Yes Yes Yes Yes Yes
eMSK6 HWPM No Yes Yes Yes Yes

Secured

eMSK6 HDPM No No No Yes Yes
eMSK6 HWPM No No No Yes Yes
eMSK24 HDPM No No No No No
eMSK24 HWPM No No No No No

19.6 Conclusion and Future Work

We presented a novel technique to secure a fundamental operation of Elliptic Curve
Cryptography, namely the multiplication in the finite field GF(2n), against DPA
and similar power attacks. Until now, this shuffling-based technique has not yet
been applied to GF(2n). We have shown that we can take advantage of the ampli-
tude domain to gain additional resistance against side channel attacks, which is not
the case for other existing shuffling approaches. We presented a new algorithm for
efficient finite field multiplication and a generic architecture for its implementation
aimed to DPA countermeasures. Experiments have shown that the secured eMSK
multiplier requires significantly more power traces (625 times in the case of MSK6

and HDPM) to successfully attack an implementation. By choosing an appropriate
segmentation for the eMSK scheme the DPA resistance can be adjusted in a wide
range. This unique scalability property trades off side channel security vs. perfor-
mance. The required additional logic resources are quite small.
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In future works the introduction of parallelism and dynamic binding will be an-
alyzed in detail. Therefore, we are going to develop a target platform able to drive
DPA attacks on the architecture introduced in Sect.19.4.2. By using the mapping
concepts on the architectural layer we will provide an additional degree of flexi-
bility for dynamic execution rescheduling on the elliptic curve arithmetic. We will
investigate in how to exploit partial reconfiguration concepts to harden the archi-
tectures against DPA attacks. In combination with dynamic reconfiguration features
of FPGAs this additional flexibility will lead to further substantial improvements
against power attacks.
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Chapter 20
Reconfigurable Controllers—A Mechatronic
Systems Approach

Roland Kasper and Steffen Toscher

Abstract This chapter covers the design and implementation of reconfigurable con-
trollers based on modern reconfigurable FPGAs for mechatronic systems. The par-
tial reconfiguration of FPGAs enables a dynamic adaptation of the designed con-
troller functionalities to varying hardware requirements. The chapter introduces a
design methodology for partially reconfigurable systems with a specific mechatronic
design and implementation approach. Moreover, the design methodology comprises
an implicit and distributed reconfiguration management with hard real-time capa-
bilities. The use of reconfigurable hardware in mechatronic systems is also supple-
mented by infrastructural components and functional groups included in the design
and implementation flow. The applicability and performance of the design and im-
plementation methodology are verified with a selected application of a mechatronic
control system.

20.1 Introduction

Mechatronic systems integrate mechanical, electrical and software components into
innovative products offering heretofore unmatched functionality, performance and
cost. Important markets like automotive industry, robotics or home electronics doc-
ument the advantage of this integration as most of the products developed in the
past or presently under development are based on a mechatronic approach. A big
challenge in this integration process is the adaption of all necessary single func-
tions to perform the specified function of the complete system. The shift of former
mechanical implementations to electric and electronic hard- and software solutions
is a primary trend of this evolution. The flexibility gained by this movement to-
gether with the rapid enhancements of microelectronics offering steadily increasing
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resources at decreasing costs, are key elements for the success of mechatronic prod-
ucts. On the other hand mechatronic controllers are embedded systems with a close
interaction between soft- and hardware and the physical environment that have to
do their work within the narrow and strict limitations of a product and have to ful-
fill high demands on hard real-time behavior. And last but not least, mechatronic
products have to compete in very cost sensitive markets which forces all hard- and
software resources to be at a minimum.

To meet these demands especially designed microcontrollers or signal processors
were used in mechatronic systems from the beginning. Besides analog and digital
process and communication interfaces these processors offer optimized architec-
tures to implement algorithms for digital feedback and feedforward controllers, dig-
ital filters, observers or control and supervision logic necessary to realize the com-
plex behavior of a mechatronic system. Fast and sophisticated interrupt systems or
even hardware support for multitasking assist the processors to fulfill hard real-time
conditions. In spite of these features microcontrollers and signal processors follow
the same technological roadmap and face the same technological borders than other
processor architectures. As noted in [5] the semiconductor industry has turned its
attention to new chip architectures that can still take advantage of shrinking tran-
sistor size but avoid the increase of power as a consequence of steadily increasing
clock frequencies. In typical mechatronic applications this race of frequency never
took place as passive cooling is the only way to get rid of heat. Further problems
associated with electromagnetic compatibility and increasing costs limitted the op-
eration frequency in mechatronics computing to very moderate values. On the other
hand there is a growing number of economic attractive products e.g. in automotive
applications, in robotics or in medical technology that are as hungry for computing
power than modern games.

