
Static and Dynamic Reconfigurable Designs
for a 2D Shape-Adaptive DCT

Jörn Gause1, Peter Y. K. Cheung1, and Wayne Luk2

1 Department of Electrical and Electronic Engineering,
Imperial College of Science, Technology and Medicine,

London SW7 2BT, United Kingdom
{j.gause@ic.ac.uk, p.cheung@ic.ac.uk}

2 Department of Computing,
Imperial College of Science, Technology and Medicine,

London SW7 2AZ, United Kingdom
wl@doc.ic.ac.uk

Abstract. This paper presents two reconfigurable design approaches for a two
dimensional Shape-Adaptive Discrete Cosine Transform (2D SA-DCT). The
SA-DCT is an example of a new type of multimedia video processing algorithm
where the computations performed are data dependent. A static design, where
the configuration does not change during execution of the task, is presented. The
use of a data dependence graph (DDG) is proposed which represents the
computations and input signals required to calculate a particular output signal
depending on a variable input parameter. By re-structuring the DDG and
exploiting possible sharing of FPGA resources for different entities within the
SA-DCT, it is demonstrated that the area required for an implementation can be
significantly reduced. An alternative dynamic approach is also introduced where
the FPGA’s configuration may change over time. This is well suited to using
dynamically reconfigurable logic but suffers from long reconfiguration time if
current FPGAs are used.

1 Introduction

Multimedia processing is characterised by very high processing demands. Typical mul-
timedia applications entail combined processing of various data types including video,
audio, speech, images, 2D/3D graphics, and text. The video processing tasks are clearly
the most computationally intensive. In addition, many novel multimedia processing al-
gorithms involve growing diversity and decreasing predictability in the computation
flow. This calls for hardware architectures with increased flexibility at run-time [1].

MPEG-4 has been developed as the new standard for audio-visual coding in multi-
media applications [2]. An example of a novel MPEG-4 video processing tool is the
Shape-Adaptive Discrete Cosine Transform (SA-DCT) which was introduced by Siko-
ra and Makai in [3]. The algorithm has been included in the MPEG-4 Video Verifica-
tion Model [4], as an alternative to the standard block-based DCT which is widely used
in the MPEG-1, MPEG-2, H.261, and H.263 standards. The SA-DCT is applied for cod-

R.W. Hartenstein and H. Gruenbacher (Eds.): FPL 2000, LNCS 1896, pp. 96-105, 2000.
 Springer-Verlag Berlin Heidelberg 2000

ing arbitrarily shaped object segments contained within an 8×8 image block, specifical-
ly in blocks with at least one transparent pixel.

Due to the arbitrary shape of the object within an 8×8 image block, a hardware im-
plementation of a two dimensional SA-DCT (2D SA-DCT) is not as straightforward as
the implementation of the standard 8×8 DCT where the transform is always carried out
on eight pixels per row and eight pixels per column. In contrast, for the SA-DCT, the
calculations performed, and hence the hardware required to accomplish these calcula-
tions, depend on the number of pixels occupied by the object within the 8×8 block.
Hence, flexible and efficient architectures and implementations are required to adapt to
these constraints.

Reconfigurable logic devices, notably (SRAM based) Field Programmable Gate Ar-
rays (FPGAs), are suitable for dealing with these adaptability requirements as a trade-
off between the speed of ASICs and the flexibility of software [5]. They can be config-
ured for a variety of applications with high processing demands and reconfigured for
other applications if necessary. This makes FPGAs very appropriate for the implemen-
tation of many MPEG-4 modules in general, and for the SA-DCT in particular.

An architecture of a 2D SA-DCT based on time-recursion has been presented in [6].
However, this architecture does not present the best solution in terms of computational
requirement and has the disadvantage of numerical inaccuracy due to its second-order
recursive structure. An architecture which can perform a DCT-N for variable length N,

, has recently been proposed in [7]. This design allows efficient sharing of
hardware resources for different N but increases the hardware cost compared to an im-
plementation of a single DCT-N for only one particular N.

