
GCC Internals: A Conceptual View – Part I

Abhijat Vichare

CFDVS,

Indian Institute of Technology, Bombay

January 2008

A.Vichare GCC Internals

Plan

Part I

GCC: Conceptual Structure

C Program through GCC

Building GCC

Part II

Gimple

The MD-RTL and IR-RTL Languages in GCC

GCC Machine Descriptions

A.Vichare GCC Internals

Part I

GCC Architecture Concepts

A.Vichare GCC Internals

The GNU Tool Chain (1:1:2)

gcc

Source Program

Target Program

A.Vichare GCC Internals

The GNU Tool Chain (1:1:2)

gcc

Source Program

Target Program

cc1 cpp

A.Vichare GCC Internals

The GNU Tool Chain (1:1:2)

gcc

Source Program

Target Program

cc1 cpp

A.Vichare GCC Internals

The GNU Tool Chain (1:1:2)

gcc

Source Program

Target Program

cc1 cpp

as

A.Vichare GCC Internals

The GNU Tool Chain (1:1:2)

gcc

Source Program

Target Program

cc1 cpp

as

ld

A.Vichare GCC Internals

The GNU Tool Chain (1:1:2)

gcc

Source Program

Target Program

cc1 cpp

as

ld

glibc/newlib

A.Vichare GCC Internals

The GNU Tool Chain (1:1:2)

gcc

Source Program

Target Program

cc1 cpp

as

ld

glibc/newlib

GCC

A.Vichare GCC Internals

Usual Compilation Phase Sequence vs. GCC

A Typical “Text Book” Compiler Phase Sequence

Parsing
Semantic
Analysis

Optimization
Target
Code

Generation

A.Vichare GCC Internals

Usual Compilation Phase Sequence vs. GCC

A Typical “Text Book” Compiler Phase Sequence

Parsing
Semantic
Analysis

Optimization
Target
Code

Generation

GCC is:

Retargetable: Can generate code for many back ends

Re-sourcable: Can accept code in many HLLs

A.Vichare GCC Internals

Usual Compilation Phase Sequence vs. GCC

A Typical “Text Book” Compiler Phase Sequence

Parsing
Semantic
Analysis

Optimization
Target
Code

Generation

The GCC Phase Sequence looks like

Parsing
Semantic
Analysis

Optimization
Target
Code

Generation

GCC is:

Retargetable: Can generate code for many back ends

Re-sourcable: Can accept code in many HLLs

A.Vichare GCC Internals

Usual Compilation Phase Sequence vs. GCC

A Typical “Text Book” Compiler Phase Sequence

Parsing
Semantic
Analysis

Optimization
Target
Code

Generation

The GCC Phase Sequence looks like

Parsing
Semantic
Analysis

Optimization
Target
Code

Generation

Add HLL
selection

ability

Parametrise
wrt. front and
back end

Add back end
Code Gen.

ability

GCC is:

Retargetable: Can generate code for many back ends

Re-sourcable: Can accept code in many HLLs

A.Vichare GCC Internals

Implications of Retargetability in GCC

Retargetability

Choose target at build time than at development time

Hence : there are Three time durations associated with GCC

1 tdevelop: The Development time (the “gcc developer” view)

2 tbuild : The Build time (the “gcc builder” view)

3 top: The Operation time (the “gcc user” view)

The downloaded GCC sources . . .

. . . correspond to the “gcc developer” view, and

. . . are ready for “gcc builder” view.

