234 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 17, NO. 2, FEBRUARY 2009

Exploiting Application Data-Parallelism on
Dynamically Reconfigurable Architectures:
Placement and Architectural Considerations

Sudarshan Banerjee, Member, IEEE, Elaheh Bozorgzadeh, Member, IEEE, and Nikil Dutt, Fellow, IEEE

Abstract—Partial dynamic reconfiguration, often called
run-time reconfiguration (RTR), is a key feature in modern
reconfigurable platforms. In this paper, we present parallelism
granularity selection (PARLGRAN), an application mapping
approach that maximizes performance of application task chains
on architectures with such capability. PARLGRAN essentially
selects a suitable granularity of data-parallelism for individual
data parallel tasks while considering key issues such as significant
reconfiguration overhead and placement constraints. It integrates
granularity selection very effectively in a joint scheduling and
placement formulation, necessary due to constraints imposed
by partial RTR. As a key step to validating PARLGRAN, we
additionally present an exact strategy (integer linear program-
ming formulation). We demonstrate that PARLGRAN generates
high-quality schedules with: 1) a set of small test cases where we
compare our results with the exact strategy; 2) a very large set of
synthetic experiments with over a thousand data-points where we
compare it with a simpler strategy that tries to statically maximize
data-parallelism, i.e., only considers resource availability; and 3) a
detailed application case study of JPEG encoding. The application
case-study confirms that blindly maximizing data-parallelism can
result in schedules even worse than that generated by a simple (but
RTR-aware) approach oblivious to data-parallelism. Last, but
very important, we demonstrate that our approach is well-suited
for true on-demand computing with detailed execution time
estimates on a typical embedded processor. Heuristic execution
time is comparable to task execution time, i.e., it is feasible to
integrate PARLGRAN in a run-time scheduler for dynamically
reconfigurable architectures.

Index Terms—Dynamic reconfiguration, program paralleliza-
tion.

I. INTRODUCTION

ECONFIGURABLE architectures are popular for ap-
R plications with intensive computation such as image
processing, cryptography, etc., since a limited amount of logic
can be customized to set up deep pipelines, and/or exploit more
coarse-grain parallelism. Partial dynamic reconfiguration, or
run-time reconfiguration (RTR), allows additional customiza-
tion during application execution enabling true on-demand
computing. A device with partial RTR capability is shared
by multiple dynamically invoked applications. Each dynami-
cally invoked application is assigned a set of logic resources

Manuscript received June 21, 2007; revised November 30, 2007. Current ver-
sion published January 14, 2009.

S. Banerjee is currently with Liga Systems, Sunnyvale, CA 94089 USA
(e-mail: banerjee @ics.uci.edu).

E. Bozorgzadeh and N. Dutt are with the Center for Embedded Computer
Systems, University of California, Irvine, CA 92697 USA.

Digital Object Identifier 10.1109/TVLSI.2008.2003490

depending upon system capacity and resource requirements
of other applications concurrently active on the same device,
and partial RTR makes it feasible for the application to obtain
higher performance from a limited set of resources [1]. In this
context, our overall goal is to maximize performance of indi-
vidual applications represented as precedence-constrained task
directed acyclic graphs (DAGs) on single-context architectures
with partial RTR (Xilinx Virtex-II is a commercial instance of
such architectures). Some key issues in mapping applications
onto such devices are the significant reconfiguration delay
overhead, physical (placement) constraints, etc.

In this paper, we focus on precedence-constrained task
chains, common in image-processing applications such as
JPEG encoding, Sobel filters, Laplace filters, etc., [2], [3]. In
such applications, area-execution time characteristics of key
tasks such as IDCT, Quantize, etc., are predictable because of
complete pipelining. Additionally, many computation-intensive
tasks such as DCT are completely data-parallel, i.e., results of
task execution on a block of data are invariant even if the task
processed some other disjoint block of data before the current
data block.! On an architecture with partial RTR, it is possible
to improve application execution time by dynamically adjusting
the parallelism granularity of such data-parallel tasks, i.e.,
reconfiguring the architecture to instantiate multiple copies of
such tasks during application execution—each copy (instance)
uses an identical amount of hardware logic resources, but
processes only part of the data. Due to complete pipelining,
execution time of such tasks is directly proportional to the
volume of data processed, and thus, reducing the data volume
proportionately improves (reduces) the application execution
time. Note that on architectures with no partial RTR, the scope
of exploiting such data-parallelism is much more limited—par-
tial RTR enables resource reuse, significantly expanding the
potential of exploiting data-parallelism.

As an example, we consider a simple chain with two tasks,
as shown in Fig. 1. Assuming that there are enough resources
to simultaneously execute three copies of task 73 or two copies
of task 75, Fig. 1(b) and (c) show some possible task graph
configurations after such a transformation. However, such
a transformation can be quite costly on architectures with
partial RTR—each new task instance (copy) adds a signifi-
cant reconfiguration overhead. Therefore, the transformations
need to be guided by selecting the right granularity of paral-
lelism that masks the reconfiguration overhead and maximizes
performance. One important issue is that because of the recon-

'Huffman encoding is a well-known example of a task that does not have
data-parallelism property.

1063-8210/$25.00 © 2009 IEEE

Authorized licensed use limited to: Politechnika Lodzka. Downloaded on August 6, 2009 at 05:27 from IEEE Xplore. Restrictions apply.