The purpose of this paper is to investigate suitable designs for an SA-DCT imple-
mentation using reconfigurable logic. A generic one dimensional SA-DCT architecture
consisting of a static module with a time-constant structure and a dynamic module
which can change its structure at run-time is proposed. Employing the proposed 1D SA-
DCT architecture, a 2D SA-DCT can be implemented on FPGAs using two different
approaches. In this paper, a static design is presented, where the configuration data for
all possible computations is loaded once, after which it does not change during execu-
tion of the task. The use of a data dependence graph (DDG) is proposed which repre-
sents the computations and input signals required to calculate a particular output signal
depending on a variable input parameter. By re-structuring the DDG and exploiting pos-
sible sharing of FPGA resources for different entities within the SA-DCT, it is demon-
strated that the area required for an implementation can be reduced considerably. The
results of an implementation based on Distributed Arithmetic on an Altera FLEX10KE
FPGA will be presented. A dynamic approach is also introduced where the FPGA’s con-
figuration may change over time. It will be shown that this is well suited to using dy-
namically reconfigurable logic but suffers from long reconfiguration overhead if
currently available FPGAs are used.

Section 2 describes the algorithm of the 2D Shape-Adaptive DCT. A generic archi-
tecture of the 1D SA-DCT is proposed in Sect. 3 which is used for both, a static and
dynamic realisation approach of the 2D SA-DCT. These designs are presented in Sect.
4. In Sect. 5, the implementations of both static and dynamic approach are discussed.
Finally, a conclusion follows in Sect. 6.

2 N 8≤ ≤

97Static and Dynamic Reconfigurable Designs for a 2D Shape-Adaptive DCT

2 2D Shape-Adaptive DCT

The Shape-Adaptive DCT algorithm is based on predefined orthogonal sets of DCT ba-
sis functions. The basic concept of the method for coding an arbitrarily shaped image
foreground segment contained within an 8×8 reference block is outlined in Fig. 1 [4].
The required two dimensional SA-DCT is usually separated into two one dimensional
SA-DCTs, a vertical SA-DCT followed by a horizontal SA-DCT.

Fig. 1. 2D SA-DCT method

An example of an image block segmented into foreground (shaded) and background
(light) region is shown in Fig. 1(a). To perform the vertical SA-DCT, the number of
foreground (or opaque) pixels of each of the eight columns of the image block is calcu-
lated, and the columns are shifted and aligned to the top of the 8×8 block (Fig. 1(b)).
Depending on the vector size N (number of opaque pixels) for each particular column
of the segment, a DCT of size N (DCT-N) is performed on the column data vector x =
[x0 x1 ... xN-1]T which results in N vertical DCT-coefficients c = [c0 c1 ... cN-1]T accord-
ing to [4]:

 . (1)

The DCT transform matrix DCT-N is defined as:

 , (2)

for k, p = 0, 1, ..., N-1, and .

D
C

T
-1

D
C

T
-2

D
C

T
-3

D
C

T
-4

D
C

T
-6

D
C

T
-3

DCT-6
DCT-5
DCT-4
DCT-2
DCT-1
DCT-1

(a) image block with
original segment

(b) shifting of opaque
pixels and vertical
SA-DCT used

(c) shifting of opaque
pixels and horizontal
SA-DCT used

c
2
N
---- DCT N– x⋅ ⋅=

DCT N– p k,() α p() p k
1
2
---+

 π
N
----⋅cos⋅=

α p()
1
2
--- p 0=

1 p 0≠

=

98 J. Gause, P.Y.K. Cheung, and W. Luk

Hence, a particular element cp of c can be calculated as a sum of N products using

 . (3)

For example, the right-most column of the object in Fig. 1 is transformed using a
DCT-3. To execute the horizontal SA-DCT, the length of each row of the intermediate
block (after vertical SA-DCT) is calculated and the rows are shifted to the left border
of the 8×8 block as shown in Fig. 1(c). A horizontal DCT adapted to the size of each
row is then performed using (1) and (2).

3 Proposed Architecture for 1D SA-DCT

We propose a generic one dimensional (1D) SA-DCT consisting of two main parts, as
shown in Fig. 2. Firstly, the opaque pixels in each column or row have to be shifted to
the top or left, respectively, and the number of opaque pixels N per column or row has
to be counted (module Shift & Count). In the second part, module DCT-N, a multipli-
cation of an N×N constant coefficient matrix with an input vector comprising the values
of the N shifted pixels, is performed according to (1) and (2). Whereas module Shift &
Count is static, that is exactly the same module is used for all input signals of the SA-
DCT, the module DCT-N is dynamic since its structure can change at run time depend-
ing on N.