Actually computer industry tries to solve these problems with multicore chips. In
the simplest case homogeneous multicore chips are used. This result in a relatively
simple architecture, as the chip manufacturers only has to place multiple copies of
the same microprocessor core on the same silicon die. For mechatronic applications
homogeneous multicore designs are very critical as chip size and cost grow and it is
very difficult to keep all cores running on a high rate of usage. As a consequence a
significant part of hardware investment is not used permanently. A fact that will not
be tolerated in very cost sensitive markets as mechatronics. The more complex inho-
mogeneous approach uses several processor cores with different functionality and
capabilities integrated together to form system-on-chip (SoC) architectures. This
offers the opportunity to design a chip for specific application domains. Of course
this feature is very attractive for all mechatronic high volume markets, as very spe-
cial demands in I/O-capabilities or specialized computation tasks can be met with
the minimum of needed chip size. On the other hand developing software for these
architectures that meets hard real-time conditions is very critical task.

The main problem of software development for mechatronic and other control or
signal processing focused application is the inherent parallelism of these systems.
This becomes evident with a look on usual and wide spread specification methods in
these fields. Data flow driven designs very often defined by a signal flow or a block
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diagram dominate great parts of the systems. Control flow is defined using state
machines whose states contain data flow, as shown in Fig. 20.1. To implement such
designs on a processor the intrinsically parallel signal flow has to be serialized on
the processor’s operation code level, while synchronization and real-time conditions
have to be fulfilled. Today this step is one of the most critical ones in mechatronic
system development because it cannot be automated efficiently, e.g. by automatic
code generation tools like Matlab Realtime Workshop or others. In many cases real-
time operation systems have to be used to implement code in a safe way, whereby
computational load and cost of the processor is increased further. This serialization
process is also responsible for the need of processor clocks in range up to several
hundreds of Megahertz, while implementing systems that need sampling rates of
some tens of kilohertz or lower.

To avoid these difficulties true parallel implementations of the embedded system
direct in hardware can be used. Flexible architectures that allow dynamic program-
ming of the underlying hardware are offered e.g. by FPGAs. They allow for match-
ing the complete data flow and all parallel computing elements of a design directly
to the parallel signal lines/buses and logical elements of an FPGA (Fig. 20.1). Very
high computation speed and data transfer rates are possible in this way as the high
clock frequencies of FPGAs can be exploited. The drawback of this direct approach
is a very huge consumption of resources e.g. for wide busses or a large number
of hardware multipliers to operate with 16 or 32 bit numbers. Nevertheless, many
applications are documented where FPGAs are used to implement very high band-
width digital filters [7] or as a kind of numeric processor [3] assisting a standard
processor, microcontroller or DSP to solve very computation- or I/O-intensive tasks,
which would exceed the processor’s capabilities. One possibility to reduce this big
resource consumption is the bit serial implementation of the complete data flow and
all numeric operations [4]. It shows that the gap between operation frequency of-
fered by an FPGA and the sampling frequency demanded by a typical mechatronic
application is big enough to serialize 32 or even 64 bit values, which is more than
enough for most applications. On the other hand bit serialization of data flow and
computational elements is a non-trivial task. A domain specific solution for mecha-
tronic systems is presented in [13], but up to now there are no tools available that
support this step in an automated way.

A significant advantage of completely parallelized or partially serialized imple-
mentation in hardware is exact timing behavior. All sampling times and delays of
the implemented embedded system depend only on well defined characteristic tim-
ing values of underlying hardware elements. Using established synchronous design
methods, where all activities are related to one or several clocks, timing accuracy
of few nanoseconds can be guaranteed independent from the behavior of the imple-
mented system. This is far away from the actual values offered by processors, where
typical values are in the range of several microseconds. And usually software solu-
tions do not ensure these times. For systems with many branches or threads there
only estimations or measurements of these times are available. Unfortunately key
elements of speed up of modern processor architectures like pipelining and caches
duplicate the inaccuracies of estimations and measurements as they modify actual
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runtimes significantly. With increasing complexity and for safety critical applica-
tions the above mentioned excellent real-time behavior of embedded mechatronic
systems implemented direct in hardware is indispensable.

With the arrival of dynamically reconfigurable FPGAs a new level of flexibility
in consumption of FPGA resources was attained. The static programming model of
classical FPGAs forced the user to implement all parts of an algorithm on the hard-
ware as a whole, because each part must be available when needed. With dynamic
reconfiguration, algorithms can be split. Thus only the parts actually at work have
to be implemented in hardware and consume resources. Actually inactive parts that
will become active can be loaded dynamically at runtime. Evidently dynamic recon-
figuration is well suited for applications like software radio [1], where algorithms
only change at times the frequency band or some coding scheme changes. Also for
very fast applications like video processing there are well defined points in time for
dynamic reconfiguration of the computing pipeline as images are processed with a
defined frame rate [10]. In many applications mechatronic systems are designed to
work at different situations or at different working points, which can be specified
using a combination of state machines and block diagrams as already mentioned
and shown in Fig. 20.1. In a static solution the complete specification is synthesized
and loaded on the FPGA. In case of dynamic reconfiguration only the active state
and its associated block diagram must be present on the FPGA, which reduces the
need of resources significantly, if there are a larger number of states. This relies on
the fact that there is only one active state in a state machine at a time. On the other
hand the time a new bitstream has to be loaded is not known because the transition
from one state to the other depends on events generated by conditions of dynami-
cally varying signals defined by the block diagram. Thus loading of new bitstreams
must be very fast and with an exact timing to guarantee hard real-time conditions

Fig. 20.1 Comparison of implementation strategies of mechatronic systems including processors,
static and dynamically reconfigurable FPGAs.
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also in the situation of dynamic reconfiguration and to keep the advantage of strict
timing of direct hardware implementations.