BANERIJEE et al.: EXPLOITING APPLICATION DATA-PARALLELISM ON DYNAMICALLY RECONFIGURABLE ARCHITECTURES 235

(1) ® ® @)
@ (@) @ (b) {:@ @ (©

Fig. 1. Granularity of individual data-parallel tasks.

uaRT |

Processor
Dynamically

STATIC

LOGIC Reconfigurable

AN ‘ | !
INTER CONNECT]

Logic

|

(DDR, etc)

Fig. 2. On-demand computing environment.

figuration overhead, multiple instances of a task are typically
unable to start execution at the same time—thus, individual
execution time (workload) of the multiple instances may vary.

As the capacity of modern reconfigurable architectures con-
tinues to increase rapidly, suitably sized devices can accomodate
many of our target applications without needing partial RTR. In
this context, it is important to clarify that our work is motivated
by the following applications:

* maximizing performance from available smaller (and
cheaper) devices—this aspect includes Auge multimedia
applications such as the MPEG-4;

e more importantly, maximizing performance in a true
on-demand computing environment such as that shown in
Fig. 2. An embedded system includes a dynamically re-
configurable component shared by multiple on-demand
applications. When an on-demand application is ready to
execute, it is granted resources (logic area, etc.) subject to
resource usage of other currently active applications, and
partial RTR enables us to maximally exploit the available
resources. Note that such an embedded system may be
implemented completely on a large modern device such as
the Xilinx Virtex-5 XC5VLX330. Part of the logic in such
a device is statically configured for invariant functionality
(such as timers, memory controllers, etc.) and the other
part is dedicated to accelerating applications on demand
using partial RTR.

In such an on-demand computing environment, we addition-
ally require a semi-online application mapping (scheduling)
approach to maximize application performance with partial
RTR. We define a semi-online application execution scenario
as follows.

1) The application structure is known statically, i.e., pre-
decessor and successor of each individual task does not
change during application execution. This property is
satisfied by typical image-processing applications such
as Sobel filtering [4], JPEG decoding, etc. Addition-
ally, key scheduling parameters such as logic resource
requirement of each individual task are also available
statically.

2) When the application is invoked dynamically, it is allo-
cated a set of logic resources depending upon its run-
time environment.

3) A semi-online scheduling approach generates an appli-
cation execution schedule based on the static scheduling
parameters and two run-time parameters: (a) allocated
logic resources and (b) input image size.

4) The scheduled application starts execution.

That is, a semi-online scheduling approach allows an appli-
cation to adapt to key changes in its runtime environment—as
examples, change in available logic resources and change in
input image size directly affect the potential for performance im-
provement. This necessitates that the execution time of a semi-
online approach is low enough to be included in an operating
system for dynamically reconfigurable architectures [5], [6].2
Thus, measure of viability for a semi-online approach is cumula-
tive execution time defined as sum of schedule length generated
by approach and execution time of approach on an embedded
processor.

A. Paper Contributions

1) Granularity selection, scheduling, placement: In this
paper, we propose such a semi-online scheduling approach,
parallelism granularity selection (PARLGRAN), that maxi-
mizes application performance on architectures with partial
RTR by choosing the right parallelism granularity for each
individual data-parallel task. We define granularity as both the
number of instances (copies) of that task, and, the workload
(execution time) of each instance. Our approach considers
physical (placement) constraints, and utilizes configuration
prefetch [7] to reduce the latency. The key constraints of such
architectures necessitate joint scheduling and placement [§],
[9]. Our approach therefore, incorporates granularity selection
as an integral part of simultaneous scheduling and placement.
To the best of our knowledge, ours is the first effort towards
this difficult problem of semi-online application restructuring.

2) ILP, Detailed experiments, Case Study: As a key step in
understanding the problem and to validate quality of schedules
generated by our approach, we additionally present an exact
strategy (ILP). We present extensive experimental evidence
to validate our proposed approach. First, we demonstrate that
PARLGRAN generates results close to that of the exact (ILP)
formulation with a set of small test cases. Since the exact
strategy is very time consuming, we next present results on a
very large set of over a thousand synthetic experiments where
we compare against a simpler heuristic that tries to statically
maximize performance gain from data parallelism based on
resource availability only—average improvement in schedule
length is over 20%. We follow-up our experiments on synthetic
test cases with a detailed case study of JPEG encoding—the
experiments demonstrate that a simple (RTR-unaware) static
parallelization approach can end up generating schedules much
worse than a RTR-aware approach completely oblivious to
data-parallelism.

3) Semi-Online Capability: Finally, we have obtained de-
tailed execution time estimates of our approach on a typical em-
bedded processor, the PPC405 processor operating at a clock

2In scenarios where the image size and allocated resources are invariant at
run-time, we would of course precompute the schedule statically with much
less consideration for the one-time computation overhead.

Authorized licensed use limited to: Politechnika Lodzka. Downloaded on August 6, 2009 at 05:27 from IEEE Xplore. Restrictions apply.