Fig. 2. Proposed generic 1D SA-DCT architecture

The inputs of module Shift & Count are the value of one pixel and a mask bit which
is 1 if the pixel is opaque and 0 if the pixel is transparent. One pixel value and its re-
spective mask bit are shifted in at a time. The mask bit mask is used to count the number
of opaque pixels N within each column or row and to shift their values to the first N out-
put registers. Outputs of the module are a) N_op, which represents the number of
opaque pixels N per column or row, respectively, and b) the eight pixel values of one
column or row arranged so that outputs S0 to SN-1 carry the opaque pixel values.

Module DCT-N has as inputs N_op and the first N outputs of module Shift & Count,
S0 ... SN-1, which are the values of the opaque pixels of the processed column or row
(see Fig. 2). Within module DCT-N a constant matrix - vector multiplication of size N
according to equation (1) is performed. N_op can be interpreted as a control signal

cp
2
N
---- DCT N– p k,() xk⋅

k 0=

N 1–

∑=

mask

in
wi

wi

N_op

S0

S1

S7

SN-1

out0

outN-1

woShift &
Count DCT-N

99Static and Dynamic Reconfigurable Designs for a 2D Shape-Adaptive DCT

which selects the actual DCT-N computation accomplished as sketched in Fig. 3. For
N_op = 0, no computations are necessary. Outputs are the N DCT coefficients of the
opaque pixels.

Fig. 3. Generic structure of module DCT-N

4 Reconfigurable Design for 2D SA-DCT

The generic architecture for the 1D SA-DCT suggested in Sect. 3 has been used for a
reconfigurable design of the 2D SA-DCT. Two general approaches are presented, a
static design where the configuration is loaded once, after which it does not change dur-
ing execution of the entire task, and a dynamic design where the FPGA’s configuration
may change over time.

4.1 Static Design

A static implementation of the 2D SA-DCT must be able to calculate the right result for
every possible shape of the object within the 8×8 image block. The configuration data
of the FPGA must therefore contain all possible DCT-N computations for .
In a straightforward implementation the circuit can perform all eight DCT-N calcula-
tions in parallel and select the outputs depending on N. The main disadvantage of this
approach is the large amount of hardware necessary to implement all eight DCT-Ns,
even though only one DCT-N is required at a time. For an efficient FPGA implementa-
tion it is therefore necessary to share hardware resources throughout different DCT-N
entities as much as possible. Hence, the relationship between the DCT-size N and the
structure of the data flow of the DCT-N module has to be investigated to find a repre-
sentation which allows a more area efficient implementation.

We propose the use of a data dependence graph (DDG) which represents the com-
putations and input signals required to calculate a particular output signal depending on
a variable input parameter. A DDG consists of coloured nodes and directed edges. The
nodes represent independent computations or tasks. If two nodes have the same colour,
their respective calculations result in the same output signal. Only one of the computa-
tions marked by the same colour can be performed at a time, determined by the variable
input signal. The edges of the graph directed towards the nodes show which input sig-

DCT-1

DCT-2

DCT-8

S0

S0
S1

S0

S7

out0

out0
out1

out0

out7

N_op=1

N_op=2

N_op=8

N_op

S0

S1

SN-1

out0

out1

outN-1

N_op=1

N_op=2

N_op=8

1 N 8≤ ≤

100 J. Gause, P.Y.K. Cheung, and W. Luk

nals are required for the particular operation represented by the node whereas the edges
directed away from the nodes point at the output of this operation. The edges are la-
belled by a value of the variable input signal. For a particular value of the variable pa-
rameter, the computation flow uses only the edges and respective nodes labelled by this
value. Nodes of the DDG can be grouped into blocks. A block can be thought of as a
hardware entity. By re-structuring the DDG and re-grouping nodes, hardware resources
can be shared more efficiently.