Starting from these considerations this chapter first describes a design method-
ology for reconfigurable mechatronic controllers, which is based on high level de-
sign flows and design tools commonly used in the domain of mechatronics and
control systems. Implicit definition and integration of a sophisticated reconfigura-
tion management together with a distributed implementation of the reconfiguration
management and a hard real-time loading and activation strategy for partially re-
configurable controller functionality are key features of the presented methodology.
Focusing on partially reconfigurable FPGAs as target hardware a technical struc-
ture for reconfigurable mechatronic control systems is introduced, keeping in mind
important implementation issues such as resources and interfaces. Special focus is
given to a fast, reliable and resource-effective implementation of a partial recon-
figuration solution being supported by a dedicated reconfiguration management in
hardware and thus enabling self-reconfiguration and hard real-time operation. To
reduce to need of FPGA resources bit serial signal processing and transmission for
the implementation of parts of the design. To prove the superiority of dynamically
reconfigurable controllers in mechatronics, this chapter presents the design and ap-
plication of a reconfigurable controller for piezo-electric actuators in automotive
applications, which uses hard real-time reconfiguration in the sub millisecond range.

20.2 Design Methodology

The design methodology comprises system-level design flows and tools being com-
monly used in the domain of mechatronics and control systems. This approach al-
lows an easy integration of partially reconfigurable controller functionality in ex-
isting design flows and systems. A distinctive feature of the design methodology is
the implicit definition and integration of a sophisticated, hard real-time, distributed
reconfiguration management.

20.2.1 Logical Controller Structure and Partitioning

Mechatronic control systems in general are specified as a combination of data flow
and control flow parts that interact closely. Operation control signals generated by
finite state machines (FSMs) are used to affect the data flow that typically is defined
by signal diagrams or other well known specification methods such as truth tables,
hierarchical blocks and the like.

In a first step towards partitioning, the design methodology uses FSMs to map
controller functionalities to a logical controller structure. The logical controller
structure defines operating states, process-dependent control functions and the in-
teraction between control flow and data flow. Employing state machines and sig-
nal diagrams, a logical controller structure is defined by describing single process-
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dependent functions with signal diagrams and other known specification tools and
mapping these functions to the states of an FSM.

As an example, the run-up and operation of a typical mechatronic system such
as an electric drive system can be mapped to an FSM consisting of four states such
as a static test, a dynamic test, a main operation state and a fail-safe state. First,
the static test takes place followed by the dynamic test before the system becomes
operational. If an error occurs during the tests or operation, the system switches to
fail-safe and puts the outputs in known safe states.

Thus, by applying this approach to reconfigurable hardware, loading and acti-
vation sequences of reconfigurable controller functionality may be directly speci-
fied with state machines. A single operation state within such a logical structure
describes a specific controller configuration comprising several sub-functions. The
transition to another operating state changes the configuration by employing new
sub-functions. However, a subset of these functions is crucial to all operating states
and thus always active. With regard to reconfigurable systems, these sub-functions
may be referred to as static, while sub-functions being dependent on specific opera-
tion states may be referred to as partially reconfigurable. Thus, the FSM-based spec-
ification approach provides an implicit partitioning of controller functionality into
static and partially reconfigurable components. Static sub-functions will be commu-
nication and process interfaces, memory and reconfiguration management as well
as other high-level controller functions. The sub-set of partially reconfigurable and
thus run-time exchangeable functions will rather include specific operation state de-
pendent control algorithms, test and fail-safe functions.

In a next step, function subsets are mapped to a generic reconfigurable platform.
This platform independent partitioning on hardware level follows well known par-
tial reconfiguration design flows such as by Xilinx [6]. According to this design
flow, static sub-functions are mapped to a static, i.e. non-reconfigurable part of the
target hardware called static base system. Besides static functionality, the base sys-
tem comprises I/O and other global hardware resources. Run-time exchangeable
functionality is mapped to partially reconfigurable areas of the target hardware. In
addition to Xilinx design flow terms, reconfigurable hardware areas are referred to
as reconfigurable modules whereas run-time exchangeable functions are referred to
as hardware tasks. Thus, reconfigurable modules represent well-defined hardware
areas serving as placeholders for hardware tasks. Hardware tasks may be activated
and loaded into reconfigurable modules at run-time by means of partial reconfigu-
ration. Although a controller may comprise several reconfigurable modules, there is
only one active task per module at a particular time.