236 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 17, NO. 2, FEBRUARY 2009

frequency of 400 MHz. The data indicates that execution time
of our approach is comparable to that of task execution time.
Equally importantly, for our application case study, cumula-
tive execution time monotonically improves. For a given image
size, as available area increases, (execution time of heuristic
+ schedule length generated by heuristic) monotonically de-
creases. Thus, PARLGRAN is well-qualified for semi-online
scheduling, i.e., for inclusion in an operating system for dynam-
ically reconfigurable devices.

II. RELATED WORK

While there exists a large body of work in mapping task
chains typical in image processing to reconfigurable architec-
tures, a significant amount of work such as [2] does not consider
dynamic reconfiguration. More recently, there has been a spurt
in work focussed on exploiting the powerful capabilities of par-
tial dynamic reconfiguration for image-processing/multimedia
applications [4], [10]-[12], etc. Our work is closely related to
work such as [4], [10], etc., that focus on task graph scheduling
with RTR-related constraints.

Recent work on scheduling application task graphs with
RTR-related constraints [4], [10], often do not focus on the
critical role played by placement on such architectures. Our
work focusses on joint scheduling and placement required on
architectures with partial RTR, similar to [8] and [13]. However,
prior work in joint scheduling and placement typically ignore
key architectural constraints such as the resource contention
due to a single reconfiguration controller, configuration prefetch
to reduce the reconfiguration latency, etc. Ignoring these key
issues makes the problem closer to the rectangle packing
problem [14] and does not realistically exploit RTR. Other
recent work such as [15] focus on the problem of configuration
reuse as an alternative strategy to reduce the reconfiguration
overhead, an aspect we do not address in this work.

Additionally, work on task-graph scheduling for such archi-
tectures [9], [10] typically does not include application restruc-
turing considerations. While [4] presents some application re-
structuring considerations, their work is completely oblivious to
placement concerns. Also, their target device is a multicontext
architecture with multiple concurrently active reconfiguration
processes. Commercially available devices with partial RTR are
single context architectures where only a single reconfiguration
process is active at any instant. (True multicontext architectures
such as Morphosys [16] incur a significant area overhead.) One
work that exploits data-parallelism in a single-context architec-
ture [17] simply considers the problem of maximizing perfor-
mance for a single task, without considering dependencies be-
tween tasks in a task graph—it also does not include detailed
placement considerations. To the best of our knowledge, this
work is the first effort that focuses specifically on techniques for
transforming applications on single-context architectures and
includes very detailed consideration of all partial RTR related
constraints such as placement, resource contention due to the
sequential reconfiguration mechanism, etc.

There is of course a vast body of knowledge in the compiler
domain on extracting parallelism from programs at different
levels of granularity [18]. Such compile-time techniques [19] are
typically unaware of partial RTR constraints (such as placement,
reconfiguration overhead)—equally importantly, compile-time

Aprf):lig:in 1Logical ?hared memory her
JUOOEO 0RO AT A
JO0OE00 O 0 00

|
= WOOUOEOUOE D 0R0D e
JO0OEOC0OE 00 [

[0

Width (CLB columns)

Fig. 3. Target dynamic architecture.

techniques also incur a high execution overhead, since they are
not intended for execution in an embedded environment. An-
other related work [10] has proposed a strategy based on Pareto
points to precompute schedules when there are a (known) lim-
ited number of parameter variations at run-time. Along with
being placement-unaware, this strategy is not fully capable of
exploiting a true on-demand computing environment. In our
paper, we explicitly focus on a low execution-complexity ap-
proach capable of maximally exploiting variability in task exe-
cution parameters (data size) and resource allocation in a run-
time scheduling environment.

III. PROBLEM OVERVIEW

A. Target Architecture

Our target dynamically reconfigurable device as shown in
Fig. 3 consists of a set of configurable logic blocks (CLB) ar-
ranged in a 2-D matrix. The basic unit of configuration for such
a device is a frame spanning the height of the device. A column
of resources consists of multiple frames. A task occupies a con-
tiguous set of columns. The reconfiguration time of a task is
directly proportional to the number of columns (frames) oc-
cupied by the task implementation. One key constraint is that
only one task reconfiguration can be active at any time instant.
An example of our target device is the Xilinx Virtex-II archi-
tecture where constraints such as dynamic tasks occupying a
contiguous set of columns are critical for realization of partial
run-time reconfiguration.

Note that our target device is capable of supporting multiple
concurrently executing applications, as shown in Fig. 3. When
an application is invoked, it is allocated a set of resources (CLB
columns) dependent on the current system state—partial RTR
enables the application to maximize performance from the lim-
ited set of allocated logic resources. Also, while we do not ex-
plicitly show it in Fig. 3, part of the target device is used for
static system functionality such as UARTS, operating system
functionality (such as a scheduler), etc.

B. Application Specification

A task T; executing on such a system can be represented
as a three-tuple (c;, t;, r;) where c¢; is the number of resource
columns occupied by the task, ¢; and r; are the execution time
and reconfiguration overhead, respectively. Each task needs to
be reconfigured before its execution is scheduled. The physical
constraints on such a device necessitates joint scheduling and
placement [8], [9].

Authorized licensed use limited to: Politechnika Lodzka. Downloaded on August 6, 2009 at 05:27 from IEEE Xplore. Restrictions apply.