A.Vichare GCC Internals

The GCC Compiler Generation Framework (2:1:3)

HLL Specific
Code, per HLL

Language and
Machine

Independent
Generic Code

Machine
dependent

Generator Code

Set of Machine
Descriptions

GCC

tdev

Parser Genericizer Gimplifier
Tree SSA
Optimizer

RTL
Generator

Optimizer
Code

Generator

cc1/gcc

A.Vichare GCC Internals

The GCC Compiler Generation Framework (2:1:3)

HLL Specific
Code, per HLL

Language and
Machine

Independent
Generic Code

Machine
dependent

Generator Code

Set of Machine
Descriptions

GCC

tdev

Parser Genericizer Gimplifier
Tree SSA
Optimizer

RTL
Generator

Optimizer
Code

Generator

cc1/gcc

tbuild

Choose HLL

Selected

A.Vichare GCC Internals

The GCC Compiler Generation Framework (2:1:3)

HLL Specific
Code, per HLL

Language and
Machine

Independent
Generic Code

Machine
dependent

Generator Code

Set of Machine
Descriptions

GCC

tdev

Parser Genericizer Gimplifier
Tree SSA
Optimizer

RTL
Generator

Optimizer
Code

Generator

cc1/gcc

tbuild

Choose HLL

Selected Copied

A.Vichare GCC Internals

The GCC Compiler Generation Framework (2:1:3)

HLL Specific
Code, per HLL

Language and
Machine

Independent
Generic Code

Machine
dependent

Generator Code

Set of Machine
Descriptions

GCC

tdev

Parser Genericizer Gimplifier
Tree SSA
Optimizer

RTL
Generator

Optimizer
Code

Generator

cc1/gcc

tbuild

Choose HLL

Selected Copied

Choose Target MD

Generated

A.Vichare GCC Internals

The GCC Compiler Generation Framework (2:1:3)

HLL Specific
Code, per HLL

Language and
Machine

Independent
Generic Code

Machine
dependent

Generator Code

Set of Machine
Descriptions

GCC

tdev

Parser Genericizer Gimplifier
Tree SSA
Optimizer

RTL
Generator

Optimizer
Code

Generator

cc1/gcc

top

Source Program Assembly Program

A.Vichare GCC Internals

Is GCC complex?

As a Compiler . . .

. . . Architecture? – Not quite!

. . . Implementation? – Very much!

Architecture wise:

1 Superficially: GCC is similar to “typical” compilers!

2 Deeper down: Differences are due to: Retargetability

⇒ GCC can be (and is) used as a Cross Compiler !

Implementation wise: . . . ? (Next slides)

A.Vichare GCC Internals

Some Interesting Facts about GCC 4.0.2 (1:1:3)

Pristine compiler sources (downloaded tarball)

Lines of C code 1098306
Lines of MD code 217888
Lines of total code 1316194
Total Authors (approx) 63
Backend directories 34

For the targetted (= pristine + generated) C compiler

Total lines of code 810827
Total lines of pure code 606980
Total pure code WITHOUT #include 602351
Total number of #include directives 4629
Total #include files 336

A.Vichare GCC Internals

Some Interesting i386 MD Facts (1:1:4)

General information

Number of .md files 8
Number of C files 72

Realistic code size information (excludes comments)

Total lines of code 47290
Total lines of .md code 23566
Total lines of header code 9986
Total lines of C code 16961

A.Vichare GCC Internals

Part II

C Program through GCC

A.Vichare GCC Internals

C Program: Journey through GCC (1:1:6,7)

Conceptually

Input

Practically . . .

The Source

int f(char *a)

{

int n = 10; int i, g;

i = 0;

while (i < n) {

a[i] = g * i + 3;

i = i + 1;

}

return i;

}

A.Vichare GCC Internals

C Program: Journey through GCC (1:1:6,7)

Conceptually

Input

Parse (AST)

Practically . . .

Simplified AST

FnDecl

RetType Body Args

Decl StmtList

Stmt1 modify expr

i 0

Stmt2 while stmt

bool expr Body

A.Vichare GCC Internals

C Program: Journey through GCC (1:1:6,7)

Conceptually

Input

Parse (AST)

IR1 (Gimple)

Practically . . .

Gimple IR

f (a)

{

unsigned int i.0; char * i.1;

char * D.1140; int D.1141;

...

goto <D1136>;

<D1135>: ...