In a further hardware-level partitioning step, hardware tasks are assigned to re-
configurable modules depending on the logical controller structure. Operating state
dependent functions being loaded/activated subsequently may be assigned to a sin-
gle module, whereas tasks being loaded/activated at the same time require separate
modules. The state machine representation of logical controller structure facilitates
this assignment, since operating states and their specific functionality may be di-
rectly mapped to reconfigurable modules and hardware tasks. Figure 20.2 illustrates
this approach.
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Fig. 20.2 State machine based mapping of hardware tasks to a reconfigurable module.

20.2.2 Specification of Reconfigurable Controller Functionalities

The specification of reconfigurable controller functionalities is based on a consis-
tent application of state machines. Thus, reconfigurable modules are specified with
state machines comprising single hardware tasks as states. In the context of the
specification methodology, every module is described by a particular state machine
called Module FSM. While the states of a Module FSM represent module and oper-
ating state specific hardware tasks, the transitions between those states are typically
dependent on process parameters such as the revolution speed of an electric drive
system or test and failure conditions.

Figure 20.3 shows a generalized example of a Module FSM with three tasks.
Beginning with the start state represented by task 1, the other tasks are subsequently
loaded into the module upon their specific transition conditions. A more detailed
example of a Module FSM is given in Sect. 20.4 with regard to a reconfigurable
controller for piezo-electric actuators.

The functional specification of hardware tasks involves block diagrams and the
like and may comprise a code generation step towards a hardware description lan-

Fig. 20.3 Generic example of a Module FSM.
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guage. However, in the context of a reconfigurable controller a hardware task also
has to reflect the transitions of its assigned higher-level Module FSM. This is ac-
complished by an additional state machine implemented in each task. This Task
FSM controls the sub-states of a single task and is identical for all hardware tasks.
Moreover, the concept involves a global identifier for each task, the Task Marker,
denoting the active task and enabling activation/loading sequences for subsequently
active tasks.

Fig. 20.4 Task FSM.

The structure of the Task FSM is derived from a basic state model of software
tasks in automotive real-time operating systems [8]. As shown in Fig. 20.4, the Task
FSM comprises three states representing the potential status of a task: not loaded,
ready and active. The transition from not loaded to ready takes place after the
task has been loaded from memory and the local reset signal has been deasserted.
Upon receiving its corresponding Task Marker, the Task FSM switches to active and
enables the task’s signal processing and local outputs. The Task FSM switches back
to ready when a certain external condition is met and a transition in the higher-level
Module FSM occurs. This causes the deactivation of the task’s local outputs and a
Task Marker is sent to activate the next task. Replacing the task with another one
causes a transition to the virtual state not loaded.

20.2.3 Distributed Reconfiguration Control and Activation
Strategies

The state machine based specification of reconfigurable controller functionalities
supports a generic distributed reconfiguration management that can be directly ap-
plied to hardware. Being based on a functional and hardware independent parti-
tioning and specification approach, the reconfiguration management is implicitly
incorporated in the controller design at an early overall design stage. Moreover, the
reconfiguration management is self-contained, requires no external components and
thus enables self-reconfiguration features.
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On module level, the Module FSM may be broken down into its single states
and implemented directly in the single hardware tasks of the corresponding mod-
ule. Thus, a Module FSM will at no time be completely implemented on the target
platform but only partially in a distributed way through the active task. Therefore,
hardware tasks represent not only states of a Module FSM, but additionally imple-
ment the out-bound transition of the Module FSM and initiate loading and activation
sequences for subsequent tasks. On hardware task level, the Task FSM accomplishes
this by means of the Task Marker. A task may activate another task by sending the
corresponding Task Marker. Optionally, the static base system may send a Task
Marker to activate a specific task, e.g. in order to initiate signal processing.

With regard to hard real-time requirements of mechatronic control systems, the
loading and activation time for a single hardware task is of particular importance. In
the context of partially reconfigurable hardware, this time is called reconfiguration
time TR and is dependent on module dimension, task complexity, implementation
methods and characteristics of the target hardware. As for modern reconfigurable
hardware platforms such as FPGAs, reconfiguration times may be in the range of
milliseconds.

The influence of the reconfiguration time TR on the reconfiguration control re-
sults from the relation between the sampling time TS and the processing time TP . TS

is given by the real-time needs of the mechatronic control problem, while TP is de-
termined by the logic inside a hardware task and its clock frequency. The relation be-
tween TR, TP and TS separates two cases. In the first case, TS is equal or larger than
TP + TR. In this situation, a loading and activation sequence, i.e. a reconfiguration,
may take place within one sampling period without loss of any data. Since typical
sample times of mechatronic systems are in the range of 100 kHz and fast reconfig-
uration solutions are available (see Sect. 20.3), this may be applicable for a majority
of controllers. However, in a second case, TP + TR may exceed TS . Therefore, one
or more samples could not be processed during reconfiguration. This is obviously
not acceptable for hard real-time systems, but may be avoided by task pre-loading.

Task pre-loading on hardware level is based on the enlargement of hardware re-
sources assigned to a single module. Thus, required hardware resources per module
increase proportionally to the number of tasks to be pre-loaded. The resulting multi-
task module is specified by an extended Module FSM. In this context, task activation
is a simple switching matter whereas the actual reconfiguration procedure is safely
accomplished beforehand. However, a pre-loading strategy is only feasible if the
total number of Module FSM states NS is greater than the maximum number of
accessible states NR + 1.