BANERIJEE et al.: EXPLOITING APPLICATION DATA-PARALLELISM ON DYNAMICALLY RECONFIGURABLE ARCHITECTURES 237

In image processing applications, we often find chains (linear
sequences) of such tasks. For a chain of n tasks, (71, ...,Ty),
each task in the chain has exactly one predecessor and one suc-
cessor. Of course, the first task, 77, has no predecessor, and the
last task, 7;,, has no successor. A predecessor task utilizes a
shared memory mechanism to communicate necessary data to
its successor—this shared memory can be physically mapped to
local on-chip memory and/or off-chip memory depending upon
memory requirements of the application. Detailed discussion on
the specifics of memory organization, including strategies for
on-chip versus off-chip data mapping are beyond the scope of
this paper—we simply assume that the logical shared memory
provides sufficient bandwidth for our target applications. One
important aspect of our shared memory abstraction is that com-
munication time between two tasks is independent of their phys-
ical placement. (An example of a system architecture capable of
providing such an abstraction is available in [20].)

Such a chain of tasks can be executed in a pipelined fashion
when sufficient resources are available to instantiate all tasks in
the chain. In this work, we specifically focus on scenarios with
limited logic when all tasks cannot be simultaneously placed
in the available logic. Detailed considerations of inter-task
pipelining versus data-parallelism (when insufficient resources
are available to place all tasks in a pipeline) is out of scope of
this work, and will be considered in future work.

C. Problem Objective

Our overall goal is to maximize performance (minimize
schedule length) under physical and architectural constraints,
given a resource constraint of C,,s columns available for the
application, where Ceops is less than that required to map the
entire application,? i.e., Ceons < >+, (¢;). An additional key
goal is that our approach should have a low computational
overhead suitable for implementation on a typical embedded
processor.

IV. DETAILED PROBLEM SPECIFICATION AND EXACT
MATHEMATICAL FORMULATION (ILP)

In this section, we first motivate our problem and follow-up
with a detailed problem specification. Next, we provide an exact
mathematical formulation (ILP).

A. Motivation and Detailed Problem Specification

Ideally, the degree of parallelism for a data-parallel task is
limited only by the availability of HW resources. Let us con-
sider a chain with only a single data-parallel task 7 that exe-
cutes in time ¢; using ¢; columns, as shown in Fig. 4(a). Given
a resource constraint of C.o,s columns, we expect performance
to be maximized (schedule length minimized) when this task is
instantiated | Ceons/c1] times, as in Fig. 4(b). In these figures,
the X -axis represents the columnar area constraint C.,,s and
the Y -axis represents the schedule length. For sequential tasks
(0 degree of data-parallelism), the execution of task 7T; is rep-
resented as F; as in Fig. 4(a). Each individual task 7; requires
reconfiguration before execution—however, for ease of presen-
tation, we show all our schedules (and corresponding equations)

3We assume of course that the largest task fits into the available area, i.e.,
Ceons > max(c;).

i,

Qg

iy,
[e5]

E,

(ideal)

Ej
Latency|improvement Latency|improvement

(actual)

Width Width Width

(@ (b) ©

Fig. 4. Effect of significant reconfiguration overhead. (a) Sequential. (b) Ideal
parallel. (c) Actual parallel.

2
=) Rj
5 3
g E; 2 Rj
! 3
\ E; 4
Width

Fig. 5. Parallelism degree determined by reconfiguration overhead.

as starting from execution of the first task 7% in the chain. For
data-parallel tasks, we additionally denote execution of jth in-
stance (copy) of task 7; as EY, as in Fig. 4(b).

Unfortunately, as we discuss next, the ideal performance gain
in Fig. 4(b) is typically not achievable while considering real-
istic issues on such architectures.

1) Significant Reconfiguration Overhead: For modern
single-context architectures that support partial RTR, the large
reconfiguration delay is a key bottleneck in achieving ideal
parallelism. To illustrate this, we consider Fig. 4(c). In this
figure, reconfiguration for jth instance (copy) of T} is denoted
as R!. Similar to our convention of not explicitly showing
reconfiguration R; for task 7 in Fig. 4(a), we do not explicitly
show reconfiguration R} for the first data-parallel instance
T} in Fig. 4(c). We simply assume that the reconfiguration
controller is available at the beginning of the execution of the
first instance T}. Next, we attempt to maximize performance
by instantiating an additional copy 772 and distributing the
workload (execution time) equally between the two instances
T} and T?Z. However, execution of the second instance E7 can
start only after the reconfiguration overhead, ;. Thus, instead
of the ideal workload of t;/2, the workload of the second
task instance is only (¢; — 71)/2 leading to less performance
improvement than expected. The actual schedule length is
(t1 + 71)/2 instead of the ideal schedule length of ¢1 /2.

For a single task, a simple equation suffices to compute the
optimal workload leading to maximum performance improve-
ment, as shown in the following lemma.

Lemma 1: For parallelizing a task 7; into j instances, and
given that the reconfiguration controller is available at the be-
ginning of execution of the first instance, the best performance
(least execution time) is obtained when the workload (execution
time) of the jth instance is: (¢; —r; X j x ((7 —1)/2))/5.

Proof: The proof follows directly from the simple example
of parallelizing task 77 into two task instances (j = 2).

Authorized licensed use limited to: Politechnika Lodzka. Downloaded on August 6, 2009 at 05:27 from IEEE Xplore. Restrictions apply.

