
A review of high-level synthesis for dynamically reconfigurable FPGAs

Xuejie Zhanga,b,1,* , Kam W. Nga

aDepartment of Computer Science and Engineering, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong, China
bDepartment of Computer Science, Yunnan University, Kumming, Yunnan, P.R. China

Received 20 May 1999; revised 24 March 2000; accepted 28 April 2000

Abstract

Dynamically Reconfigurable Field Programmable Gate Arrays (DR FPGAs) change many of the basic assumptions of what hardware is.
DR FPGA-based dynamically reconfigurable computing has become a powerful methodology for achieving high performance while
minimizing the resource required in the implementation of many applications. The key to harnessing the power of DR FPGAs for most
applications is to develop high-level synthesis tools for transforming automatically an algorithmic level behavioral specification into DR
FPGA configurations. In this paper we survey the current state-of-the-art in high-level synthesis techniques for dynamically reconfigurable
systems. The differences in high-level synthesis technology between classical systems and dynamically reconfigurable systems are discussed.
Then, we describe the basic tasks in the high-level synthesis of dynamically reconfigurable systems. Finally, techniques that have been
developed in the past few years for the high-level synthesis of dynamically reconfigurable systems are presented.q 2000 Elsevier Science
B.V. All rights reserved.

Keywords: Field programmable gate arrays; Dynamically reconfigurable systems; High-level synthesis

1. Introduction

Field Programmable Gate Arrays (FPGAs) are arrays of
prefabricated logic blocks and wire segments. The function-
ality of the logic blocks and the inter-connection between
the blocks are user programmable. The most popular type of
FPGA technology is based on static memory (SRAM) tech-
nology, these FPGAs are programmed and reprogrammed
by loading a circuit “bit-stream” into the internal configura-
tion memory [39]. FPGAs have become the favored choice
in implementing digital systems from “glue logic” to speci-
fic application accelerator to systems, which can achieve a
high performance for general purpose computing [9,30].

Currently, Dynamically Reconfigurable FPGAs (DR
FPGAs) have become viable with the introduction of
devices that allow high-speed dynamic reconfiguration,
e.g. the Xilinx XC6200 series (discontinued in 1998) [46]
and the Virtex Series [47], the Atmel AT4000 and AT6000
series [2]. An FPGA is classified as dynamically reconfigur-
able if it allows reconfiguration of some logic blocks and
wire segments, while some other programmable hardware is
busy computing by having more than one on-chip SRAM

bits controlling them [3,25]. Fig. 1 is a simplified represen-
tation of dynamic reconfiguration in progress. Several
subcircuits are shown resident on the FPGA array, but
only one is to be reconfigured. The operation of the appro-
priate subcircuit is suspended and only those logic cells that
need to be modified are overwritten with new configuration
data. The other active subcircuits continue to function
throughout the reconfiguration period.

Dynamic reconfigurability offers important benefits for
achieving high performance while minimizing the hardware
resource required in the implementations of many applica-
tions. Several promising applications have already been
reported in various areas including image processing [35],
neural network [8,28], computer vision [21] and database
searching [19].

While significant advances have been made, many obsta-
cles still remain to be surmounted before dynamically
reconfigurable technology can become widely adopted.
Probably the most significant disadvantage of dynamic
reconfigurability is the additional complexity that it intro-
duces into the design cycle. Dynamically reconfigurable
systems use a dynamic allocation scheme that re-allocates
the FPGA’s resources at run-time. Since the configuration of
the FPGAs changes over time, it becomes difficult to under-
stand the exact behavior of the system and there need to be
some ways to make sure that the system behaves properly
for all possible execution sequences. This is, in general, a

Microprocessors and Microsystems 24 (2000) 199–211

0141-9331/00/$ - see front matterq 2000 Elsevier Science B.V. All rights reserved.
PII: S0141-9331(00)00074-0

www.elsevier.nl/locate/micpro

* Corresponding author. Fax:1852-2603-5024.
E-mail address:kwng@cse.cuhk.edu.hk (X. Zhang).

1 The author is currently on leave from Yunnan University, People’s
Republic of China.



challenging problem to address [9]. Currently, the develop-
ment of dynamically reconfigurable systems still uses the
traditional capture-and-simulate design methodology that is
an art involving tedious and error prone crafting of low-
level design methodology [8,44].

With the growing complexity of current chips, including
FPGAs, the use of automated synthesis techniques is an
essential requirement of the design process [9,10,20].
Synthesis is a translation process from a behavioral descrip-
tion into a structural description, similar to the compilation
of a high-level language program into an assembly program.
Traditionally, synthesis has been subdivided into the follow-
ing main categories:

• High-level synthesis (HLS) takes an abstract behavioral
description of a digital circuit in the form of an algorithm
and translates it into a structural description, while realiz-
ing the specified behavior at a register transfer level
(RTL).

• Logic synthesis converts an RTL design into optimized
combinational logic, and maps that logic onto available
cells from a library in a particular technology.

• Layout synthesis converts an inter-connected set of cells,
which describes the structure (topology) of a design, into
the exact physical geometry (layout) of the design. It
involves both the placements of the cells as well as
their connection (routing).

Logic synthesis is the highest synthesis level currently in
practical use for reconfigurable systems [9,12,27]. Applica-
tion development with such logic synthesis tools still neces-
sitates expertise in lower level hardware details. The
developer has to be aware of the intricacies of the specific
reconfigurable architecture in order to achieve a high perfor-
mance. In addition, the compatibility issue among a range of

implementations is also a problem. The logic synthesis
results have to be modified before they can be ported even
from one FPGA chip to another FPGA chip of the same
family. The major challenge is to provide facilities for
developing dynamically reconfigurable systems with much
less effort and specialized knowledge than is required now.

On the other hand, in many applications employing
dynamic reconfiguration the amount of time spent reconfi-
guring the FPGAs is critical. Long reconfiguration intervals
can easily swamp the overall performance of the system. For
reconfigurable applications, the following issues must also
be dealt with:

• How can the use of dynamic reconfiguration be justified
over conventional static FPGA-based methods?

• When is dynamic reconfiguration appropriate for an
application?

In order to analyze these issues for dynamically reconfi-
gurable applications, designers have to rely on the ability to
specify their designs at higher levels of abstraction where
dynamically reconfigurable design is easier to understand
and tradeoff is more effective. This would also assist the
designer in evaluating the option of employing dynamic
reconfiguration. Therefore, the key to harnessing the
power of DR FPGAs for most applications is to develop
high-level synthesis tools for transforming automatically
an abstract behavioral specification into DR FPGA config-
urations for the system. However, new applications and
research of DR FPGAs are hindered by an almost complete
absence of appropriate high-level synthesis tools [24].

