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Hardware Supported Task Scheduling on Dynamically
Reconfigurable SoC Architectures

Zexin Pan and B. Earl Wells, Member, IEEE

Abstract—Dynamically reconfigurable system-on-a-chip (RSoC)
technology features embedded microprocessors that are dispersed
on the same die with significant amounts of programmable logic
fabric. In this paper, we present a strategy to solve the recently
emerging problem of how to utilize the flexible but still limited
RSoC resources in an effective manner for a multi-task application.
The major contribution of this paper is the development of a dy-
namic task scheduling algorithm that can be implemented in fixed
or reconfigurable hardware that will perform the online scheduling
of task systems onto the RSoC type architecture. The results from
extensive simulations demonstrate the benefits of the proposed dy-
namic scheduling approach as compared with that of other static
scheduling techniques taken from the technical literature.

Index Terms—Reconfigurable architectures, scheduling, VLSI.

I. INTRODUCTION

D YNAMICALLY reconfigurable system-on-a-chip
(RSoC) architectures, which integrate in the same die

embedded microprocessors, on-chip memory, reconfigurable
logic blocks, and multiple Intellectual Property (IP) cores, are
now practical and commercially available. Such architectures
promise the flexibility of traditional general-purpose processors
while also providing the efficiency and high performance of
application-specific integrated circuits (ASICs). An example is
the Xilinx Virtex-4 family of field-programmable gate arrays
(FPGAs) that integrates on the same IC up to two PowerPC 405
processors with up to 200 000 programmable logic cells [1].

To manage the complexity and tap the full potential of these
RSoC architectures presents many challenges [2]. One of the
most daunting challenges is how to efficiently schedule a given
set of tasks that makes up an application onto the RSoC. Task
scheduling is a well-known NP-complete problem [3] that has
also been addressed many times throughout the technical liter-
ature in reconfigurable computing.

Extensive research has been performed in static scheduling
(e.g., compiler-time scheduling) as is evidenced by the large
number of heuristic algorithms [4]–[7]. However, these ap-
proaches face difficulties in dealing with nondeterministic
systems whose run-time characteristics (e.g., execution time
and execution condition) are not well known a priori. Typical
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static scheduling approaches assume that the application’s
execution time is the worst-case execution time [7]. This
assumption often makes poor use of the available resources.
Moreover, most of these approaches can only be applied to task
systems that employ data-flow style graphs with no control
information. This makes them inapplicable to applications
that are computationally complex as well as those that are
control-dominated having nondeterministic intertask commu-
nication behavior.

Operating systems for reconfigurable architectures [8], [9]
are ideal for complex systems due to their applicability to
nondeterministic systems. Unfortunately, these techniques
often require a large code footprint, which can be prohibitive
in memory-constrained embedded systems. Moreover, the
required housekeeping functions associated with traditional
software-based real-time operating systems tend to be a major
source of power consumption in embedded system implementa-
tions [10]. Also, the responsiveness of such systems tends to be
very sensitive to the attributes and complexity associated with
the task system (i.e., number of tasks, task periods, task dead-
lines, task runtimes, etc.). Such sensitivity, caused by the highly
sequential operation of the embedded processor, often results
in nondeterministic run-time operation. Placing the scheduler
and a portion of the task system in reconfigurable hardware
can significantly improve the level of realizable parallelism and
reduce overheads, leading to more deterministic execution. In
summary, moving the operating system functionality into hard-
ware may help improve an applications performance, power
consumption, and level of real-time/deterministic execution.

Currently, hardware-supported dynamic task scheduling for
RSoC architectures has not been deeply addressed in the litera-
ture. There are some research efforts, though, being undertaken
in the area of real-time embedded systems that illustrate the ben-
efits and performance improvement of moving into hardware
functionality that traditionally has been assigned to the soft-
ware-based operating systems [11], [12].