238 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 17, NO. 2, FEBRUARY 2009

When the jth task instance is ready for execution (recon-
figuration for 77 is complete), workload completed by T} is
(j —1) x r1, workload completed by 17 is (j —2) X 71, .. ., . ..,
workload completed by TL-Fl is 1. The aggregate workload
completed before T starts is

j—1
2

X (=D +0G=2) 4+ +1)=rxjx

To maximize performance (minimize schedule length), the
remaining workload is distributed equally between all j task
instances, i.e., workload assigned to instance TLJ is

t; — 1 X J X %
J m

Lemma 1 clearly demonstrates that maximizing perfor-
mance involves unequal workload (execution time) distribution
between multiple copies of a task to compensate for the signif-
icant reconfiguration delay and the sequential reconfiguration
mechanism.

Along with reducing expected performance, the large recon-
figuration delay also potentially prevents performance improve-
ment if more than a few copies of a task are instantiated, as
shown in Fig. 5. Even though enough resources are available to
instantiate four copies of task 77, instantiating the fourth copy
does not improve the schedule length any further. In fact, as-
signing any nonzero workload to the fourth instance leads to a
longer schedule than a schedule with only three instances. Sim-
ilar to the previous lemma for computing optimal workload,
a simple equation suffices to compute the optimal number of
instances leading to maximum performance improvement, as
shown in the following.

Lemma 2: For parallelizing a task 7; and given that the recon-
figuration controller is available at the beginning of execution of
the first instance, the best performance (least execution time) is
obtained when there are exactly n$"" instances

14+ ,/14+8x &

2

-1

n?Pt — MIN \‘CCOHSJ 7

G

Proof: The first term |Ceons/c;] states that one trivial
bound on the number of instances is simply the maximum
number of task copies that fit in the available area. The second
term follows from Lemma 1 as shown in the following.

If the j,,thinstance does not improve performance, the aggre-
gate workload completed before T!™ starts execution is greater
than the task workload, i.e.,

jw - 1

> t;.
2

T X jm X

Solving the previous quadratic equation, performance does
not improve if

Jw 2

1+\/1+8Xti/7”i
5 .

Thus, the maximum number of instances n$™" such that per-
formance definitely improves is given by n,?pt = juw — 1, leading

to the second term in the lemma. []

Columns —=

Columns—s

Columns—s

R, K? K?

1 t 1 jq
=1 =1 3 o) 2 e (g2 [R g3
3 1 3 2 T 1
) 4 @ o2 © Ry

E} 1 <
2 2 E
E, E2 2 E3

L+t

(a) (b) (©)

Fig. 6. Problem space explosion with precedence constraints.

Thus, the granularity of data-parallelism, that includes se-
lecting number of instances, is determined by two factors: along
with the very obvious factor of the number of instances that fit
in the given space, the other key factor is the ratio of task execu-
tion time to task reconfiguration time. In the experimental sec-
tion, we have conducted experiments on images with different
sizes—for such experiments, the reconfiguration time for indi-
vidual tasks is invariant, while the task execution time is propor-
tional to the image size. The experimental results validate this
lemma, i.e., there is more performance improvement with in-
creasing image size (resulting from potentially more instances
for each data-parallel task).

The simple equations in Lemmas 1 and 2 provide the un-
derlying principles for our proposed approach. However, they
are not sufficient to compute the schedule length for a prece-
dence-constrained task chain. We next consider the additional
complications introduced in our problem due to precedence con-
straints.

2) Precedence Constraints: For precedence-constrained ap-
plication task chains, there is interaction of the resource de-
mands of parent and child tasks, as shown in Fig. 6 for a simple
chain with two tasks 77 and 7. The HW resource constraint
allows three copies (instances) of T, or, two copies of 75 to
be executing simultaneously. One possible approach is to ex-
actly follow Lemmas 1 and 2, i.e., instantiate all three copies
of T; to maximize performance of 77, and then instantiate two
copies of T3, as in Fig. 6(c). However, it is potentially possible
to improve the schedule length further by instantiating only two
copies of 77 and using the remaining space to reconfigure (in-
stantiate) one copy of To—once the two copies of T end, the
first instance T21 of T5 is able to start execution immediately, as
in Fig. 6(b). Note that in our execution model, all instances of a
parent task must finish execution before any instance of a child
task starts execution.

Obviously, the problem space explodes with the introduction
of precedence constraints. Effectively for a chain with n tasks,
we want to determine the best possible performance from

|C/eco] x [Cler] x ... |Clen]

candidate transformed task graphs.

Authorized licensed use limited to: Politechnika Lodzka. Downloaded on August 6, 2009 at 05:27 from IEEE Xplore. Restrictions apply.

BANERIJEE et al.: EXPLOITING APPLICATION DATA-PARALLELISM ON DYNAMICALLY RECONFIGURABLE ARCHITECTURES 239

To better understand the problem difficulty, note that sched-
uling a simple fask chain under partial RTR constraints is
NP-complete even without any data-parallelism considerations.
The detailed proof based on reduction from set-partitioning is
out of scope for this paper—the interested reader should contact
the author [21] for further details. Also, configuration prefetch
[7] plays a critical role—in Fig. 6(b), the gap introduced be-
tween completion of reconfiguration R3 and start of execution
E} for task instance T3 is crucial to improving latency in the
presence of significant reconfiguration delay. Thus, our detailed
problem specification is shown in the following.