Figure 4 shows the DDG of a part of the DCT-N module (for N = 1, 2, and 3), before
and after re-structuring and re-grouping. The graph shows which computations and
which input signals have to be used to calculate a particular output signal depending on
N. The signals sk (k = 0 ... 7) stand for the inputs, here the values of the opaque pixels,
and the signals cp (p = 0 ... 7) represent the outputs. A node of the DDG denoted DCT-
N(p) symbolises the computations performed, in this case the multiplication of the pth
row vector of matrix DCT-N with input vector s = [s0 s1 ... sN-1]T, resulting in the pth
output cp of DCT-N according to equation (3). Different dashed line patterns are used
for the edges to distinguish between different N. Every computation is to be performed
only for one specific N. For instance, DCT-2(1) calculates output c1 of DCT-2 (that is
N=2) using inputs s0 and s1. Whilst c1 does not exist for N=1 (DCT-1 has only one out-
put c0), it can also be output of DCT-3 (for N=3) where s0, s1, and s2 are used as input
signals.

Fig. 4. Restructuring of data dependence graph

In Fig. 4(a) the DDG is arranged in a way so that nodes (operations) marked with
the same N are grouped together into blocks. In this case, the computations of every
block are necessary only for one particular value of N. For an SA-DCT hardware im-

DCT-2(0)

DCT-2(1)

DCT-3(0)

DCT-3(1)

DCT-3(2)

s0

s1

s2

c0

c1

c2

N=1

DCT-1(0)

DCT-2(0)

DCT-3(0)

DCT-2(1)

DCT-3(1)

DCT-3(2)

s0

s1

s2

c0

c1

c2

(a) (b)

N=2

N=3

DCT-1(0)

101Static and Dynamic Reconfigurable Designs for a 2D Shape-Adaptive DCT

plementation in this manner only the results of one of eight blocks are used at a time
while the others are not required, even though all eight blocks exist and produce out-
puts. Within one block all computations are required at the same time and each compu-
tation produces a different output value, therefore sharing of hardware resources is
difficult. In fact, for a 1D SA-DCT design in this manner, all possible 36 multiply and
accumulate (MAC) calculations according to (3) have to be implemented (one for DCT-
1, two for DCT-2, and so on) separately.

An alternative way of grouping nodes into blocks is shown in Fig. 4(b). Here, all
nodes labelled with the same p, that is computations which produce the same output,
are placed into the same group. Hence, every output signal is produced only by one par-
ticular block, no output selection is necessary. The signal N is used to select the right
computation required to calculate a particular output, in contrast to a design according
to Fig. 4(a) where N is used to select the right outputs amongst the computation results
of all blocks. Each block contains at most one computation for which the result is re-
quired at a time. This allows intensive hardware resource sharing within one block
while using blocks in parallel. For a 1D SA-DCT implementation in this manner, only
eight MAC units, which is the minimum needed to implement a DCT-8 with eight out-
puts, and a decoder which selects the right constants of the DCT-N matrix, depending
on N, need to be implemented. Hence, the number of MAC modules, and therefore the
hardware cost, can be reduced significantly to approximately 22%.

4.2 Dynamic Design

In a dynamic implementation of the 2D SA-DCT the configuration of the FPGA de-
pends on the input data, that is on the shape of the object to be transformed. While read-
ing in the pixel values of the first column, the values of the opaque pixels are shifted to
the top and N is counted using module Shift & Count as described in Sect. 3. Depending
on N, the part of the FPGA which is used to perform the calculations of module DCT-
N is reconfigured with the configuration data for the particular DCT-N computations
required (). Hence, DCT-N is performed using the N opaque pixel values as
inputs, and the output values are stored. This process of reading in the data, shifting and
counting N, reconfiguring the device for the relevant DCT-N and performing the DCT-
N calculation is repeated for all columns and rows, until an entire 2D SA-DCT has been
accomplished.

Fig. 5. Example of dynamic 1D (horizontal) SA-DCT

1 N 8≤ ≤

Shift &

Count

DCT-6

DCT-5

DCT-1

102 J. Gause, P.Y.K. Cheung, and W. Luk

This approach is well suited to using dynamically reconfigurable logic within a cus-
tom computing machine (CCM). An example of a dynamic implementation of a hori-
zontal SA-DCT is illustrated in Fig. 5. The top row of the object has six opaque pixels,
that is N=6 for this row. Hence, module DCT-N is instantiated as DCT-6, that is the
FPGA is reconfigured to perform a DCT-6. After sending back the computation results,
a DCT-5 for the second row of the object has to be performed. Therefore, the FPGA has
to be reconfigured with the configuration data for a DCT-5. This is repeated for all rows
of the object. Sixteen reconfigurations are necessary to perform a complete 2D SA-
DCT in this manner.