20.3 Structure and Implementation

This section introduces a technical structure for reconfigurable mechatronic control
systems. The technical structure has been designed with regard to partially reconfig-
urable FPGAs as target hardware. Thus, it is closely connected to implementation
issues such as resources, interfaces and in particular the hardware-dependent imple-
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mentation of partial reconfiguration. Furthermore, the technical controller structure
complements the reconfigurable design parts with static infrastructure components.
The overall controller implementation is accomplished in a very resource-effective
way by a direct hardware implementation of all controller functionality and the use
of bit serial signal processing and transmission for parts of the design.

20.3.1 Structure and Components

The technical controller structure targets partially reconfigurable FPGAs and maps
reconfigurable modules and hardware tasks as well as the static base system to a
generic FPGA hardware. On a higher level, the controller structure comprises the
target platform FPGA and a memory unit storing the configuration data that repre-
sents the hardware tasks. The memory unit may be realized with external memory
elements or with dedicated memory blocks on an FPGA depending on the availabil-
ity and number of such blocks.

On the FPGA level, the technical controller structure comprises the reconfig-
urable modules, the static base system and a dedicated communication system trans-
ferring the Task Marker. While reconfigurable modules contain the hardware tasks,
the static base system comprises infrastructure components such as a reconfigura-
tion/memory management, communication and process interfaces and the reconfig-
uration interface including the actual hardware-level reconfiguration control. Fig-
ure 20.5 illustrates this approach with an exemplary technical structure of a recon-
figurable mechatronic controller comprising two reconfigurable modules.

As can be seen from Fig. 20.5, the dedicated communication system connects
the reconfigurable modules and the static base system of the controller. It ensures a
failure-free transfer of the Task Markers and other crucial reconfiguration data be-
tween the static base system and the Task FSMs in the reconfigurable modules. The
communication system consists of a persistent hard macro and features subscriber
connections for reconfigurable modules and their tasks as well as for the static base
system. The latter includes additional functionalities to initiate and monitor the run-
up and re-run-up of communication. The overall structure of the communication
system is a shift register being formed by all subscribers each storing one bit of the
message frame and shifting it to the next subscriber on every clock cycle. Moreover,
local multiplexers in the subscriber connections prevent any interaction during a re-
configuration. This ensures a failure-free operation of the communication system
while a module is being reconfigured.

The reconfiguration and memory management in the static base system includes a
hardware-based Reconfiguration FSM, a also hardware-based Memory FSM, a res-
olution function for pre-loading distinction and a task address table (see Fig. 20.6).
The task address table is a specific memory block containing size, memory loca-
tions, and type of all task related configuration data. Configuration data may be
dynamically received through the communication interface of the controller and is
written to the memory by the Memory FSM that simultaneously updates the task
address table.
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Fig. 20.5 Exemplary controller structure.

The loading and reconfiguration sequence for a specific task and the correspond-
ing reconfigurable module is initiated upon receiving a request and a Task Marker
via the dedicated communication system. Subsequently, the reconfiguration state
machine accesses the task address table and obtains the specific memory location
of the task that is to be loaded. Next, this task’s configuration data is read from its
memory location and is sent to the actual configuration interface accomplishing the
partial reconfiguration.

The communication and process interfaces have been designed as statically, i.e.
off-line, reconfigurable components and may implement different functionality de-
pending on the actual application. An exemplary USB 2.0 based communication
interface has been implemented employing the external EZ-USB FX2 USB micro-
controller by Cypress. Thus, the communication interface on the reconfigurable con-
troller implements a Master/Slave communication with the FX2 based on a further
hardware state machine. With regard to process interfaces, exemplary implementa-
tions comprise pulse width modulation (PWM) and single line switching outputs
and inputs as well as a sophisticated Delta Sigma ADC. The Delta Sigma ADC con-
sists of a small external delta sigma modulator that generates a one bit pulse code
modulated signal representing the analog input and an extensive FPGA based bit
serial multi-stage filtering and decimation part [14]. Resolution and sampling fre-
quency of the Delta Sigma ADC are adjustable by adaptation of the digital filter
stages without any changes in the analog off-chip design. Other feasible process
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Fig. 20.6 Reconfiguration and memory management.

interfaces for reconfigurable mechatronic controllers include solutions based on ex-
ternal ADC and DAC components.

Moreover, the static base system implements an advanced state saving/backup
and state recovery system for reconfigurable control functionalities in hardware
tasks such as integral and derivative parts of PI/PID closed-loop control algorithms.
State saving/backup is based on an automated backup structure continuously sav-
ing actual state values in a dedicated memory component in the static base system,
while state recovery after a reconfiguration is based on an automated task specific
write-back procedure.

20.3.2 Implementation and Target Hardware

The implementation of reconfigurable mechatronic controllers maps the technical
structure to an actual hardware device. Due to the availability of a working design
flow supporting partial reconfiguration, Xilinx FPGAs are chosen as target hard-
ware.