Problem Inputs:

* precedence-constrained application task chain (77— >
To— > ---— > T,) where some tasks T; have data-
parallelism property;

e strict bound C,,5 on the number of contiguous columns
available for mapping the task chain.

Problem Output:

* number of copies for each data-parallel task;

* workload (execution time) tf of each (jth) copy of a
data-parallel task (3_;(t]) = t;);

e placed task schedule where every task (instance) is as-
signed an execution start time, and an execution start
column.

Problem Objective:

* minimize schedule length (maximize performance).

As mentioned previously, an additional objective is that any
solution should have low execution complexity suitable for im-
plementation on typical embedded processors. However, for the
sake of completeness (and as a key tool to evaluate the quality
of our proposed heuristics), we next present an exact mathemat-
ical formulation (ILP) to the previous problem.

B. Mathematical Formulation (ILP) of Problem

In this subsection, we present an integer linear program (ILP)
that provides an exact solution to our problem. Our underlying
model is a 2-D grid where task placement is modelled along
one axis while time is represented on the other axis. Previous
work [9] has addressed the problem of exact scheduling (and
placement) for a task graph with partial RTR related constraints
(including configuration prefetch) based on such a grid repre-
sentation. Unlike [9], our objective is to determine the structure
of a task graph that maximizes performance—attempting to de-
termine the number of task instances and execution time of an
instance while satisfying all constraints related to columnar par-
tial RTR makes the ILP formulation additionally challenging.

1) Core Principles: To formulate such an ILP, we essentially
start with an expanded series-parallel graph. For each data-par-
allel task 7;, we implicitly instantiate as many task copies 77 as
possible subject to the resource constraint C',,,s. For each such
task instance we add precedence edges to the child task 7}, of
T; (or, to every instance of task T;4 1, if T;4; is data-parallel).

Next, we introduce a Boolean (0-1) variable I D (invalid) for
every task instance in the expanded graph—a nonzero value of
this variable denotes that the corresponding task instance is not
required for maximizing performance. To determine task in-
stance execution time along with task instance start time, we
introduce two sets of variables: sz (start execution) variable for

a task instance denotes the execution start time of the task in-
stance, while x (is executing) variable denotes that a task in-
stance is processing data in a given time-step.

The following indices are key to properly specifying the ILP
variables:

1 € (1,...,number of tasks in the chain)
i’ € (1,...,number of task instances in the expanded graph)
l; €(1,...,number of instances of task T;)

j €(1,...,upper bound on schedule length)
ke(l,...,Ceons)-

2) ILP Variables: The complete set of 0-1 (decision) vari-
ables is
* x4 5, = 1, if task instance 7’ is executing at time-step j,
and k is left-most column occupied by 7;,. (=0, otherwise)
* sz 4 = 1,ifinstance T starts execution at time-step j,
and k is left-most column occupied byT;: . (=0, otherwise)
* fwxy ; = 1, if instance T finishes execution in time-step
7. (=0, otherwise)
 ID; = 1, if T} is not required in an optimal solution.
(= 0, otherwise)
* 1y 4k = 1, if reconfiguration for T starts at time-step j,
and k is left-most column occupied by 7;:. (=0, otherwise)
Some of the constraints necessitate introduction of additional
binary variables to represent logical conditions. All such vari-
ables are represented as b.
3) Constraints:
1) Simple task execution constraints
a) Each valid task instance is executed exactly once

Vi’, ZZ(Swi'J:k)-i_lDi/ =1, Z(fxi’,j)'i'IDi’ =1.
kg '
ey

J

b) Task instance execution-time is non-negative, i.e., ex-
ecution finish time for a task instance is greater than
or equal to execution start time

Vi/7 Z j kS f:L’iIJ' — Z(} % vai’,j7k) 2 0. (2)

j k

Note that this is true for all task instances. If a task
instance is not required, its corresponding sz (start
execution) and fz (finish execution) variables are all
assigned a value of zero.
2) Core data-parallelism constraints:
a) Execution time for a task equals the aggregate execu-
tion time of all instantiated copies

Vi, ZZZ(J,’[?._’]"]C) = ti. (3)
L, i k

This equation holds trivially for all non-data-parallel
tasks that have a single instance each.

b) Precedence constraints between task instances: Each
valid instance of task 7; (7 > 1) starts execution after
any instance of 7;_; finishes execution

Vi>1,V1;,Vi;_q,

(ID,=0)=> | Y (G*szr, jn)—i*fri_,j |21 4

7 k

Authorized licensed use limited to: Politechnika Lodzka. Downloaded on August 6, 2009 at 05:27 from IEEE Xplore. Restrictions apply.