High-level synthesis bridges the gap between behavioral
specifications and their hardware realization, automatically
generating circuit descriptions that can be used by logic
synthesis. Unfortunately, whilst there are well-established
techniques for the high-level synthesis of ASICs with fixed
or static programmable architectures, DR FPGAs pose a
difficult challenge for the development of high-level auto-
mated design tools due to the need for dynamic reconfigur-
ability. Currently available high-level synthesis tools
assume a static hardware model, therefore, they provide
no high-level synthesis schema to support the dynamic
reconfiguration. Hence, conventional high-level synthesis
problems (such as partitioning, scheduling and module allo-
cation) have to be modified to account for dynamic reconfi-
guration. Moreover, additional design effort such as design
complexity for the reconfiguration controller and reconfi-
guration overhead are also introduced. The high-level synth-
esis system may also have to ensure not only producing a
functionally and electrically correct implementation of the
desired behavior but also considering the time to reconfigure
the system [9,24].

In this paper, we review the current state-of-the-art in
high-level synthesis techniques for dynamically reconfigur-
able systems. Section 2 presents an overview of the dyna-
mically reconfigurable paradigm. In Section 3, we discuss

X. Zhang, K.W. Ng / Microprocessors and Microsystems 24 (2000) 199–211200

FPGA logic cells

Unused logic

Active logic

Inactive logic

configuration memory

Fig. 1. Dynamically Reconfigurable FPGAs.



the problems and the tasks in high-level synthesis for dyna-
mically reconfigurable systems. Then, we present the tech-
niques that have been developed for solving these problems
in Section 4. Finally, we discuss the challenges for future
work, pointing out where development is still needed to let
dynamically reconfigurable systems achieve all of their
promises.

2. Overview of dynamically reconfigurable systems

FPGAs have received increasing attention recently due to
their short turnaround time, user reconfigurability and low
development costs. FPGA-based computing systems have
become a powerful implementation methodology for
achieving a high performance. By mapping applications
onto FPGA hardware resources, extremely efficient compu-
tations can be performed [9]. The use of FPGAs has been
classified broadly into three main categories: rapid proto-
typing, system implementation, and dynamically reconfi-
gurable systems [24]. The last of these areas has been
described as being perhaps the most innovative application
for FPGAs [42].

Reconfigurable systems can be broadly classified as
having one of two types of reconfigurability: static or
dynamic reconfigurability [36]. In this paper, static reconfi-
guration refers to having the ability to reconfigure a system,
but once programmed, its configuration remains on the
FPGA for the duration of the application. In contrast,
dynamic reconfiguration is defined as the selective updating
of a subsection of an FPGA’s programmable logic and rout-
ing resources while the remainder of the device’s program-
mable resources continue to function without interruption
[25]. Thus, whereas static reconfiguration applications
configure the FPGAs once before execution, dynamic
reconfiguration applications typically reconfigure them
many times during the normal operation of a single applica-
tion as seen in Fig. 2. The concept of dynamic reconfigura-
tion has acquired various names: run-time reconfiguration
[18], on-line reconfiguration [1], logic caching [25], virtual
hardware [4] and DPGA [5]. Throughout this paper we will
use the term dynamic reconfiguration [24].

2.1. The advantages of dynamic reconfiguration

The logic capacity of FPGA technology is always going
to be poorer than that of tailored ASIC technology due to

area and time overhead for providing uncommitted logic
and routing, as well as the associated control circuitry.
Thus, benefits must come fromreconfigurabilityand flex-
ibility , while still providing significant speed benefits over
purely software solutions. Dynamic reconfiguration
provides additional opportunities for reconfigurable system
implementation that is unavailable within statically reconfi-
gurable systems. Specifically, two different conditions moti-
vate the use of dynamic reconfigurability: the presence of
idle or underutilized hardware and the need to partition a
large system onto limited FPGA resources. Each of these
motivations will be described in detail below.

2.1.1. Supporting the temporal locality of applications
The temporal locality of an application is interpreted as

the presence of idle or underutilized operations within a
reconfigurable application. In other words, individual opera-
tions within a design may remain idle because they are not
needed at a given time or they cannot immediately contri-
bute to the computation. For example, data-dependencies
within an algorithm may dictate that an operator must
wait for the completion of a different operation before
proceeding, or an application-specific operation may be
infrequently needed in the schedule of a computation.

Dynamic reconfiguration can be used to remove such idle
operations from the system and replace them with other
more useful operations. Such dynamic removal of hardware
allows an operation to proceed with fewer FPGA resources
than possible within a static system. Therefore, dynamic
reconfiguration allows a new design methodology for
producing large designs that are too big for the available
hardware resources on the FPGA chips.

FPGAs have been described as programmable active
memories [25]. If viewed from this perspective, like the
virtual memory in a normal processor, a dynamically recon-
figurable FPGA can be viewed as “Virtual Hardware”, that
is, hardware paged into the FPGA only when needed. There-
fore, the profile of the circuitry that is active on the DR
FPGAs may be adjusted dynamically to match the require-
ments of the temporal locality of an application. Since idle
operations within the application no long consume valuable
resources, the application may operate with fewer resources
than possible within a static reconfigurable system.
Dynamic reconfigurabilityis used to ensure that FPGA
resources are used more efficiently. The opportunities for
deploying dynamic reconfiguration are increasing as the

X. Zhang, K.W. Ng / Microprocessors and Microsystems 24 (2000) 199–211 201

Fig. 2. Static and dynamic reconfiguration.



gate counts of individual FPGAs continue to improve. As
larger DR FPGAs become available, the complexity of the
systems that can be integrated into a single FPGA increases.
Currently, there are many research projects developing
computing architectures for the exploitation of temporal
locality within an application [6,12].

2.1.2. Supporting the functional locality of applications
The functional locality of operations is interpreted as the

application-specific computing nature of an application. In
other words, the functional locality of operations requires
the operators used within an architecture to be the speciali-
zation required by the application.

For a static system, when a large computing system
cannot fit within the finite resource of a reconfigurable
system, the application must be partitioned and scheduled
onto the fixed and static resource. However, a single static
architecture designed to execute different algorithmic parti-
tions within a sequential execution schedule must be
general-purpose enough to support all computational varia-
tions found within the application. The reuse of hardware
for several algorithmic partitions limits the amount of
specialization that can take place and forces the inclusion
of general-purpose architectural features. This usually
results in less efficient structures and cannot be used to
support the functional locality of operations.