5 FPGA Implementation and Results

We first analyse how to efficiently implement a general constant matrix - vector
multiplication as required for each DCT-N calculation and then how to incorporate
those computations into an SA-DCT architecture. A very efficient method of comput-
ing this multiply and accumulate (MAC) operation, especially for FPGAs, is to use Dis-
tributed Arithmetic [8], where the MAC calculations are performed in a bit-serial
manner. The technique is based on storing pre-calculated scalar products for all possible
bit patterns of the input signals in a ROM. By exploiting symmetries within the DCT-
N matrices the number of ROM address bits can be reduced to and the number
of required ROM words can be decreased to [9]. Distributed Arithmetic can
make extensive use of look-up tables (LUTs) and/or embedded ROMs which are part
of modern SRAM based FPGAs, such as Altera FLEX 10K [11] or Xilinx Virtex [12],
and hence make them ideal for this type of computations. No multipliers are necessary.
This is especially important for FPGAs since they are very efficient for shift and add
operations but are generally inefficient for implementing parallel multipliers [10].

For a static SA-DCT implementation using Distributed Arithmetic, effective hard-
ware resource sharing according to Fig. 4(b) can be achieved by using the same ROM
for more than one DCT-N, with N forming part of the ROM address instead of selecting
the outputs at the end. The signal N is three bits wide since it can have eight different
values in the range 1 through 8. If N is used as part of the ROM address, the ROM size
will become 23 = 8 times as large. Since address bits are required to select the
right matrix coefficients depending on the input signals, no more than seven bits are re-
quired for the entire 1D SA-DCT to address the ROMs. Because the minimum address
width of embedded ROMs within many modern FPGAs such as Altera FLEX10K [11]
and Xilinx Virtex [12] is at least eight bits, the number of ROMs required is not in-
creased. In fact, the embedded ROM blocks can be utilised more efficiently.

The static design of the 2D SA-DCT for MPEG-4 has been implemented on an Al-
tera FLEX 10K130E device [11], in compliance to the MPEG-4 Verification Model [4].
3721 (55%) of the Logic Cells (LCs) and all 16 EABs have been employed. A schemat-
ic of the implemented circuit is shown in Fig. 6. The module Transpose is used for the
necessary matrix transposition between vertical and horizontal SA-DCT. The circuit
runs at 47 MHz with a throughput of one value per two clock cycles. Using this clock
frequency, a complete 2D SA-DCT can be performed in 4.47 µs.

N 2⁄
2

N 2⁄

N 2⁄

103Static and Dynamic Reconfigurable Designs for a 2D Shape-Adaptive DCT

Fig. 6. Implementation of 2D SA-DCT

For the dynamic design, all eight possible instances of the DCT-N module have
been implemented for Altera FLEX 10KE devices. The problems of the dynamic ap-
proach are the long configuration time of current FPGAs and the high number of recon-
figurations necessary for a considerably small amount of processing time of a DCT-N
computation. Provided that all possible values of N have the same frequency of occur-
rence, it takes on average approximately 21 ms to reconfigure an appropriate Altera
FLEX 10K FPGA [11] compared to only 167 ns to compute one DCT-N. In this case
the reconfiguration overhead would be approximately 125,000. Even with (partially)
dynamically reconfigurable devices such as Xilinx XC6200 or Virtex FPGAs [12] the
overhead is still large. For a Virtex FPGA, the average partial reconfiguration time for
a DCT-N is about 420 µs, still 2,500 times longer than the time to compute a DCT-N.
It takes 1.51 µs to compute a complete 2D SA-DCT if all parts of the dynamic design
can work at their highest clock frequency and the reconfiguration time is not taken into
account. Hence, to make the dynamic design quicker than the static design, the time for
all 16 reconfigurations needs to be smaller than 2.96 µs, that is, 185 ns for one recon-
figuration.

Reducing the reconfiguration time could be possible by using context switching FP-
GAs where a number of different configurations, which can be selected very rapidly,
are stored on-chip [13]. An approach to reduce the number of reconfigurations could be
realised by consecutively passing through all contour blocks of the object for a given N
and performing the DCT-N operation only for this particular value of N. However, this
approach introduces irregular data processing and memory usage.