The Xilinx partial reconfiguration design flow may be applied to reconfigurable
mechatronic controllers in a straight forward way based on the well-defined techni-
cal controller structure. However, being a non-standard hard macro, the dedicated
communication system for the transfer of the Task Marker must be constrained ad-
ditionally and assigned to adjacent locations of the reconfigurable modules and the
static base system in a the same manner as standard bus macros. As a result of
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the Xilinx partial reconfiguration design flow, configuration data for the complete
controller comprising the static base system and first tasks as well as for the single
hardware tasks will be generated. A target FPGA by Xilinx may then be configured
using the fully implemented controller data. The configuration data of single hard-
ware tasks may be send to the communication interface of the controller after initial
configuration of the device or later. Upon being received by the communication in-
terface, the hardware task configuration data is stored in the controller’s memory
and the task address table is updated accordingly.

In contrast to most scenarios and common implementations of FPGA-based par-
tially reconfigurable systems, the reconfigurable mechatronic controllers are imple-
mented following a direct hardware approach rather than employing an embedded
microprocessor. All functionality of a controller is directly mapped to hardware and
thus facilitates hard real-time operation. This is of particular importance for the re-
configuration management as well as for the actual control functionality such as
closed-loop control algorithms. Moreover, the multi-level state machine based con-
troller design can be mapped to hardware in a very resource efficient way and sup-
ports the portability of controller functionality.

Another distinctive feature of the reconfigurable mechatronic controllers is the
application of bit serial signal processing and transmission means based on the ap-
proach presented in [9]. Bit serial hardware task functionality as well as bit serial
data transmission between the hardware tasks and the base system support a very
resource efficient controller implementation. Furthermore, bit serial algorithms sup-
port the overall scalability of the controller since only one line per signal is needed
regardless of the bit width.

20.3.3 Partial Reconfiguration Solution

The implementation of actual partial reconfiguration processes follows the over-
all direct hardware implementation approach and represents the final component
of the reconfiguration and memory management. As can be seen from Fig. 20.6, a
dedicated hardware state machine called the Reconfiguration FSM realizes a direct
memory access (DMA) and reads the configuration data of the hardware task to
be loaded from the controllers memory. Simultaneously, the Reconfiguration FSM
writes the data read from the memory to an configuration interface that is part of
the target device. Thus, the distributed reconfiguration management, the static re-
configuration and memory management and the Reconfiguration FSM enable self-
reconfiguration features since both the decision to load a task and the actual per-
forming of the loading/reconfiguration sequence are accomplished locally. More-
over, this approach facilitates task loading/reconfiguration sequences under real-
time conditions.

With regard to Xilinx FPGAs, the Reconfiguration FSM implements the Se-
lectMAP configuration protocol and is directly connected to the internal configu-
ration access port ICAP, but may also employ I/O resources to access an external
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configuration interface. Since direct access to ICAP can be realized by a single
hardware based state machine, this reconfiguration solution is very efficient, fast
and requires only a small amount of logic resources. No embedded microprocessor
reconfiguration control system is used.

Due to the direct hardware implementation of the Reconfiguration FSM, the re-
configuration time, i.e. the loading time, for a hardwaretask is directly dependent
on the ICAP configuration clock (max. device dependent) and the size of the task
that is to be loaded. Thus, the reconfiguration time TR of a hardware task com-
prising xbytes configuration bytes at a given ICAP clock frequency fICAP may be
computed for the 32 Bit configuration mode as

TR =
1

fICAP
∗ xbytes

4
. (20.1)

20.4 Application

This section covers the application of partially reconfigurable controllers in mecha-
tronic systems. The section in particular introduces a reconfigurable controller for
piezo-electric actuators in automotive applications. The application of partially re-
configurable hardware to rapid control prototyping in the field of automotive con-
troller design is covered by a further paper by the authors [12]. Another application
of partially reconfigurable controllers to mechatronic control problems by the au-
thors can be found in [11]. This paper describes a run-time reconfigurable FPGA-
based drive controller for electrical drive systems that is specified, structured and
implemented using the here-presented methodology.

20.4.1 A Reconfigurable Controller for Piezo-Electric Actuators

The reconfigurable controller for piezo-electric actuators is based on a power drive
circuit and control algorithms presented in [2] and targets automotive fuel injection
systems. Figure 20.7 shows the basic power amplifier topology. It comprises two
switching elements, i.e. MOSFETs or IGBTs, including drivers, an inductor for cur-
rent limiting purposes, the actual piezo-electric actuator, a small resistor for current
measurement and the voltage supply part with storage capacitors and a DC/DC-
converter. With a supply voltage being greater than the positive maximum actuator
voltage or smaller than the negative maximum actuator voltage, the actuator can be
charged and discharged in a very fast and highly dynamic way.