However, for large special-purpose computing systems
that require partitioning, dynamic reconfiguration can be
used to support the functional locality of operations. Instead
of providing a static circuit that is generalized to support all
computational variations found within an application, the
application is partitioned into special-purpose operations
that are reconfigured at run-time. Thisflexibility allows
hardware resources to be tailored to the run-time profile of
the application more efficiently than with static architecture.
The exploitation of functional locality of operations within
an application has been reported in the literature [43].

2.2. Implementation strategy of dynamically reconfigurable
systems

Several dynamically reconfigurable applications have
been developed to demonstrate the significant perfor-
mance improvements possible with DR FPGAs
[19,35]. We could categorize these implementation
approaches using three criteria: the grain size of
temporal partitioning, the methodology of exploiting
functional locality, and the reconfiguration control
mechanism. Their differences and their impact on the
high-level synthesis for dynamically reconfigurable
design will be discussed.

X. Zhang, K.W. Ng / Microprocessors and Microsystems 24 (2000) 199–211202

Fig. 3. Full reconfiguration.

Fig. 4. Combined floorplan and chart perspectives for partial reconfiguration.



2.2.1. Fully reconfigurable systems and partially
reconfigurable systems

From the perspective of supporting temporal locality,
there are two basic approaches that can be used to imple-
ment dynamically reconfigurable applications: full recon-
figuration and partial reconfiguration [12]. Both tech-
niques use multiple configurations for a single application
and both techniques reconfigure FPGAs during execution of
the application. The principal difference between these two
techniques is the grain size of the dynamic hardware
allocated.

Fully reconfigurable systems allocate all FPGA resources
in each configuration step. Full reconfiguration applications
are partitioned into distinct temporal phases, where each
phase is implemented as a single system-wide configuration
that occupies all FPGA system resources. As an example,
Brigham Young University’s RRANN project demonstrates
the full reconfiguration system implementation approach
[6]. RRANN implements the popular neural network
back-propagation-training algorithm as three time-exclusive
FPGA configurations: feed-forward, back-propagation and
update. Fig. 3 shows how the system operation consists of
sequencing through these three configurations at run-time.

Observably, the primary task when implementing fully
reconfigurable design is to partition temporally the applica-
tion into approximately equal-sized partitions, to efficiently
use reconfigurations [12]. If it is not possible to partition
evenly the application, inefficient use of FPGA resources
will result. Unfortunately, currently no tools support this
equal-sized partitioning step. Since the partitions are coarse
grained and circuit interfaces are fixed between configura-
tions, conventional high-level tools can be used efficiently
once the equal-sized partitioning step has been completed.
Each partition can be designed and implemented as one
independent configuration. After the partitioning and high-
level synthesis are performed on each configuration, they
are integrated at the lower levels, i.e. at RTL or at the logic
level.

Partial reconfiguration may reconfigure any percentage of
the reconfigurable resources at any time. Partially reconfi-
gurable FPGAs offer a faster way to change an active FPGA
circuit since only those parts that need to be reconfigured are
interrupted. This can reduce the amount of time spent on
downloading the configuration, and can lead to a more effi-
cient run-time allocation of hardware. Fig. 4 provides a
conceptual diagram of partially reconfigurable systems.
Task A and Task C are to be permanently resident on the
FPGAs, and Task B, Task D and Task F are to be swapped in
and out during the operation of the circuit. Between each
execution stage, only a subset of the reconfigurable hard-
ware is reconfigured.

The main advantage that partially reconfigurable systems
provides over fully reconfigurable systems is the ability to
create fine-grained reconfigurations that make more efficient
use of FPGA resources. Partially reconfigurable designs are
typically implemented by partitioning an application into a

set of fine-grained tasks based on the functional locality of
the application [12]. Each of these tasks is implemented as a
distinct configuration and these configurations are then
downloaded to the FPGAs as necessary, during the opera-
tion of the application. However, the fine-grained partition-
ing is in general a challenging problem to address, it can
cause a very high design penalty because of the increased
flexibility and complexity of the system. Moreover, several
of these configurations may be loaded simultaneously and
each configuration may consume any portion of the FPGA
resources. Unlike fully reconfigurable applications where
configuration interfaces remain fixed, partially reconfigur-
able applications allow these interfaces to change with each
configuration. In order to ensure that all configurations will
interface correctly, there need to be some new ways to make
sure that the system behaves properly for all possible execu-
tion sequences. Since the configuration of DR FPGAs can
change dynamically, current high-level synthesis techniques
are largely useless for partially reconfigurable designs.

2.2.2. Domain-specific and application-specific approach
From the perspective of supporting functional locality,

there are two development methods for designs with recon-
figurable elements at run-time:domain-specificand appli-
cation-specificapproach [13]. Both techniques perform
dynamic reconfiguration by specializing the computing
structure to the problem of interest. The principal difference
between these two techniques is the way they exploit the
functional locality in an application.

An application-specific architecture is defined here as a
minimal reuse or maximal functional locality computing
architecture. In this approach, nearly every part of a design
is a custom circuit element that has been carefully tailored to
apply only to a single or specific computation task.
However, this can cause a very high design penalty because
of the high flexibility and complexity of the system. The
lack of reuse occurs because of the need to completely
specialize each operation to secure the highest possible
performance at the lowest possible cost. It is not feasible
to support such architecture at a high level, therefore, the
tools used in the architecture design are low-level design
tools (schematic capture, logic synthesis) where the design
is described in low-level terms.

The domain-specific approach is implemented by using
libraries of reusable components that are highly optimized
routines capable of being reused across a range of applica-
tions within a given domain. This approach exploits directly
the reconfigurability of DR FPGAs through reuse of these
domain-specific library elements to implement a wide vari-
ety of applications within the specific domain. The domain-
specific elements will typically be developed by FPGA-
design experts and because they will be reused in many
different applications, substantial design effort can be
employed to achieve highly optimized circuits. Once a
large library of domain-specific circuits becomes available,
it forms a new level of computing primitives that hide the

X. Zhang, K.W. Ng / Microprocessors and Microsystems 24 (2000) 199–211 203



underlying complexity of optimized DR FPGA implemen-
tations. By hiding the DR FPGA details, the application can
be described in terms of higher-level operations that are
selected from a library and can be synthesized at a higher
level. This reduces both development and compilation time.
Therefore, the domain-specific approach brings important
opportunities for the development of high-level synthesis
systems [13].