240 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 17, NO. 2, FEBRUARY 2009

We can rewrite the equation in the following form:

Vi > 1, Vi;, Vi;_q,

if (1 -1D;,) > 0) then
Z Z (J * S‘Tli,j7k) — J * fxlq.717j -1 Z 0.
7 k

This enables us to apply the if-then transformation as
in [22]4
3) Core column-based partial RTR constraints:
a) Each valid task instance needs to be reconfig-
ured—also, the start column for reconfiguration is
same as start column for execution

> (k) = Y _(smir k) =0. (5)

J J

Vi, VE,

b) Each valid task instance can start processing data
only after the task is reconfigured, i.e., reconfigura-
tion delay time-steps after start of reconfiguration

Vil7 (IDZ/ = 0) — ZGZ(j*SJZi/J”k _j*'ri’,j,k) > t:f

j k
(6)
where t;f denotes the reconfiguration time for task
T;. We can apply the if-then transform similar to that
for (4).

c) Resource constraints on field-programmable gate
array (FPGA): total number of columns being used
for task instance executions and number of columns
being reconfigured is limited by the total number of
FPGA columns

J

>

m=j—t7/ +1

GYY Y

i’ k n=k—c;+1

xi’,j,n"‘ (ri’,m,,n) SCcons~

)
d) At every time-step j, at most single task instance is
being reconfigured

J
oY S tima) <1 ®)
et 41

e) At every time-step j, mutual exclusion of execution
and reconfiguration for every column

DS

i n=k—c; 41

J

2.

m:jftir,f+1

Vj7 Vk, (Ti’.,m,n) < 1.

Tt jm +

©))

f) For every column, at every time-step, total number of

reconfigurations is at most 1 less than the number of
executions started using that column

20> D (i

i n=k—cy+1m=1

VJ,Vk Sxi’,m,n) S 1. (10)

4if-then transform for the constraint if (f(X) > 0) then g(X) > 0 is
—g(X) < Mb; f(X) < M(1-10); b€ (0, 1) where M is a large number
such that f(X) < M, —g(X) < M for X satisfying all other constraints.

g) Simple placement constraint: a task can start execu-
tion only if there are sufficient available columns to
the right

VL7VJ7Vk € (Ocons_ci+l7 L) Ccons)7 Tit gk = Ti' jk = 0.
(1D

4) Equations relating task execution variables:
a) For each task instance, if it starts execution in time-
step j (sx variable is “1”), variables denoting task

is executing are zero in prior time-steps and “1” in

time-step
Vi’ Y5 > 1,
m=j—1
Z(szﬂ 7y k — Z Z L4l m, k =0 (12)
k k. m=l1
Vil\Vj > 1,
Z(st’jk Z LE/,Jk (13)
k k

b) For each task instance, if it is executing in column k,
the corresponding starts execution variable is true for
this column

Z(xz k)

J

Vil ,\Vk,

:>28$ij 1.

¢) For each valid task instance, the task instance execu-
tion time equals the number of nonzero is executing
variables

Vi Yk, (IDy = 0) => > (@ jx)
ik

= A D G xsmiju) =i frij | + 1.
AND

All the previous equations can be simplified using the
if-then transform described earlier.
5) Objective function to minimize schedule length:
This is equivalent to minimizing the end time for any in-
stance of the last task in the chain 7, . By introducing a new
sink task 7§, and precedence edges from all instances of
the last task in the chain 7, , the objective function is simply
the execution start time for this new task 7;.,. If we addi-
tionally assign a width of C,ns columns to this new task,
the objective function is further simplified to

(14)

15)

minimize E (J * 821 sink,1)-
J

6) Additional constraints:
Along with the necessary constraints, we also introduce ad-
ditional constraints such as simple timing ASAP/ALAP
constraints to help reduce the search space (and corre-
spondingly reduce the time required by the ILP solver to
find a solution).

V. HEURISTIC APPROACHES

In this section, we first present MFF, a heuristic for scheduling
simple task chains. While MFF is oblivious to data-parallelism,

Authorized licensed use limited to: Politechnika Lodzka. Downloaded on August 6, 2009 at 05:27 from IEEE Xplore. Restrictions apply.

BANERIJEE et al.: EXPLOITING APPLICATION DATA-PARALLELISM ON DYNAMICALLY RECONFIGURABLE ARCHITECTURES 241

it provides the core concepts underlying PARLGRAN, our pro-
posed approach for chains with some data-parallel tasks.

A. Modified First Fit (MFF)

For architectures with partial RTR, the physical (placement)
constraints and, the architectural constraint of the single re-
configuration mechanism, make it difficult to achieve the ideal
schedule length Ligear = Y+, (¢;). In fact, this simple problem
of minimizing schedule length for a chain, under constraints
related to partial RTR, is actually NP-complete, as mentioned
in Section IV (the detailed proof by reduction from set-par-
titioning is out of scope for this paper). MFF, our proposed
heuristic to solve this problem, essentially tries to satisfy task
resource constraints, and, attempts simple local optimizations
to reduce fragmentation, and, hence, the schedule length.

Approach: MFF (Modified First Fit)
Place task 7} starting from leftmost column
for each task (77,1 > 1)
FL'S =
earliest time — slot enough space is available(last — fit)
FR =
earliest time — slot reconfiguration controlleris available
th(zrt — MAX(FL-S., FL-R)
Eftart — MAX(th‘”t + i, Ef’ff)
if (7; aligned with rightmost column)
local optimization: Adjust immediate ancestor placement
(and start time) if possible to improve start time of 7T;
endfor

MEFF is based on a first-fit approach. To get intuition behind
why a first-fit approach works well in practical scenarios, we
take a look at Fig. 7(b). The tasks are essentially laid out in
the form of diagonals running from the top-left of the placed
schedule towards the bottom-right (the diagonal in the figure re-
sults from each task in the chain being placed to the right of its
predecessor and can start only after its predecessor completes).
As long as a task does not “fall off” the diagonal, it is possible
to overlap at least part of the reconfiguration overhead with the
execution of its immediate ancestor. Once a task “falls off” the
diagonal and is placed at the left-most column Cl,,s, it is essen-
tially trying to reuse the area of ancestor tasks higher up in the
chain. Given that for tasks in a chain the execution components
have to be in sequence, a more distant ancestor is guaranteed
to finish earlier than a closer ancestor. This increases signifi-
cantly the possibility of being able to overlap reconfiguration
of this task with the execution of ancestors that are closer to it
in the chain. Effectively the chain property causes a “window”
of tasks: tasks within a window affect each other much more
strongly than tasks outside the window.