Control functions for the power drive circuit include a closed-loop voltage and
current control based on voltage and current measurements. The here-presented con-
troller employs two-level control algorithms for this purpose. On the voltage control
level, the algorithms generate a charge/discharge signal, while the current control
algorithms generate on/off signals for the power-electronic switches. Both control
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Fig. 20.7 Power drive circuit topology for piezo-electric actuators [2].

functions include a hysteresis with regard to the controlled variables. Additionally,
an FPGA-based reconfigurable controller may implement control functions for the
voltage supply part, i.e. the storage capacitor voltage control through the DC/DC-
converter.

The reconfigurable controller for piezo-electric actuators is specified using a log-
ical controller structure for tests, run-up and operation of the system. A subsequent
partitioning leads to reconfigurable and static functionalities that are represented
by a Module FSM, hardware tasks and a technical controller structure. The Mod-
ule FSM comprises four hardware tasks and implements the pre-loading strategy
according to Sect. 20.2 in order to enable hard real-time task switching. Thus, the
controller requires two single reconfigurable modules on the target platform. How-
ever, a controller implementation may also be accomplished with one single module
if the achievable loading/reconfiguration times for the hardware tasks are acceptable
for the envisaged actuator control. Figure 20.8 shows the Module FSM of the recon-
figurable controller for piezo-electric actuators.

Fig. 20.8 Module FSM of the reconfigurable controller for piezo-electric actuators.
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The task set of the controller comprises the following hardware tasks:

• Task 1 implements simple system tests upon the system’s start. The tests com-
prise initial actuator voltage checks regarding maximum and minimum values.
The actuator is not being charged or discharged at that stage. Other potential
system test algorithms may include internal or external communication and in-
terface tests as well as tests regarding the DC/DC-converter and the storage
capacitors.

• Task 2 is being activated after the system tests are completed and comprises
basic actuators tests. Using a simple test function, the actuator is charged and
discharged by an open-loop voltage and closed-loop current control algorithm.
The resulting actuator voltage is captured and compared to given limit values.
Other potential actuator tests include a parametrization of the voltage and cur-
rent control hysteresis as well as the determination of voltage limits of the at-
tached actuator by mechanical impact detection and thus an adaptation of set
value datasets.

• Task 3 represents the main operating state of the controller and implements a
closed-loop voltage control for the attached actuator. The closed-loop voltage
control is based on a comparison of digitized actual voltage values with set
values being generated or received by the static base system of the controller.
The actual voltage values are subject to a constant hysteresis in order to avoid
oscillation. The direct comparison of voltage values is implemented with dig-
ital comparators acting as two-level controllers and generating charge (load)
and discharge (unload) signals for the actuator. In addition, switching between
loading and unloading the actuator may be subject to an adjustable delay. Other
potential main operation functions may be added.

• Task 4 of the task set is being activated in case of a failure or under erroneous
system conditions and transfers the system in a fail-safe state. A basic error
detection algorithm is implemented in the main operating state and exemplar-
ily detects any voltages exceeding pre-set limits. Following an error detection,
the fail-safe algorithm uses voltage and current control functions to bring the
actuator in a neutral voltage state. The dynamics of this process are adjustable
through parametrization of the voltage and current control functions. Other po-
tential functions for a fail-safe mode include a precautionary modification of
voltage set values as well as a precautionary adaptation of hysteresis values and
switching times for following tasks thus preventing future system failures.

The technical structure of the controller comprises two reconfigurable modules
for the hardware tasks, the dedicated communication system and the static base sys-
tem. Figure 20.9 shows a graphical representation of the controller structure and
supplemental external interface components. The controller generates the binary
signals Gate_1 and Gate_2 for the external power drive circuit and thus controls the
energy flow into the actuator. The resulting actuator voltage Uact_actual is fed to the
controller by a voltage divider and subsequent analog-digital conversion. The actu-
ator current is measured using the voltage drop of the small resistor and comparing
it to external reference values with analog comparators and voltage dividers. Thus,
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the comparator circuits generate four logical signals representing the state of the
actuator current: Iup for a current higher than and Idown for current lower than the
reference value. Iup and Idown are generated for the positive (Iup/Idown Gate 1)
and negative (Iup/Idown Gate 2) actuator current, respectively.

Fig. 20.9 Structure of the reconfigurable controller for piezo-electric actuators.