2.2.3. Co-processors vs. embedded processors
In the final implementation of a dynamically reconfigur-

able system, the responsibility for controlling reconfigura-
tion of the FPGAs must be allocated to an external
microcontroller, the FPGA itself, or to another hardware
device. If we examine the way dynamic reconfiguration is
accomplished, we could divide dynamically reconfigurable
systems into the following groups: co-processors and
embedded processors.

While the controller may be implemented in hardware or
software, the use of a microprocessor to control reconfigura-
tion is the more flexible option and is currently the most
common choice. This is commonly referred to as the process
of hardware/software codesign [7].

If the controlling microprocessor of the above architec-
ture is removed, the DR FPGAs become a stand-alone
embedded processor. The DR FPGAs, used in this way,
yield an architecture of a self-controlling dynamically
reconfigurable system [25]. Since the configuration changes
over time under the control of the configuration itself, there
is a need for new techniques to support the self-modifying
system behavior [25].

3. High-level synthesis issues for dynamically
reconfigurable systems

The traditional high-level synthesis task is to take a beha-
vioral or functional level specification (e.g. an algorithm) of
a system and a set of constraints and goals to be satisfied,

and to find a register transfer level (RTL) structure that
implements the behavior while satisfying the goals and
constraints [20,29,34]. The RTL structure is composed of
a data-path and a controller. In other words, from the input
specification, the synthesis system produces a description of
a data-path that is a network of functional units, registers,
multiplexers and busses (typically described by a netlist).
Moreover, the synthesis system must also produce the speci-
fication of the control part. In synchronous systems, the only
kind we consider in this paper, control can be provided by
one or more finite state machines, specified in terms of
microcode or random logic.

However, dynamically reconfigurable design changes
many of the basic assumptions in the high-level synthesis
process. The flexibility of dynamically reconfigurable
systems (multiple configurations, partial reconfiguration,
etc.) requires new methodologies and high-level synthesis
algorithms to be developed as conventional high-level
synthesis techniques do not consider the dynamic nature
of dynamically reconfigurable systems.

3.1. Basic differences in the high-level synthesis process

A high-level synthesis system acts as a compiler that
maps a high-level specification into a structure. The main
steps involved in a high-level synthesis system are:

• Compilation of the high-level description into an internal
representation based on the design model, usually a
graph-based or an algebraic process-based model.

• Scheduling, module allocation and binding in synthesis
are the core of transforming behavior into structure.
Scheduling involves assigning each operation to a time
step. A time step is a fundamental sequencing unit in
synchronous systems, it corresponds to a control step
which is equivalent to a state in a FSM or a microprogram
step in a microprogrammed controller. Allocation and
binding assigns each operation to hardware. Module allo-
cation involves both the selection of the type and the

X. Zhang, K.W. Ng / Microprocessors and Microsystems 24 (2000) 199–211204

Fig. 5. Example of temporal partitioning.



quantity of hardware modules from a library, and binding
involves mapping of each operation to the selected hard-
ware. Although scheduling and binding are two distinct
tasks, their performances are closely related. In order to
deal with the inter-dependency between these two synth-
esis subtasks, many strategies exist [20,29,34].

• Partitioning deals with the division of the internal repre-
sentation into subrepresentations in order to reduce the
problem size.

• Output generation produces a design that is passed to
logic or RTL synthesis. The resulting design is usually
composed of a data-path and a controller.

Traditional hardware design focuses on the development
of a static circuit of fixed size, topology and functionality.
The static nature of the target design entity is reflected in the
high-level synthesis process and design methodologies. In
the area of high-level synthesis, the two key differences
between classical systems and dynamically reconfigurable

systems are how to exploit the temporal and functional
localities of applications in the high-level synthesis process
and how to minimize the reconfiguration overhead of
synthesizing such systems.

Observably, the most important difference between static
systems and dynamically reconfigurable systems is the
temporal nature of developing such systems. The exploita-
tion of temporal locality within an application necessitates a
new temporal partitioning process of the specification
[12,15,16]. Temporal partitioning divides an application
into time-exclusive segments that do not need to or cannot
run concurrently. For example, consider a popular differen-
tial equation solver high-level synthesis benchmark. The
complete data-flow graph (DFG) for the benchmark is
shown in Fig. 5(a). A possible implementation of the DFG
as a dynamically reconfigurable system involves grouping
operations such that they may be subsequently scheduled. In
other words, this problem may be solved by partitioning
temporally the DFG along data-flow boundaries. Fig. 5(b)

X. Zhang, K.W. Ng / Microprocessors and Microsystems 24 (2000) 199–211 205

Fig. 6. High-level design flow for a dynamically reconfigurable system.



illustrates a temporal partitioning example where the DFG is
partitioned into four (labeled A, B, C, and D) segments. Fig.
5(c) illustrates one such temporal partitioning where
segments A, B, C and D are mapped to time steps T1, T2,
T3 and T4, respectively.

Similar to structural partitioning where circuit elements
are organized into strongly connected partitions, temporal
partitioning is a design process that organizes operations
into strongly concurrent partitions. Typically, a dynamically
reconfigurable application is temporally partitioned by
breaking it down into distinct phases or operational
modes. Each of these phases or modes is then designed as
a distinct circuit module (FPGA configuration). These
configurations are then downloaded into the FPGAs as
required by the application at run-time. Therefore, dynamic
reconfiguration extends the scheduling problem by an addi-
tional dimension—temporal partitioning. The effectiveness
of temporal partitions has been presented in Refs. [11,45];
however, the partitioning is accomplished manually. There-
fore, high-level synthesis techniques to automatically parti-
tion designs temporally are needed.

Another key advantage of dynamic reconfiguration is that
we can specialize the computing engine to closely match the
needs of the functional locality in an application. This flex-
ibility allows hardware resources to be tailored to the run-
time profile of the application more efficiently than with
static architecture. In particular, the later binding time asso-
ciated with reconfigurable logic netlists gives the reconfi-
gurable architect the opportunity to specialize his design
more precisely to the particular use to which the device
will be employed during an operational epoch. The func-
tions performed by a reconfigurable logic design, however,
need not be bound until loaded into the reconfigurable logic
device. At this point the bindings need only to be generic
enough to operate until reconfiguration, or, more precisely,
they only need to be generic enough that reconfiguration
resource requirements do not preclude proper operation or
deviate from design performance. To support the exploita-
tion of functional locality within an application, the high-
level synthesis framework needs to pay careful attention to
the binding time of values in the dynamically reconfigurable
designs.