D.1140 = a + i.1;

D.1141 = g * i;

...

<D1136>:

if (i < n) goto <D1135>;

...

}

A.Vichare GCC Internals

C Program: Journey through GCC (1:1:6,7)

Conceptually

Input

Parse (AST)

IR1 (Gimple)

Optimization

Practically . . .

Tree SSA form

f (a)

{

... int D.1144; ...

<bb 0>: n_2 = 10; i_3 = 0;

goto <bb 2> (<L1>);

<L0>: ...

D.1140_9 = a_8 + i.1_7;

D.1141_11 = g_10 * i_1;

...

<L1>:;

if (i_1 < n_2) goto <L0>;

else ...;

...

}

A.Vichare GCC Internals

C Program: Journey through GCC (1:1:6,7)

Conceptually

Input

Parse (AST)

IR1 (Gimple)

Optimization

IR2 (RTL)

Practically . . .

RTL IR (fragment)

(insn 21 20 22 2 (parallel [

(set (reg:SI 61 [D.1141])

(mult:SI (reg:SI 66)

(mem/i:SI

(plus:SI

(reg/f:SI 54 ...)

(const_int -8 ...)))))

(clobber (reg:CC 17 flags))

]) -1 (nil)

(nil))

A.Vichare GCC Internals

C Program: Journey through GCC (1:1:6,7)

Conceptually

Input

Parse (AST)

IR1 (Gimple)

Optimization

IR2 (RTL)

ASM Code

Practically . . .

Final ASM (partial)

.file "sample.c"

...

f:

pushl %ebp

...

movl -4(%ebp), %eax

imull -8(%ebp), %eax

addb $3, %al

...

leave

ret

...

A.Vichare GCC Internals

Front End Processing Sequence in cc1 and GCC (2:1:5)

toplev_main () toplev.c

general_init () toplev.c

decode_options () toplev.c

do_compile () toplev.c

compile_file() toplev.c

lang_hooks.parse_file () toplev.c

c_parse_file () c-parser.c

c_parser_translation_unit () c-parser.c

c_parser_external_declaration () c-parser.c

c_parser_declaration_or_fndef () c-parser.c

finish_function () c-decl.c

/* TO: Gimplification */

Tip

Use the functions above as breakpoints in gdb on cc1.

A.Vichare GCC Internals

GIMPLE Phase sequence in cc1 and GCC (2:1:10)

Creating GIMPLE representation in cc1 and GCC

c_genericize() c-gimplify.c

gimplify_function_tree() gimplify.c

gimplify_body() gimplify.c

gimplify_stmt() gimplify.c

gimplify_expr() gimplify.c

lang_hooks.callgraph.expand_function()

tree_rest_of_compilation() tree-optimize.c

tree_register_cfg_hooks() cfghooks.c

execute_pass_list() passes.c

/* TO: Gimple Optimisations passes */

A.Vichare GCC Internals

The Tree passes list (2:1:11)

(Partial) Passes list (tree-optimize.c) (∼ 70 passes)

pass_remove_useless_stmts // Pass

pass_lower_cf // Pass

pass_all_optimizations // Optimiser

pass_build_ssa // Optimiser

pass_dce // Optimiser

pass_loop // Optimiser

pass_complete_unroll // Optimiser

pass_loop_done // Optimiser

pass_del_ssa // Optimiser

pass_warn_function_return // Optimiser

pass_expand // RTL Expander

pass_rest_of_compilation // RTL passes

A.Vichare GCC Internals

GCC Tree Passes: Code organisation (2:1:13)

Tree Pass Organisation

Data structure records pass info: name, function to execute
etc. (struct tree opt pass in tree-pass.h)

Instantiate a struct tree opt pass variable in each pass
file.

List the pass variables (in passes.c).