In this paper, we propose an augmented approach to dynamic
scheduling of pre-partitioned task systems that are used to rep-
resent future high performance multifaceted embedded systems
that contain nonuniform/nondeterministic control structures.
Such applications include complex systems that contain digital
signal processing, cryptography, graphical, or multimedia type
components that must perform their operation under strict time
constraints. As an initial step to solve theses types of prob-
lems, a microarchitecture for multitasking on reconfigurable
architectures was proposed in [13]. An improvement of this
technique was presented in [14]. However, a major drawback
of these methods is that they cannot be applied to applications
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that have control dependencies (i.e., inter-task dependencies
that are not known until run time). In previous work [15], we
proposed a multitasking microarchitecture that can handle non-
deterministic systems (i.e., systems with both data and control
dependencies). This paper expands upon that presentation. It
also presents a comprehensive set of simulation experiments
that allows for an empirical analysis of the effectiveness of the
scheduling methodologies to be made.

The remaining portion of this paper is organized as follows.
In Section II, the various terms and the task system that is used
in this research are defined. In Section III, the targeted RSoC ar-
chitecture is described. In Section IV, the multitasking microar-
chitecture as well as the scheduling algorithm is discussed. In
Section V, the simulation results are presented. In Section VI,
the concluding remarks are made.

II. TASK SYSTEM

A. Task Definition

In this research, the input application is represented as a task
system that is decomposable into a set of irregularly structured
communicating tasks. Each task in the task system is assigned
a task ID, a task type, and a task priority. The task ID uniquely
identifies each task instance. The task type is used to identify
tasks in the overall task systems that function identically with
one another and are implemented in the same manner. Thus a
task type could represent: 1) identical software code segments
to be implemented on an embedded processor or 2) identical
reconfiguration contexts (i.e., bit-streams) that are to be imple-
mented within reconfigurable logic. The same type of task may
be used many times within a task system but each task will re-
ceive distinct data and will produce unique results that are a
function of its inputs. The task priority determines the urgency
of each task. It consists of both a static part and a dynamic
part. The static part is calculated at compile time using a static
slack-based priority function [16]. The dynamic part is assigned
at run time by the scheduler microarchitecture.

Each task is characterized by an appropriate set of param-
eters (e.g., average execution time, worst-case execution time,
hardware resource area utilization, etc.). In addition, a task is
assumed to conform to the following restrictions:

• a task represents a nonpreemptive unit of computation in
an embedded system;

• granularity of the task is considered to be moderate to
coarse in order to amortize out the fixed overhead asso-
ciated with reconfiguration;

• inter-task communication is assumed to occur through an
on-chip data buffer that is large enough to store the infor-
mation being transferred between tasks;

• tasks for a reconfigurable logic cell (LC) may be dynam-
ically swapped in and out using dynamic reconfiguration
capability of a LC.

B. Task System Representation

The input application workload to the task scheduler is rep-
resented by a task system that is modeled as a modified directed
acyclic graph (DAG) as shown in Fig. 1. Such a graph is de-
fined as a tuple , where is a set of nodes

Fig. 1. Modified directed acyclic graph.

(tasks); and are the sets of directed data edges and di-
rected control edges, respectively; , ,
where is the set of all edges in ; represents the set of prob-
abilities associated with .

The data flow dependencies that exists between two tasks
are represented as a directed data edge , where

. These edges are represented in Fig. 1 by solid directed
lines. If such an edge exists between nodes, the sink node (the
data dependency sink node, e.g., ) is said to be data depen-
dent on the source node (the data dependency source node, e.g.,