Furthermore, with conventional systems, the module allo-
cation process attempts to map the logic spatially so that it
occupies the smallest area, and produces results as quickly
as possible. In a dynamically reconfigurable system one
must also consider the time to reconfigure the system, and
its effects on the performance of the system. In many appli-
cations employing reconfiguration, the amount of time spent
reconfiguring the FPGA is critical. Long reconfiguration
intervals can easily swamp the overall performance gain
of the system and therefore reconfiguration should be kept
to a minimum [9]. Thus, it will be critical to allocate logic
together properly so that a given configuration can do as
much work as possible, allowing a greater portion of the
task to be completed between reconfigurations. The config-

uration allocation process has a key impact on the quality of
the final design. A good configuration allocation will be
tightly coupled and performs its task relatively independent
of other configurations. Since the module allocation step
must make a trade-off between maximizing resource usage
and minimizing reconfiguration overhead in both space and
time, the synthesis methodologies must consider how to
automatically vary the granularity of reconfiguring regions
and estimate the resulting impact on size, performance and
complexity of the reconfiguration controller. The optimiza-
tion issue that must be addressed is how to allocate multiple
configurations of a dynamically reconfigurable design that
optimizes for resource usage and reconfiguration overhead.

Therefore, dynamically reconfigurable design extends the
high-level synthesis design space by dynamic reconfigura-
tions. For a dynamically reconfigurable design, the structure
realizable on the DR FPGAs is no longer a static structure
but a set of structures that describes the possible configura-
tions. Fig. 6 shows the design flow involved in the high-
level synthesis of dynamically reconfigurable systems from
two different views. The fundamentally different concept
makes conventional high-level synthesis techniques unsui-
table for dynamically reconfigurable applications. The
higher flexibility of dynamically reconfigurable applications
complicates the overall high-level synthesis process from
design model to synthesis algorithms.

3.2. The design model

High-level synthesis is a transformation process generally
based on a well-defined design model. This is generally
called an intermediate form. The different steps of the
high-level synthesis process can be explained as a transfor-
mation of this design model. In general, a design model
refers to an abstraction over the target system, capturing
important relationships between important components of
the system. Any design model must be able to abstract the
following:

• functionality or the behavior of the system;
• constraints on properties of the behavior.

The intermediate representations model the system from
several design aspects. Requirements, behavior, algorithms,
resources, along with constraints between these aspects are
specified in the appropriate models. The design models
define a design space of potential alternative implementa-
tions, involving choices of synthesis algorithms, optimiza-
tion strategies, and process placement and technology
implementation.

A variety of intermediate representations have been
proposed to capture various specification elements in
high-level system specification in a form suitable for further
processing during synthesis. These include DFGs [40],
mixed control data-flow graphs (CDFG) [38], timed deci-
sion tables (TDT) [33], and various flavors of graph-based

X. Zhang, K.W. Ng / Microprocessors and Microsystems 24 (2000) 199–211206



and table-based formalisms sometimes augmented with
global flow information such as module call graphs
(MCG). Although these representations capture common
features such as data and control dependencies among
operations [29], they are not able to capture the temporal
or functional locality among operations as well as the inter-
configuration relationships. Since traditional design models
do not allow for a dynamic structured approach that can be
used to define the run-time reconfiguration behaviors, new
modeling techniques need to be developed for expressing
the reconfigurability of operations in developing a dynami-
cally reconfigurable design. It is the key to understanding
dynamically reconfigurable designs and to synthesizing
them effectively.

Two difficult issues must be tackled in a formal treatment
of the high-level synthesis of dynamically reconfigurable
systems:

• the abstract specification of the temporal dimension of
the system; and

• the concise formulation of the dynamic reconfiguration
behavior restricted with run-time constraints.

3.3. The synthesis algorithm and the optimization strategies

The algorithms used for dynamically reconfigurable
design (such as scheduling, module allocation and binding)
differ from classical high-level synthesis because of differ-
ent problem formulations. Conventional high-level synth-
esis problems (such as scheduling, module allocation and
binding) have to be modified to account for dynamic recon-
figuration. For example, an important task of high-level
synthesis is scheduling. Scheduling in high-level synthesis
is performed under resource constraints and/or timing
constraints [14]. The following difference between classic
and dynamic scheduling exists.

1. Classic scheduling: find a schedule with the shortest
execution time for a given number and type of resource.

2. Dynamic scheduling: find a schedule and a temporal
partitioning for subsequent reconfigurations leading to
the shortest execution time (including reconfiguration
time) in a given total available area of DR FPGAs [41].

In addition, in the high-level synthesis of dynamically
reconfigurable systems, temporal partitioning, scheduling
and module allocation are closely interrelated: whenever
one is performed before the other tasks, additional
constraints are imposed on the operations with respect to
the other tasks. Therefore, the issue here is how to deal with
the inter-dependency among partitioning, scheduling and
module allocation. The optimality criteria now shift from
basic blocks to the whole design. The flexibility of dynami-
cally reconfigurable systems (multiple configurations,
partial reconfiguration, etc.) requires new methodologies
and high-level synthesis algorithms to be developed as the

conventional high-level synthesis techniques do not
consider the dynamic nature of dynamically reconfigurable
systems.

3.4. The configuration controller

Whenever dynamic reconfiguration is employed, an over-
head associated with controlling the sequence of reconfi-
guration is implicit. In other words, in the final
implementation of a dynamically reconfigurable system,
the responsibility for controlling reconfiguration of the DR
FPGA must be allocated to an external microcontroller, to
the FPGA itself, or to another hardware device. We call the
circuit or software that performs this function the recon-
figuration controller. In any case, it would be advantageous
to be able to synthesize the algorithm for the controller
automatically from the information contained in the
schedule control modules.

4. Existing high-level synthesis techniques

In this section, we survey some existing high-level synth-
esis techniques for dynamically reconfigurable systems.

4.1. Design models for dynamically reconfigurable systems

A variety of design models have been proposed to capture
the semantics of the specification in a form suitable for
further processing during the synthesis of dynamically
reconfigurable systems.