Dead Code Elimination (tree-ssa-dce.c)

struct tree_opt_pass pass_dce = {

"dce", // pass name

tree_ssa_dce, // fn to execute

NULL, // sub passes

... // and much more

};

A.Vichare GCC Internals

RTL Pass Structure in cc1 and GCC (2:1:19)

Gimple → non-strict RTL translation

non-strict RTL passes – information extraction &
optimisations

non-strict → strict RTL passes

/* non strict RTL expander pass */

pass_expand_cfg cfgexpand.c

expand_gimple_basic_block () cfgexpand.c

expand_expr_stmt () stmt.c

expand_expr () stmt.c

/* TO: non strict RTL passes:

* pass_rest_of_compilation

*/

A.Vichare GCC Internals

RTL Passes (2:1:20)

Driver: passes.c:rest of compilation ()

Basic Structure: Sequence of calls to
rest of handle * () + bookkeeping calls. (over 40 calls!)

Bulk of generated code used here!
(generated code in: $GCCBUILDDIR/gcc/*.[ch])

Goals:

Optimise RTL
Complete the non strict RTL

Manipulate

either the list of RTL representation of input,
or contents of an RTL expression,
or both.

Finally: call rest of handle final ()

A.Vichare GCC Internals

RTL → Target ASM (2:1:26)

passes.c:rest of handle final() calls

assemble_start_function (); varasm.c

final_start_function (); final.c

final (); final.c

final_end_function (); final.c

assemble_end_function (); varasm.c

A.Vichare GCC Internals

Part III

Building GCC

A.Vichare GCC Internals

Building a Compiler: General issues I (1:1:14)

Some Terminology

The sources of a compiler are compiled (i.e. built) on machine
X
X is called as the Build system

The built compiler runs on machine Y
Y is called as the Host system

The compiler compiles code for target Z
Z is called as the Target system

Note: The built compiler itself runs on the Host machine and
generates executables that run on Target machine!!!

A.Vichare GCC Internals

Building a Compiler: General issues II (1:1:15)

Some Definitions

Note: The built compiler itself runs on the Host machine and
generates executables that run on Target machine!!!

A few interesting permutations of X, Y and Z are:

X = Y = Z Native build
X = Y 6= Z Cross compiler
X 6= Y 6= Z Canadian Cross compiler

Example

Native i386: built on i386, hosted on i386, produces i386 code.
Sparc cross on i386: built on i386, hosted on i386, produces Sparc
code.

A.Vichare GCC Internals

Building a Compiler:

Bootstrapping

A compiler is just another program

It is improved, bugs are fixed and newer versions are released

To build a new version given a built old version:
1 Stage 1: Build the new compiler using the old compiler
2 Stage 2: Build another new compiler using compiler from

stage 1
3 Stage 3: Build another new compiler using compiler from

stage 2
Stage 2 and stage 3 builds must result in identical compilers

⇒ Building cross compilers stops after Stage 1!

A.Vichare GCC Internals

GCC Code Organization Overview (1:1:11)

GCC Components are:

Build configuration files

Compiler sources

Emulation libraries

Language Libraries (except C)

Support software (e.g. garbage collector)

Our conventions

GCC source directory : $(GCCHOME)
GCC build directory : $(GCCBUILDDIR)
GCC install directory : $(GCCINSTALLDIR)

$(GCCHOME) 6= $(GCCBUILDDIR) 6= $(GCCINSTALLDIR)

A.Vichare GCC Internals

The GCC Build System I (1:1:16)

Some Information

Build-Host-Target systems inferred for native builds

Specify Target system for cross builds
Build ≡ Host systems: inferred

Build-Host-Target systems can be explicitly specified too

For GCC: A “system” = three entities

“cpu”
“vendor”
“os”

e.g. sparc-sun-sunos, i386-unknown-linux,
i386-gcc-linux

A.Vichare GCC Internals

The GCC Build System II (1:1:17,19)