). This means that the sink task must wait for the source task
to complete execution (and receive the data it produces) before
it can begin its execution. If the run-time conditions have de-
termined that a data flow dependent source task is not to exe-
cute during the current task graph instantiation phase, then the
precedence relationship between the two tasks is considered to
be satisfied only after when it was determined that the source
task would not execute. As alluded to in the previous paragraph,
it is assumed that the system to be processed is first partitioned
into a master set of communicating tasks where only a subset
of the set of tasks are executed during a particular task graph
instantiation. This is accomplished in this model, by employing
directed control edges that enter and control each conditional
task. A directed control edge between two tasks, and , is
defined as (i.e., dashed lines as shown in Fig. 1),
where . The inclusion of control edges results in a task
graph representation that supports the execution of a nondeter-
ministic number of task nodes and a nondeterministic partial or-
dering of the task system. But this non-determinism is bounded
in the sense that the task execution characteristic must not vi-
olate the constraints set forth in the original master task graph
representation.

A sink node (e.g., ) is said to be control dependent on a
source node (e.g., ) if the runtime conditions present in the
task associated with the source node determines whether or not
the sink node can execute. We call such a source node (i.e., a
node with directed control edges at its output, e.g., ) a con-
trol dependency source node, and such a sink node (i.e., a node
with a directed control edge at its input, e.g., and ) a con-
trol dependency sink node. Unlike the directed data edge, which
can connect any two nodes as long as the acyclic property of a
graph is retained, two nodes and can be connected by a
directed control edge only if is not a control
dependency sink node and is not a control dependency source
node. This restriction guarantees that a node cannot have a di-
rected control edge at both its input and output and will greatly
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Fig. 2. Dynamically RSoC architecture.

reduce the hardware complexity of task scheduling microarchi-
tecture.

It should be noted that this restriction will most likely increase
the complexity of the application partitioning process. This ef-
fect, though, is believed to be minimal since it is always possible
to encapsulate into a single task nondeterministic portions of the
application. If the granularity of these portions is too large to re-
side in a single partition of the reconfigurable logic then the task
can be divided into a chain of subtasks that are data flow depen-
dent on one another but are control flow dependent on the same
task that determines the run time condition necessary for execu-
tion. The proposed model supports traditional procedural pro-
gramming methodologies and object oriented techniques that
fully specify the meaning and purpose of the tasks.

In our model, the directed control edges are labeled in a prob-
abilistic manner with a scalar value. This scalar value indicates
the probability of occurrence of the corresponding
sink task in multiple task graph iterations (frames). A control
condition represents a data dependent precedence relationship
that when invalid prohibits the subsequent task from executing
during a given instantiation of the task graph. So the necessary
condition for such a sink node to execute is that the control con-
dition is satisfied and the required data has been received. The
probability parameter , which is in general assumed to be in-
dependent of each other, can be viewed as being the average or
expected proportion of time that such a control condition is sat-
isfied.

The data and control dependencies define the execution con-
dition for each task in a modified DAG. In our model, we assume
that a sink node can be data dependent on multiple source nodes
but is only control dependent on at most one source node. Fur-
thermore, a data dependency from some source node is satisfied
when either the source node has finished execution or when it
has been determined that the source node will not execute based
on its runtime determined control condition. For example, ’s
data dependence on is satisfied when either 1) finishes ex-
ecution or 2) will not execute based on the run-time results
obtained after completes its execution. This assumption is
intended to avoid the situation where a task (e.g., ) is blocked

forever because it waits for data from a source node (e.g., )
that will not execute.

The following definitions are used to describe the necessary
conditions for the tasks to execute and to reconfigure.

Definition 1: A task is ready-for-execution when its con-
trol dependency (if present) and all of its data dependencies (if
present) have been satisfied.

Definition 2: A task, which is not a control dependency sink
node, is ready-for-reconfiguration when all its data dependency
source tasks have started their execution.

It is important to note that use of the modified DAG does not
limit its application to aperiodic task systems. This is because
in many periodic task systems the modified DAG can be con-
sidered to represent an unrolled task system, where there is one
major frame that is executed periodically.