Rath et al. [33] used an intermediate tabular model called
the TDT to separate the control and data-path and to divide
the data-path into different control paths. A TDT represen-
tation of system behavior consists of three major parts: (1) a
control section which is a set of rules, or a list of control path
segments; (2) a delay table which lists the execution delay
of each action or data-path operation in the model; and (3)
an additional table describing the data-dependency, serial-
ization and concurrency type specified between each pair of
operations. Their synthesis methodology first translates the
high-level system specification (e.g. VHDL or HardwareC)
into TDTs. For abstracting out the temporal dimension of
systems, the TDT specification is transformed to a control-
flow graph (CFG) representation. The temporal locality of
operations is specified by state transitions. The main synth-
esis task involves partitioning this CFG into connected
subgraphs. Each subgraph groups a set of transitions starting
from a “root” state. The grouping is done so that the cost of
all transitions in each group is less than the available
resources on the DR FPGAs. A group is constructed by
performing a breadth-first coverage of successive transitions
from the root state. The subgraphs identified by the parti-
tioning step form the different configurations that can be
swapped in and out of the DR FPGAs. However, the synth-
esis method described in [33] is only suitable for designing
fully reconfigurable and control-dominated systems, as the

X. Zhang, K.W. Ng / Microprocessors and Microsystems 24 (2000) 199–211 207



TDT expressions will not be able to capture the inter-config-
uration relations and data-flow boundaries that are present in
high-level descriptions. Another limitation of their approach
is that they analyze and partition the system specification at
synthesis-time and not at run-time. This simplifies the
design task but may not provide the most optimal recon-
figurable design partitions.

The Unified Specification Model (USM) developed at the
University of Cincinnati [32] is a hierarchical representation
to capture succinctly inter-task level control and data-flow,
as well as intra-task (operation) level dependencies. At the
highest level of the USM are two types of objects called
tasks and memory segments. Tasks in the USM represent
elements of computation, and memory segments represent
elements of data storage. USM objects can be connected
through edges that are either channels or dependencies.
USM provides a task graph representation with the control
flow explicitly captured and the data-flow clearly specified
through channels and memories. USM provides a suitable
representation for the temporal partitioning process: inter-
task dependency edges and the communication model using
memories and channels directly help the temporal partition-
ing step in deciding the partitions [17,31].

Luk and Cheung presented a static network-based model
for specifying, visualizing and developing dynamically
reconfigurable designs [23]. Their idea is to use a static
network to capture the dynamic behavior of reconfiguration.
A logic block that can be configured to behave either as P or as
Q is described by a network with P and Q sandwiched
between two control blocks C and C0 as shown in Fig. 7.
After the traditional high-level synthesis is performed, the
netlist is transformed into a static network with control blocks
connecting possible configurations for each reconfigurable
component. The model provides a methodology for develop-
ing dynamically reconfigurable systems. However, the model
is specified at the lower level (RTL). At this level, the results
are already suboptimal and harder to optimize.

4.2. Temporal partitioning and scheduling techniques

Temporal partitioning involves dividing the design

specification into multiple segments that execute one after
the other on the reconfigurable system. Currently, techni-
ques to automatically partition designs temporally have
extended existing scheduling and clustering techniques of
high-level synthesis [15,17,31,37,40,41].

A scheduling and temporal partitioning algorithm for
dynamically reconfigurable systems based on a DFG
model has been reported in Refs. [40,41], and is based on
a static-list scheduling heuristic enhanced to consider
dynamic area constraint. The algorithm is executed in two
phases. First, the static priority list is computed, the opera-
tion selection criteria is based on the mobility of the indivi-
dual operations. Secondly, while all operations have not
been scheduled, the ready operations from the priority list
are placed in the available area until the complete area is
used up or data-dependency conflict occurs. Next, the
redundant function units from the previous control steps
are “removed” from the scheduler and the next iteration
begins. This process incrementally builds the data-path
schedule and partitions it into full or partial configurations.
However, the approach is limited to data-path synthesis and
does not consider other interdependent synthesis tasks.
Their algorithm is also unable to handle efficiently large
designs with complex control and reconfigurability features.

The SPARCS system accepts a behavioral specification
of an application in the form of a set of tasks [17,31]. Tasks
are modeled in behavior-level VHDL. The VHDL represen-
tation is compiled as an internal representation, a task graph
and a memory graph. A task graph captures the task-level
dependencies and data-flow between the tasks. A memory
graph represents the relationship among the tasks and
memories explicitly and will be used during configuration
partitioning. The SPARCS system contains a temporal parti-
tioning tool to divide and schedule temporally the tasks on
the reconfigurable architecture, and a spatial partitioning
tool to map the tasks to individual FPGAs. The temporal
partitioning tool heuristically estimates the upper bound on
the number of temporal segments for building a Non-linear
Programming (NLP) formulation. They use a variation of
Bournemouth University’s list-scheduling algorithm
[40,41] for this estimation. The temporal partitioning

X. Zhang, K.W. Ng / Microprocessors and Microsystems 24 (2000) 199–211208

Fig. 7. A static network modeling a dynamically reconfigurable design.



problem is solved by an Integer Linear Programming (ILP)
solver. However, their approach suffers from long run-
times, and is only worth investigating if the estimation of
costs and performance can be proven to be highly accurate
and the design size is rather small.

The University of Cincinnati has presented a technique
for temporal partitioning and scheduling of DFGs in the
time domain [15]. Temporal partitioning and scheduling is
formulated as an extended k-way-partitioning problem
where partitioning and design point selection are sched-
uled sequentially. Related research that addresses the
temporal partitioning issue involves partitioning gate-
level designs [37]. Since the design to be partitioned
is already synthesized, different synthesis options for
achieving lesser latency partitioned solutions cannot be
explored.

4.3. Configuration controller synthesis technique

The strategy for implementing a configuration controller
has been reported in Ref. [26], which presented a simulation
tool for DR FPGAs and introduced a new technique called
dynamic circuit switching (DCS) for simulation purposes
[24]. The tool can also be used as a means of specifying
the behavior of the reconfiguration controller used to control
a dynamically reconfigurable system. However, no existing
tools permit the reconfiguration controller to be synthesized
automatically from the high-level specification.

4.4. Library-based approach

To provide realistic estimates on technology-dependent
metrics at various stages during the high-level synthesis
process (temporal partitioning, scheduling and binding),
high-level synthesis systems must provide a library server
of generic functional modules. The parameterized FPGA
libraries are becoming increasingly popular in the high-
level synthesis process [22]. However, reconfigurable
designs impose additional requirements on the parameter-
ized FPGA libraries to support dynamic reconfiguration.
The libraries will be used in the high-level synthesis
process, they must be enhanced with information about
the amount of resources consumed and the reconfiguration
time associated with each configuration.

4.5. High-level synthesis framework for dynamically
reconfigurable design

To produce a usable framework for the high-level synth-
esis of dynamically reconfigurable designs, the desirable
features for a synthesis system can be summarized as
follows:

• support for partitioning of an application subjected to
complex dynamic resource and interface constraints;

• ability to produce a wide range of implementations that
are fully or partially reconfigurable;

• support for synthesizing reconfiguration controller
structures automatically;

• support for simulating, optimizing and validating recon-
figurable designs.