6 Conclusion

We have presented two reconfigurable design approaches for a 2D Shape-Adaptive
DCT, an example of a new type of multimedia video processing algorithm where the
computations performed are data dependent. A static design, where the configuration
data does not change during execution of the task, has been presented. The proposed
use of a data dependence graph (DDG) allows a structured method for optimising shara-
ble resources. By re-structuring the DDG and exploiting possible sharing of FPGA re-
sources for different entities within the SA-DCT, it has been demonstrated that the area
required for an implementation can be significantly reduced. An alternative dynamic
approach has also been presented where the FPGA’s configuration may change over

mask

in 9

N

x0
x1

x7

mask_v mask_v maskN

x0
x1

x7

out
out_v out_v

3

9

15 15

15

12

Shift &
Count

Shift &
Count

DCT-N
(1)

DCT-N
(2)

(1) (2)

Trans-
pose

Vertical SA-DCT Horizontal SA-DCT

104 J. Gause, P.Y.K. Cheung, and W. Luk

time. This is well suited to using dynamically reconfigurable logic but suffers from long
reconfiguration overhead if currently available FPGAs are used.

Current and future work includes the development of a generic reconfigurability
model in order to determine the conditions under which dynamic reconfiguration would
be more attractive than static reconfiguration. Possible model parameters include the
number and size of independently reconfigurable units, and the number, size, computa-
tion time and reconfiguration time of independent computations and their probability of
occurrence, as well as the probability that one computation follows another.

Acknowledgements. This work was supported by the Department of Electrical and
Electronic Engineering, Imperial College, and Sony Broadcast & Professional Europe.

References

1. Pirsch, P., Stolberg, H.-J.: VLSI Implementations of Image and Video Multimedia
Processing Systems. IEEE Trans. Circuits Syst. Video Technol. 8 (1998) 878-891

2. MPEG Group: Overview of the MPEG-4 Standard. ISO/IEC JTC1/SC29/WG11
N2725 (1999)

3. Sikora, T., Makai, B.: Low Complexity Shape-Adaptive DCT for Generic Coding
of Video. Proc. Workshop on Image Analysis and Image Coding (1994)

4. MPEG Group: MPEG-4 Video Verification Model Version 15.0. ISO/IEC JTC1/
SC29/WG11 N3093 (1999)

5. Haynes, S.D., Stone, J., Cheung, P.Y.K., Luk, W.: Video Image Processing with the
SONIC Architecture. IEEE Computer 33 (2000) 50-57

6. Le, T., Wendt, M., Glesner, M.: VLSI-Architecture of a Time-Recursive 2-D
Shape-Adaptive DCT Processor for Generic Coding of Video. Proc. Intern. Conf.
on Signal Processing Applications and Technology (1997) 1238-1242

7. Le, T., Glesner, M.: A New Flexible Architecture for Variable Length DCT Target-
ing Shape-Adaptive Transform. Proc. IEEE International Conference on Acoustics,
Speech, and Signal Processing 4 (1999) 1949-1952

8. Peled, A., Liu, B.: A New Hardware Realization of Digital Filters. IEEE Trans.
Acoust., Speech, Signal Process. 22 (1974) 456-462

9. Sun, M.T., Wu, L., Liou, M.L.: A Concurrent Architecture for VLSI Implementa-
tion of Discrete Cosine Transform. IEEE Trans. Circuits Syst. 34 (1987) 992-994

10. Haynes, S.D., Cheung, P.Y.K.: A Reconfigurable Multiplier Array For Video Image
Processing Tasks, Suitable For Embedding In An FPGA Structure. Proc. IEEE
Symposium on FPGAs for Custom Computing Machines (1998) 226-234

11. Altera Inc.: FLEX 10KE Embedded Programmable Logic Family Data Sheet (1999)

12. Xilinx Inc.: VirtexTM 2.5 V Field Programmable Gate Arrays (2000)

13. Chang, D., Marek-Sadowska, M.: Partitioning Sequential Circuits on Dynamically
Reconfigurable FPGAs. IEEE Trans. on Computers 48 (1999) 565-578

105Static and Dynamic Reconfigurable Designs for a 2D Shape-Adaptive DCT

	1 Introduction
	2 2D Shape-Adaptive DCT
	3 Proposed Architecture for 1D SA-DCT
	4 Reconfigurable Design for 2D SA-DCT
	5 FPGA Implementation and Results
	6 Conclusion
	References