The static base system implements interfaces, infrastructure components and the
central memory of the controller. Communication is accomplished with the USB 2.0
interface and includes receiving of configuration data, of set value data and transfer
of diagnostic data. Actuator voltage values are read in from external ADCs, while
the actuator current is monitored by the binary comparator circuit signals. Further
infrastructure components include the reconfiguration and memory management
with the Reconfiguration FSM and ICAP as well as set value generation/alteration
functions. Moreover, the static base system implements the actuator-level current
control. The two-level control algorithm uses the load/unload signals generated by
the voltage control to set the control signals for the power drive circuit depending on
the actuator current. The binary current-state signals from the analog comparators
may be digitally filtered in the FPGA in order to minimize the influence of high-
frequency noise. Switching operations are conducted if the actuator current exceeds
or falls below the reference values of the analog comparators while the load/unload
signal is set. The adjustable switching frequency is dependent on the dynamics of
the actual piezo-electric actuator and the power drive circuit.
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Controller implementation targets a Xilinx Virtex-4 XC4VLX60 FPGA and is
accomplished with the Xilinx partial reconfiguration design flow. The USB 2.0 in-
terface employs the external EZ-USB FX2 microcontroller by Cypress. The recon-
figurable modules on the FPGA are 4 by 20 Configurable Logic Blocks (CLBs) wide
and thus provide each 80 CLBs (equaling 320 CLB slices). The static base system
may use the remainder of the FPGA and additionally implements 256 KB of on-chip
BlockRAM as the controller’s central memory. Memory and ICAP are employed in
a 32 Bit wide data mode. The controller is generally clocked with 40 MHz and ad-
ditionally uses a 200 MHz clock for the Reconfiguration FSM thus facilitating a
reconfiguration (ICAP) clock frequency of 100 MHz. Furthermore, signal process-
ing for the piezo-control functions is implemented with an exemplary data width of
8 Bit. However, the signal processing data width can be easily adapted offline due
to the direct hardware implementation of all controller functionality.

With regard to the implementation results, the static base system allocates about
915 CLB slices (460 DFFs, 1520 LUTs) and 118 BlockRAM resources. The hard-
ware tasks require about 70 to 90 CLB slices (60 DFFs, 105 LUTs to 80 DFFs,
145 LUTs). The achievable reconfiguration times are in the range of 91 to 111 μs.

20.5 Conclusion

The design methodology and hardware platform for dynamically reconfigurable
mechatronic controllers presented in this chapter currently build a powerful link
between advanced mechatronic system design and actual research in reconfigurable
computing focused to the need of the mechatronic system engineer. Starting from
common specification tools like block diagrams and state machines the reconfig-
urable structure of the mechatronic controller can be defined in a natural problem
oriented way, which embeds very fine in the usual design flow. Design tools familiar
to a mechatronic system engineer can be used and combined with standard tools for
FPGA synthesis and reconfiguration. Adapting the structure of the reconfigurable
system to the functional structure of the mechatronic controller preserves original
physical structure, e.g. data flow and functional blocks, and facilitates analysis, de-
sign, test and implementation of the reconfigurable system. Hard real-time operation
specific to parallel hardware implementation is guaranteed as the physical parallel
data flow is not modified. Only temporarily inactive parts are swapped out.

This strong commitment to hard real-time operation, essential to all mechatronic
systems, is continued for the hardware platform and the reconfiguration scheme de-
veloped. The combination of a relatively small static infrastructure always available
on the FPGA and dynamically loadable functional parts guarantees exact points
of reconfiguration and the restoration of actual dynamic internal states of a recon-
figured component. The hardware implementation of the reconfiguration manager
without the need of any processor is very fast allowing reconfiguration times of
only a few microseconds which are met exactly. In the sum, design methodology
and hardware platform fit perfectly and allow the design of hard real-time systems
starting from specification up to the hardware implementation of the reconfigurable
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system. This fact was shown in this chapter using the example of a reconfigurable
controller for piezo-electric actuators.

Besides the benefits of resource minimization offered by dynamic reconfigura-
tion a special bit-serial implementation of data flow structures is used to reduce
resource needs to a very low level. From the viewpoint of resources and implemen-
tation cost, dynamically reconfigurable systems could be a very attractive alternative
to microcontroller based solutions in the near future, in particular if hard real-time
conditions have to be met. Unfortunately the tool chain available for specification
and implementation of dynamically reconfigurable mechatronic controllers is a hard
obstacle in the usual mechatronic design process which today delays a wide spread
usage of this very interesting technology significantly. Without integration in the
standard design process and a support by standard tools like Matlab/Simulink or
others even the first steps directed to use reconfigurable controllers in mechatronic
systems are too expensive. At the other end, reconfigurable FPGA architectures are
not optimally suited for mechatronic applications. Typical I/O-Peripherals, a stan-
dard for microcontrollers, are not available. External devices connected via very
fast serial interfaces may meet the speed demands but will not be accepted in harsh
environments or with respect to costs. From these practical points of view a rather
slow stepwise move to dynamic reconfiguration concentrated on specific mecha-
tronic application fields will be a probable scenario. On the other hand, from a more
technological point of view these obstacles could be lifted away with not too much
effort. In this situation not only motor controllers or piezo-controllers as part of an
engine ECU can be implemented as shown in this chapter. In fact complete ECU
systems for vehicle or robot control can be implemented using dynamically recon-
figurable hardware thus avoiding today’s problems of software development and
testing associated mainly to real-time operation. Against this background we en-
courage mechatronic system engineers as well as decision makers to keep in touch
with this promising technology of hardware implementation and dynamical recon-
figuration of mechatronic controllers. As with all new technologies it is not easy to
find the best point in time to switch horses. With increasing complexity and real-
time demands of mechatronic controllers, the increasing effort and cost to manage,
test and maintain associated software projects, dynamically reconfigurable comput-
ing offers a path to realize a significant advantage in competition in the development
of new mechatronic products.
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