Lysaght and Stockwood [24] have developed a simulation
approach for dynamically reconfigurable systems. In their
methodology, a design description is annotated with infor-
mation on what signals will cause a given subcircuit to be
loaded into hardware, and how long the reconfiguration
process takes. This initial description is then transformed
automatically into a new description with explicit isolation
switches between the subcircuits controlled by schedulers
based upon the circuit annotations. Whenever a given
component should not be present in the FPGA, or has not
yet been completely loaded into the chip, these isolation
switches set the value of all those subcircuit signals to
unknown. Thus, any circuitry that is sensitive to the value
of signals from circuitry that is not currently loaded will also
go to the unknown state, demonstrating the logical flow.
When the circuit is properly loaded into the FPGA, the
isolation switches simply pass on all signal values. This
new representation of the circuit can now be simulated
normally allowing standard software simulators to support
the execution of dynamically reconfigurable systems.

Another system which is concerned with an integrated
synthesis and partitioning strategy for adaptive and reconfi-
gurable computer systems is the SPARCS system, which is
an integrated design environment for partitioning and
synthesizing behavioral specifications onto multi-FPGAs
[17,43]. This system contains a temporal partitioning tool
to temporally divide and schedule the tasks on to the recon-
figurable architecture; a spatial partitioning tool to map the
tasks to individual FPGA. One of the unique features of the
SPARCS system is the tight integration of the architecture-
independent partitioning and synthesis techniques to accu-
rately predict and control design performance and resource
utilization. Although SPARCS allows the system to be
specified using task-level modules, the partitioning and
synthesis techniques applied in these modules consider
only one task at a time, preventing the synthesis from utiliz-
ing the degrees of freedom from the other tasks during the
synthesis of a single module.

5. Future directions

Many research projects have been carried out, however,
the high-level synthesis for dynamically reconfigurable
application is still in its infancy. There are a number of
areas where high-level synthesis must continue to develop
if it is to become a useful tool in designing dynamically
reconfigurable systems. Some of these are specific design
problems that still need to be solved:

• Dynamic reconfigurability is still one of the most

X. Zhang, K.W. Ng / Microprocessors and Microsystems 24 (2000) 199–211 209



important issues that need to be investigated further.
Future work should focus on developing more general
design models for representing the dynamic reconfigur-
able design, and on improving run-time support. To be an
effective design model for dynamically reconfigurable
designs, the model must support not only the definition
and enforcement of the constraints required by dynami-
cally reconfigurable designs, but it must allow for a
dynamic structured approach that can be used to abstract,
analyze and synthesize designs which contain elements
that can be reconfigured at run-time.

• Prior to logic or layout synthesis, some means of estimat-
ing the reconfiguration metrics are necessary so that
system performance evaluation can be taken into account
as early in the design process as possible. Work must be
carried out in dealing with the interaction between high-
level synthesis and layout. The high-level synthesis inter-
face with logic synthesis is still a neglected issue.

• Techniques need to be developed for parameterized
libraries to support reconfiguration.

• High-level synthesis for dynamically reconfigurable
applications that can synthesize dynamic reconfiguration
implementations from C, C11 or Java language descrip-
tions must be developed.

Acknowledgements

The work described in this paper was partly supported by
the following grants: the Research Grants Council of the
Hong Kong Special Administrative Region (Direct Grant
for Research 1998/99—Project Code: 2050196; Earmarked
Grant 1999/2000—CUHK4408/99E); and Yunnan
Province Young Scholar Grant.

References

[1] U. Apel, On-line software extension and modification, Electrical
Communication 64 (4) (1990) 66–72.

[2] Atmel Inc, AT 6000 Series, 1997.
[3] M. Butts, Future directions of dynamically reprogrammable systems,

Proceedings of the IEEE 1995 Custom Integrated Circuits Confer-
ence, 1995, pp. 487–494.

[4] S. Casselman, Virtual computing and the virtual computer, in:
Proceedings of the IEEE Workshop FPGA for Custom Computing
Machines, IEEE Computer Society Press, 1994, pp. 31–39.

[5] A. DeHon, DPGA-coupled microprocessor: commodity Ics for the
early 21st century, in: Proceedings of the IEEE Workshop FPGA
for Custom Computing Machines, Napa, CA, 1993, pp. 43–48.

[6] J.G. Eldredge, B.L. Hutchings, Density enhancement of a neural
network using FPGAs and run-time reconfiguration, in: D.A. Buell,
K.L. Pocek, (Eds.), Proceedings of IEEE Workshop on FPGAs for
Custom Computing Machines, Napa, CA, April 1994, pp. 180–188.

[7] R.K. Gupta, Co-synthesis of Hardware and Software for Digital
Embedded Systems, Kluwer Academic, Dordrecht, 1995.

[8] J.D. Hadley, B.L. Hutchings, Design Methodologies for Partially
Reconfigured Systems, T. R., Department of Electrical and Computer
Engineering, Brigham Young University.

[9] S. Hauck, A. Agarwal, Software Technologies for Reconfigurable
Systems, Northwestern University, Department of ECE, Technical
report, 1996.

[10] S. Hauck, The roles of FPGAs in reprogrammable systems, Proceed-
ings of the IEEE 86 (4) (1998) 615–638.

[11] R.D. Hudson, D.I. Lehn, P.M. Athanas, A run-time reconfigurable
engine for image interpolation, IEEE Symposium on FPGAs for
Custom Computing Machines, 1998.

[12] B.L. Hutchings, M.J. Wirthlin, Implementation approaches for recon-
figurable logic applications, in: Proceedings of Fifth International
workshop on Field-Programmable Logic and Application, 1995, pp.
419–428.

[13] B.L. Hutchings, Exploiting reconfigurability through domain-specific
systems, in: Proceedings of Seventh International Workshop, FPL’97,
London, UK, 1997, pp. 193–202

[14] R. Jain, A. Sharma, H. Wang, Empirical evaluation of some high-
level synthesis scheduling heuristics, in: Proceedings of the 28th
ACM/IEEE Design Automation Conference, June 1991, pp. 210–
215.

[15] M. Karthikeya, P. Gajjala, B. Dinesh, Temporal partitioning and
scheduling data flow graphs for reconfigurable computer, IEEE
Transactions on Computers 48 (6) (1999) 579–590.