C. Terminology

A processing element (PE) can be defined as an entity that
is used for task execution. In our targeted RSoC architecture, it
is either a CPU or an LC. In this model, we assume that only
one task executes on a given LC at any given point in time (i.e.,
single-context devices). When a task finishes execution on a LC,
a new task can be swapped in. If the task types of the two dif-
ferent tasks match, no LC context configuration occurs (i.e., this
concept is named, reconfiguration context reuse). Otherwise, the
bit-stream representing the new task needs to be downloaded
into LC prior to new task being run. In order to minimize the
reconfiguration overhead, we use a configuration prefetching
technique that is explained in Section III.

III. TARGETED RSOC ARCHITECTURES

Fig. 2 gives an overview of the proposed RSoC architecture.
It is comprised of a general-purpose embedded processor with
L1 Data and Instruction caches, a number of LCs, a dynamic
task scheduling unit (DTSU), and two on-chip L2 multi-bank
memory subsystemsdata buffer and context bufferall imple-
mented as a single chip. The embedded processor and LCs are
the PEs of this chip. The dynamic task scheduling unit executes
the dynamic task scheduling algorithm. This module directly
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Fig. 3. DTSU.

controls the data prefetch units in the Data Buffer and context
prefetch units in the LCs using the control (i.e., register) bus.
These prefetch units implement the hardware-based data and
configuration prefetch mechanisms that are used in our target
architecture. This scheduler responds to interrupt signals from
the LCs and processor to indicate the status of a given PE (these
signals are not shown in Fig. 2).

The data buffer is a shared memory buffer that handles
the data that is transferred between different PEs; the context
buffer stores the reconfiguration contexts (i.e., bit-streams)
used to configure the LC blocks. For the sake of simplicity, the
crossbar style point-to-point link from each PE to Data Buffer is
depicted as a simple Data bus in Fig. 2. In a similar manner, the
point-to-point link from each LC to Context Buffer is depicted
as a Context bus. In this scheme, each LC block can be indepen-
dently reconfigured. Therefore, the proposed target architecture
can support multiple simultaneous reconfigurations.

IV. MULTITASKING MICROARCHITECTURE AND SCHEDULING

ALGORITHM

Fig. 3 shows the internal microarchitecture of the dynamic
task scheduler (DTSU). The PE’s designator is a data struc-
ture that includes the pertinent assignment information of the
tasks that are currently assigned to each PE (e.g., task ID, task
type). The task issue unit (TIU) is responsible for dispatching
tasks after the necessary conditions (i.e., ready-for-execution
and ready-for-reconfiguration) have been met. The task priority
assignment unit (TPAU) assigns a dynamic task priority to each
dispatched task. The Run-time Task Scheduler performs the dy-
namic nonpreemptive scheduling algorithm, which assigns each
task to a different PE, schedules the context/data fetch/prefetch
and activates the task execution.

A. Task Table

The task table is a lookup table indexed by the task ID. Each
entry of this table has six components: the ID, type and priority
fields are used to hold the task ID, the task type, and the task
priority, respectively. The Status 1 field holds the task execu-
tion status. The Status 2 field indicates whether a task is al-
ready loaded into a PE. The Par field indicates whether a task
is executed on a LC or on the processor. This task placement

information is determined by the particular task HW/SW par-
titioning strategy that is employed. The development of auto-
mated HW/SW partitioning algorithms is currently an active
area of research [17]–[20] but discussion of these methodolo-
gies is beyond the scope of this paper.

B. Task Issue Unit

Fig. 4 illustrates the basic structure of task issue unit. Both the
successor table and the predecessor table are ( is the
number of tasks) matrices indexed by the task ID. Each entry
in the successor table is a -bit vector that contains a task’s
data and control dependency sink information, while the prede-
cessor table stores data dependency source information for each
task. The test matrix is an matrix ( the max-
imum number of data dependency sources for each task in the
task graph) indexed by the task ID. Each entry in this table is a

-bit vector: the lower ( ) bits represent the number of
data dependency sources for a task; the most significant bit in-
dicates whether the task is control dependent on a task or not.
There are three -bit task status registers: 1) the Done register
is used to indicate which task finishes execution; 2) the Init reg-
ister indicates which task has started execution; and 3) the Cont
register indicates which task is enabled by its control depen-
dency source.