Basic GCC Building How To

prompt$ cd $GCCBUILDDIR

prompt$ configure <options>

Specify target: optional for native builds, necessary for others
(option --target=<host-cpu-vendor string>)
Choose source languages
(option --enable-languages=<CSV lang list (c,java))
Specify the installation directory
(option --prefix=<absolute path of $(GCCBUILDDIR)>)

⇒ configure output: customized Makefile

prompt$ make 2> make.err > make.log

prompt$ make install 2> install.err > install.log

Tip

• Run configure in $(GCCBUILDDIR).
• See $(GCCHOME)/INSTALL/.

A.Vichare GCC Internals

Adding a New MD (1:1:18)

To add a new backend to GCC

Define a new system name, typically a triple.
e.g. spim-gnu-linux

Edit $GCCHOME/config.sub to recognize the triple

Edit $GCCHOME/gcc/config.gcc to define

any backend specific variables
any backend specific files
$GCCHOME/gcc/config/<cpu> is used as the backend
directory

for recognized system names.

Tip

Read comments in $GCCHOME/config.sub &
$GCCHOME/gcc/config/<cpu>.

A.Vichare GCC Internals

The GCC Build Process I (1:1:20)

GCC builds in two main phases:

Adapt the compiler source for the specified build/host/target
systems
Consider a cross compiler:

Find the target MD in the source tree
“Include” MD info into the sources
(details follow)

Compile the adapted sources

NOTE:

Incomplete MD specifications ⇒ Unsuccessful build
Incorrect MD specification ⇒ Run time failures/crashes
(either ICE or SIGSEGV)

A.Vichare GCC Internals

The GCC Build Process (1:1:21)
Adapting the Compiler Sources

make first compiles and runs a series of programs that process
the target MD

Typically, the program source file names are prefixed with gen
The $GCCHOME/gcc/gen*.c programs

read the target MD files, and
extract info to create & populate the main GCC data
structures

Example

Consider genconstants.c:

<target>.md may define UNSPEC * constants.

genconstants.c – reads UNSPEC * constants

genconstants.c – generates corresponding #defines

Collect then into the insn-constants.h

#include "insn-constants.h" in the main GCC sources

A.Vichare GCC Internals

The GCC Build Process
Adapting the Compiler Sources – Pictorial view

Target Compiler
Data Structures

Target Compiler
Source Generation

struct c_test insn_conditions[],
size_t n_insn_conditions

enum insn_code {
 CODE_FOR_(md inst)= ..
 ...
};

RTX exmission functions
for every insn in MD file

Extract operands of RTL
instructions in MD file

Writes a function that initialises
an array with the code for
each insn/expand in MD file

Extract peephole optimisation
information in MD files

HAVE_ATTR_(md_inst_attribs)

GCC_INSN_CONSTANTS_H

HAVE_(md instructions)

genattr

gencodes

genconfig

genflags

genconstants

genconditions

genemit

genextract

genopinit

genpeep

insn−attr.h

insn−codes.h

insn−config.h

insn−flags.h

insn−constants.c

insn−conditions.c

insn−emit.c

insn−extract.c

insn−opinit.c

insn−peep.c

gensupport.c

ggc−none.c
bitmap.c

errors.c

print−rtl1.c

read−rtl.c
rtl.c

libiberty.a

Target
Machine
Description

GCC Sources

A.Vichare GCC Internals

Building GCC – Summary (1:1:23)

Choose the source language: C
(--enable-languages=c)

Choose installation directory:
(--prefix=<absolute path>)

Choose the target for non native builds:
(--target=sparc-sunos-sun)

Run: configure with above choices

Run: make to

generate target specific part of the compiler
build the entire compiler

Run: make install to install the compiler

Tip

Redirect all the outputs:
$ make > make.log 2> make.err

A.Vichare GCC Internals

	GCC Architecture Concepts
	C Program through GCC
	Building GCC