[16] M. Kaul, R. Vemuri, Temporal partitioning combined with design
space exploration for latency minimization of run-time reconfigured
designs: Proceedings of the Design, Automation and Test in Europe
Conference, 1999, pp. 202–209.

[17] M. Kaul, R. Vemuri, Optimal Temporal Partitioning and Synthesis for
Reconfigurable Architectures, Design, Automation, and Test in
Europe Conference, 1998, pp. 389–396.

[18] S. Kung, VLSI Array Processors, Prentice-Hall, USA, 1988.
[19] E. Lemoine, D. Merceron, Run time reconfiguration of FPGAs for

scanning genetic databases, in Proceedings FCCM95, 1995, pp. 85–
89.

[20] Y.L. Lin, Recent developments in high-level synthesis, ACM Trans-
actions on Design of Electronic System 2 (1) (1997) 2–21.

[21] T.W. Luk, I. Page, Hardware–software codesign of multidimensional
programs, in: Proceedings. FCCM’94, 1994, pp. 82–90.

[22] W. Luk, S. Guo, N. Shirazi, N. Zhang, Field-Programmable Logic,
Smart Applications, New Paradigms and Compilers, LNCS 1142,
Springer, Germany, 1996 (pp. 24–33).

[23] W. Luk, N. Shirazi, P.Y.K. Cheung, Modeling and optimizing run-
time reconfigurable system, in: Proceedings of the FCCM96, IEEE
Computer Society Press, 1996, pp. 167–176

[24] P. Lysaght, J. Stockwood, A simulation tool for dynamically recon-
figurable field programmable gate arrays, IEEE Transactions on VLSI
4 (3) (1996) 381–390.

[25] P. Lysaght, J. Dunlop, Dynamic reconfiguration of FPGAs, in: W.
Moore, W. Luk, (Eds.), More FPGAs: Proceedings of the Interna-
tional Workshop on Field-programmable Logic and Applications,
1993, pp. 82–94.

[26] P. Lysaght, G.M. Gregor, Controller synthesis for dynamically recon-
figurable systems, in: IEEE Colloquium on Hardware-Software
Cosynthesis for Reconfigurable Systems, UK, February 1996.

[27] P. Lysaght, H. Dick, G. McGregor, D. McConnell, J. Stockwood, in:
Prototyping environment for dynamically reconfigurable logic, in:
Proceedings of Fifth International Workshop on Field-Programmable
Logic and Applications, 1995, pp. 409–418.

[28] P. Lysaght, J. Stockwood, J. Law, D. Grima, Artificial neural network
implementation on fine-grained FPGA, in: Proceedings of Fourth
International Workshop on FPGA and Applications, 1994, pp. 421–
431.

[29] D. Micheli, Synthesis and Optimisation of Digital Circuits, McGraw-
Hill, New York, 1994.

[30] J.V. Oldfield, R.C. Dorf, Field-Programmable Gate Arrays: Recon-
figurable Logic for Rapid Prototyping and Implementation of Digital
systems, Wiley, London, New York, 1995.

[31] I. Ouaiss, An integrated partitioning and synthesis system for

X. Zhang, K.W. Ng / Microprocessors and Microsystems 24 (2000) 199–211210



dynamically reconfigurable multi-FPGA architectures, in: Fifth
Reconfigurable Architectures Workshop (RAW’98), 1998,http://
xputers.informatik.uni-kl.de/RAW/RAW98/adv_prg_RAW98.html.

[32] I. Ouaiss, S. Govindarajan, V. Srinivasan, R. Vemuri, A unified speci-
fication model of concurrency and coordination for synthesis from
VHDL, in: Proceedings of International Conference on Information
Systems Analysis and Synthesis (ISAS’9), 1998,http://www.ececs.
uc.edu/,ddel.

[33] K. Rath, J. Li, Synthesizing reconfigurable sequential machines using
tabular models, in: Fifth Reconfigurable Architectures Workshop
(RAW’98), 1998.

[34] A.W. Robert, R. Camposano, A Survey of High-level Synthesis
Systems, Kluwer Academic, Dordrecht, 1994.

[35] O.V. Ross, M. Turner, An FPGA-based hardware accelerator for
image processing, in: W. Moore, W. Luk, (Eds.), More FPGAs,
1994, pp. 299–306.

[36] E. Sanchez, M. Sipper, J.O. Haenni, P.U. Andres, Static and dynamic
configurable systems, IEEE Transactions on Computers 48 (6) (1999)
556–564.

[37] J. Spillane, H. Owen, Temporal partitioning for partially-reconfigur-
able-field-programmable gate, in: Proceedings in Reconfigurable
Architectures Workshop in IPPS/SPDP’98, 1998.

[38] U. Steinhausen, R. Camposano, System synthesis using hardware/
software codesign, in: Proceedings of International Workshop on
hardware–Software Co-Design, 1993.

[39] S.M. Trimberger, Field-Programmable Gate Array Technology,
Kluwer Academic, Dordrecht, 1994.

[40] M. Vasilko, D. Ait-Boudaoud, Architectural synthesis techniques for
dynamically reconfigurable logic, Lecture Notes in Computer Science
1142, pp. 290–296.

[41] M. Vasilko, D. Ait-Boudaoud, Scheduling for dynamically reconfi-
gurable FPGAs, in: Proceedings of International Workshop on Logic
and Architecture Synthesis, 1995, pp. 328–336.

[42] S. Vincentelli, Some considerations of field programmable gate arrays
and their impact on system design, in: Proceedings of the Second
International workshop on Field Programmable Logic, Vienna,
Austria, September 1992, pp. 26–34.

[43] M.J. Wirthlin, Improving Functional Density Through Run-time
Circuit Reconfiguration, PhD thesis, Department of Electrical and
Computer Engineering, Brigham Young University, 1997.

[44] M.J. Wirthlin, B.L. Hutchings, Improving functional density through
run-time constant propagation, in: Proceedings of ACM/SIGDA
International Symposium on Field Programmable Gate Arrays,
1997, pp. 86–92.

[45] M.J. Wirthlin, B.L. Hutchings, Sequencing run-time reconfigured
hardware with software, in: ACM/SIGD International Symposium
on Field Programmable Gate Arrays, 1996.

[46] Xilinx Inc,http://www.xilinx.com/products/virtex.htm.
[47] Xilinx Inc: Virtex Series FPGAs—Redefining the FPGA, http://

www.xilinx.com/products/virtex.htm, 1999.

X. Zhang, K.W. Ng / Microprocessors and Microsystems 24 (2000) 199–211 211