When a task (excluding control dependency source tasks in
order to avoid misprefetching context of its control dependency
sink task) starts its execution, the Task Issue Unit receives the
Init signal from the corresponding PE while also receiving this
task’s task Id from the PE’s state designator module. At that
moment, the Task Issue Unit checks whether some of the tasks
have become ready for reconfiguration. A major objective of
this hardware is to prefetch the task bit-stream ahead of time
so that the LC reconfiguration overhead can be at least partially
hidden. The dispatched task enters the task priority assignment
unit with the precalculated static task priority. The task priority
assignment unit then assigns a zero dynamic task priority (ex-
plained in Section IV-C) to the dispatched task before placing it
in the task queue.

When a task finishes its execution, the task issue unit receives
the Done signal from the associated PE while also receiving this
task’s task ID from the PE’s state designator. If this task enables/
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Fig. 4. Task issue unit.

disables some control dependency sink tasks, the task issue unit
also receives their task IDs and execution conditions (true/false)
from the PE’s state designator. The task issue unit then checks
the execution conditions of this finished task’s data and control
dependency sink tasks, and dispatches ready-for-execution tasks
to the task priority assignment unit with the precalculated static
task priority. The task priority assignment unit then assigns to it
a dynamic task priority.

C. Task Priority Assignment Unit

The task priority assignment unit adds a fixed dynamic pri-
ority (i.e., the fixed dynamic task priority is chosen to be greater
than the highest static task priority) to each ready-for-execution
task’s static priority part. The purpose is to guarantee that the
each task that is ready-for-execution always has higher priority
than any tasks that are ready-for-reconfiguration.

D. Task Queue

The proposed task queue is a modified shift register priority
queue [21] used to store the issued tasks in a sorted order. The
queue communicates with the task issue unit and the task sched-
uler and has four operations: delete (D), enqueue (E), dequeue
(Q), and search (S). The delete and search operations are in-
cluded to facilitate the operations of the task scheduler. The en-
queue and dequeue operations conform to the standard queue
methods.

E. Task Scheduler and Scheduling Algorithm

The PE state machine is shown in Fig. 5. We will focus on
the LC state machine [see Fig. 5(a)]. The possible LC states and
their explanations are as follows.

• Idle: LC is not occupied by any active task.
• Reconfiguration: LC is populating its context memory

using the bit-stream of a new task.
• Wait: LC has finished reconfiguration, but it cannot move

to Switch state since the task on it has not met execution
condition.

• Switch: Similar to processor context switch. The task has
its bit-stream loaded into the context memory of the host
LC and satisfied execution condition.

Fig. 5. LC and (a) processor (b) states machines.

• Run: LC is executing a task. The input data streams into
the LC from the data buffer while the output data streams
out of the LC to the data buffer.

The manner in which an LC switches from one state to an-
other can be described as follows: upon leaving the Reconfigu-
ration state, the LC proceeds to 1) the Switch state where it reads
data that is being passed from its predecessor task(s). Then it
switches to Run state, or 2) the Wait state until the data is ready.
When an LC finishes executing, it proceeds to the Idle state.
Based on the scheduling algorithm, the task scheduler decides
whether to download a new bit-stream to an Idle LC or begin the
execution of a new task (i.e., the LC turns to Switch state), which
has the same task type as the previous one. The finite-state ma-
chine of the processor [see Fig. 5(b)] follows the conventional
software process context switch mechanism.

The task scheduler unit is responsible for executing the dy-
namic task-scheduling algorithm. It schedules tasks from the
task queue based on dynamic task scheduling algorithm, PEs’
state, and the PE status (PE state, task ID, and task type) infor-
mation from the PE state designator module. The objective of
the scheduling algorithm is to minimize the application’s exe-
cution time by employing a local optimization technique. More
specifically, the scheduler attempts to reduce the LC reconfigu-
ration overhead by reusing previous context or overlapping the
currently scheduled LC’s reconfiguration with task execution on
other LCs.

The scheduler and scheduling algorithm are invoked when-
ever 1) an LC (processor) becomes idle or 2) the task queue
enqueues a new task. If there is an idle LC, then the candidate
task selection is accomplished by sending a search (S) operation
to the task queue with 1) a dummy entry having desired task
type (i.e., the type of just finished task on the idle LC) and 2) a
search depth (i.e., the number of tasks being searched), which is
a kind of look-ahead strategy into the task queue. This strategy
represents the configuration reuse concept, which is used by
the scheduling algorithm to reduce the run-time reconfiguration
overhead. On the other hand, if the search returns nothing, the
task entry whose bit-stream is not present in the LCs will be
given higher priority. This idea is intuitive since we’d like to
have as many task contexts as possible present in the PEs so that
in subsequent scheduling of tasks there is better chance to reuse
some of them. Processor scheduling is skipped here because:
1) it is not the focus of this paper and 2) this topic is adequately
covered elsewhere [22].
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TABLE I
SIMULATION CLASSIFICATION FOR NONDETERMINISTIC TASK SYSTEMS

V. PERFORMANCE EVALUATION OF THE DYNAMIC TASK

SCHEDULING ALGORITHM

In this section, we present simulation results that are pro-
duced by running the proposed dynamic task scheduling algo-
rithm on a set of synthetic task systems that are generated by
TGFF [23]. Previous work [13], [14] that applies dynamic task
scheduling to dynamically reconfigurable hybrid architectures
does not target nondeterministic task systems. As a result, there
is no known body of work by other researchers with which the
proposed dynamic task scheduling algorithm’s performance can
be directly compared. The simulations discussed below attempt
to determine how well the dynamic scheduling solutions com-
pare to those produced by static scheduling algorithms when the
task system generation and architectural parameters are varied.
To remove the influence of the particular offline HW/SW par-
titioning approach that may be employed it is assumed that all
the tasks in the system have been designated to execute on the
LC resources.

A. Simulation Classification

The TGFF only generates static data flow task graph. In order
to mimic nondeterministic task systems, a run-time parameter,

, called the degree of dynamism of the task system, has been
introduced in the simulation. This parameter indicates the pro-
portion of tasks (i.e., control dependence sinks) that will not ap-
pear in a particular instantiation (i.e., a major frame) of a task
graph due to run-time execution condition. Higher values of
will result in task graphs that have progressively more variability
in precedence relationship characteristics. Based on and non-
deterministic task execution time, we have divided the set of
simulations into four cases as shown in Table I.

B. Assumptions in Static Scheduling Techniques

With the simulations being classified into four main cases that
are based on the degree of non-determinism in task systems,
we are able to compare the quality of the schedules that are
produced by our dynamic scheduling algorithm (DS) with that
which is produced by the multiheuristic parallel-based sched-
uling algorithm (MHPSA) (SS) [20]. The MHPSA simultane-
ously employs genetic algorithm, particle swarm, and simulated
annealing techniques to arrive at a near optimal solution in poly-
nomial time. It should be noted that the run time and computa-
tional complexity of the SS is many orders of magnitude greater
than the DS and is not conducive to implementation in recon-
figurable hardware. In order to achieve fair comparison, it is as-
sumed that the SS technique can only use estimated execution
information when making scheduling decision. Specifically, a

global execution order and assignment of each task is first de-
termined using average task execution times and a deterministic
task system (i.e., assuming only static data flow existing), then
a schedule is made for each frame using this global information
with the exact task execution time and execution condition.

C. Task System Configuration

Table II illustrates eight sets of task systems that were used to
represent two types of applications: task systems with low par-
allelism (i.e., Type I applications) and task systems with high
parallelism (i.e., Type II applications). For each set, five task
system instances were generated. So the Critical Path and De-
gree of Parallelism columns report average numbers over five
instances. In all these sets, each task graph has an average of
25 tasks with the number of task types being set at 5 or 20, re-
spectively, and the number of task successors being set at 2 or
5, respectively. The Type I application was synthetically gener-
ated by the TGFF utility, by setting the number of task graphs
parameter equal to one. The Type II application was syntheti-
cally generated by setting this parameter to three, as indicated
in the table. For LCs, the task average execution time is assumed
to be 3000 normalized Units of Time (UT), with a variability of
2000.

D. Design of Simulation

The simulation factors that are considered include:
• Simulation Case: 4 (see Table I).
• Number of Task Systems: 40 task systems in each simula-

tion case (5 instances/per set 8 sets).
• Architectural Parameters: the LC reconfiguration time (3

levels), # of LCs (3 levels), and scheduler search depth (15
levels).

• : 2 levels 0.1 and 0.2 for simulation case 3/4. 1 level (i.e.,
0) for simulation case 1/2, where 0 represents all tasks will
be executed in a task graph.

• # of Frames: for simulation case 3/4, the results from dy-
namic task scheduling are averaged over 40 frames, while
for simulation case 1/2, only 1 frame is required.

E. Approximate Lower-Bound Solutions for Scheduling

Definition 3: Given the critical path (CP) [16] of a task graph
, the number of task types ( ) of , the LC reconfigura-

tion time ( ) and the number of LCs ( ) in a reconfig-
urable architecture RP, the approximate lower-bound value ( )
for scheduling onto RP is

(1)
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TABLE II
INPUT TASK SYSTEM CONFIGURATION

TABLE III
COMPARISON OF DS AND SS FOR TYPE I TASK SYSTEMS (SIMULATION CASE 1)

TABLE IV
COMPARISON OF DS AND SS FOR TYPE II TASK SYSTEMS (SIMULATION CASE 1)

All simulation results are normalized to before recorded.

F. Results and Discussion

In this section, we empirically compare the proposed dynamic
tasks scheduling algorithm with the reference static scheduling
technique for each simulation case.

1) Simulation Case 1: Simulation Case 1 corresponds to task
systems that contain only static data flow task graphs with deter-
ministic task execution times. In other words, it is assumed that
SS uses complete, exact execution information of task system.

Tables III and IV show DS versus SS for Type I task systems
(TS1TS4) and for Type II task systems (TS5TS8), respectively.
The Average over Row column reports the normalized sched-
ules over four task systems with # of LCs and being fixed.
The Average over Column row reports the normalized schedules

over all possible hardware configurations with the task system
being fixed. DS/SS reports the ratio of normalized DS to nor-
malized SS for each possible hardware configuration.

As can be seen from Table III, for Type I task systems SS per-
forms almost as well as the approximate lower-bound value
(average 1.11 times as which can be read from column 12 of
last row) while DS is slower than SS in each hardware config-
uration (see Average over Row column); for Type II task sys-
tems, Table IV shows that SS performs better than the DS in all
hardware configurations except when is small (i.e.,

), in which the DS outperforms SS by a neglectable margin
( ) for the case where the number of LCs is equal
to 3 or 4. Overall, the DS underperforms SS by 22% in simula-
tion case 1 (i.e., ).
This conclusion is not surprising though since: 1) the SS uses
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TABLE V
COMPARISON OF DS AND SS FOR TYPE I TASK SYSTEMS (SIMULATION CASE 3)

TABLE VI
COMPARISON OF DS AND SS FOR TYPE I TASK SYSTEMS (SIMULATION CASE 3)

computationally expensive heuristics and 2) for case 1 simula-
tion, the SS uses complete and exact execution information to
schedule tasks.

Tables III and IV show that the performance of SS generally
declines as the problem size increases: i.e., from 1.11 (column
12 of last row in Table III) for Type I task systems (which have
75 tasks) to 1.24 (column 12 of last row in Table IV) for Type II
task systems (which have 25 tasks). This gives us the following
observation.

2) Observation 1: As the problem size increases, the perfor-
mance of SS tends to decrease.

On the other hand, it seems that the performance of DS does
not follow this trend. This can be observed from the ratio of 1.46
(column 11 of last row in Table III) for Type I task systems to
1.40 (column 11 of last row in Table IV) for Type II task systems.
So the second observation is as follows.

3) Observation 2: As the problem size increases, the perfor-
mance of the DS tends to remain constant.

Combining Observations 1 and 2, we can make the following
conclusion.

4) Conclusion 1: The performance differences between the
DS and SS decreases when the problem size increases.
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Calculations indicate that overall, for Type I task systems,
the DS is 35% (i.e., ) slower than the SS,
while for Type II task systems the DS is only 13% (i.e.,

) slower than the SS.
We shall now examine the aforementioned observations and

conclusion in the other three simulation cases.
5) Simulation Case 2: The results from Simulation Case 2

are very close to those in Case 1. This is because from Table I it
can be seen that the task system in Case 2 is almost the same as
the task system in Case 1 for the SS. In addition, it appears that
Observations 1 and 2 and Conclusion 1 are still valid.

6) Simulation Case 3: Simulation Case 3 utilizes task sys-
tems that contain task graphs with both data and control depen-
dencies, but the task execution time is deterministic. In other
words, not all tasks are executed on a frame basis due to the
run-time execution condition but their execution time keeps con-
stant.

Tables V and VI show DS versus SS for Type I task systems
and for Type II task systems, respectively. It can be observed
that Observation 7.1 and Observation 7.2 still hold. Even better,
the performance of DS tends to improve as problem size in-
creases. For example, the DS normalized average schedules are
1.40 ( ) and 1.43 ( ) for Type I task systems, re-
spectively, but these numbers improve to 1.34 and 1.32 for Type
II task systems, respectively.

Finally, an important conclusion is that DS outperforms SS
for Type II task systems, and this improvement increases as
increases, i.e., from a ratio of 0.94 to 0.88. Therefore, we can
make another conclusion.

7) Conclusion 2: The DS tends to outperform SS when both
problem size and the degree of dynamism increase.

8) Simulation Case 4: Just as the results from Case 2 are very
close to those from Case 1, the results from Case 4 are also very
close to those from Case 3. In other words, the same properties
hold for both cases.

9) Conclusion: In summary, we can conclude the following.
• The performance of the DS does not degrade as the com-

plexity of problem increases, while the performance of ref-
erence SS does decline as the complexity of problem in-
creases.

• The DS tends to outperform the SS when both task system
complexity and degree of dynamism increases.

• The DS has very low algorithmic complexity, therefore,
runs very fast, while the SS is very time intensive.

VI. CONCLUSION

In this paper, we have presented a dynamic task scheduling al-
gorithm that is capable of scheduling nondeterministic systems
of tasks onto RSoC hardware environments. The incorporation
of control dependencies allows for the modeling and simulation
of nondeterministic task structures, which is the primary moti-
vation for employing dynamic scheduling techniques in recon-
figurable hardware. A major contribution of this work has been
the modeling and simulation of an expanded microarchitecture
that can support such non-determinism.

To study the effectiveness of the proposed dynamic scheduler,
traditional software-based simulation techniques have been uti-
lized and a simulation framework has been developed. A large

number of simulations were performed. The results demonstrate
many interesting and viable features of the proposed dynamic
scheduling approach while indicating considerable promise for
its desired application domain.
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