1) Simple Fragmentation Reduction: One simple modifica-
tion for reducing fragmention in MFF compared to pure first-fit
is shown in Fig. 7. Our observations indicate that in tightly-con-
strained scenarios (few columns available for task mapping),
placing the second task 75 adjacent to task 77, as in Fig. 7(b),
often leads to immediate fragmentation—though enough area
is available to reconfigure task T3 in parallel with execution of
task 7%, this area is not contiguous, and thus task 73 gets de-
layed. MFF takes care of this by placing 75 at the right-hand

E|

awry
owny,

R;

Fy

Ey

A
.

.
,-°| Latency reduction

" Width Width

(a) (b)

Fig. 7. Simple chain-right placement of task 2. (a) Less fragmentation. (b)
More fragmentation.

E;

awiy,
awiy,

Ry

Latency reduction

Width Width
(a) (b)

Fig. 8. Exploiting slack in reconfiguration controller. (a) More fragmentation.
(b) Less fragmentation.

corner. Of course, this simple technique does not improve frag-
mentation in all possible scenarios.

2) Local Optimization—Exploiting Slack in Reconfiguration
Controller: A more interesting local optimization to reduce
fragmentation is shown in Fig. 8(a). While scheduling task 7},
we notice that it is possible to exploit slack in the reconfigu-
ration mechanism to postpone the reconfiguration R3 of task
T3 without delaying the actual execution Fs5 of task 73. We
can thus make better use of the available area (HW resources)
to reschedule (and change placement of) task 7T5—as a result,
reconfiguration R4 of task T; can now execute in parallel with
Fs, leading to a reduction in schedule length, as shown in
Fig. 8(b).

Before proceeding to PARLGRAN, it is important to under-
stand that the fragmentation problems we try to address in MFF
(and PARLGRAN) are because we are trying to jointly schedule
and place while satisfying a host of other constraints—thus,
other free space coalescing techniques for partially reconfig-
urable architectures, such as [23], are not directly applicable.

B. PARLGRAN

We use the insights obtained from the chain-scheduling
problem as the basis for our granularity selection approach.
Detailed analysis of chain-scheduling shows that applying local
optimizations can improve the performance. We additionally
want to design an approach such that the algorithm execution
time is comparable to the execution time of the tasks. Thus, our
proposed granularity selection approach is simple and greedy,
but, uses specific problem properties to try and improve the
solution quality.

Authorized licensed use limited to: Politechnika Lodzka. Downloaded on August 6, 2009 at 05:27 from IEEE Xplore. Restrictions apply.

242 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 17, NO. 2, FEBRUARY 2009

2
1 R
S| E! S| Bl
1
E: E Ré
delayed start
1
E2 1
E;
Width Width
(@) (b)
Fig. 9. Static pruning based on timing.
2 2
5 1 = 1
= E =} E;
2 2
E 1 E 1
1
R; Rl
) 2 _ delayed start
E 1
2 E2
Width Width
(a) (b)

Fig. 10. Uneven finish times.

Our approach consists of the following two steps:

e static pruning;

* dynamic granularity selection.

1) Static Pruning: First, we utilize some simple facts to
statically prune regions of the search space. As an example
of pruning, consider Fig. 9. If we schedule exactly one copy
each for tasks 7% and T3, then task 75 can start as soon as T}
ends, i.e., at t1, as in Fig. 9(a). If we schedule another copy of
task 77, the execution time of 77 improves. However, now the
reconfiguration controller becomes the bottleneck, as shown
in Fig. 9(b). Now, task T5 can start only at (74 + 72), which
is greater than t;. Effectively, the number of copies of a task
is limited by the impact of its reconfiguration overhead on
its successors. Note that such simple static pruning is based
primarily on timing considerations.

2) Dynamic Granularity Selection: We next consider work
distribution (load balancing) issues for the multiple task copies.

a) Uneven Finish Times: From our initial discussion on
data-parallelism (as shown earlier in Fig. 5), it seems that it is
a good idea to always generate as many copies as possible sub-
ject to performance improvement and get them to finish at the
same time instant. However, with the introduction of task depen-
dencies, it is necessary to modify this strategy in certain cases
to improve performance, as shown in Fig. 10. In Fig. 10(a), let
FT} denote the time instant the earlier copy of task 77, that is
E{ ends. Task T can start at: ST} = FT} + ry. However,
if both copies of 77 end at the same time instant as shown in
Fig. 10(b), this time-instant is given by

FTevt = Pl 4 ry /2.

As a result, reconfiguration R, for task T gets delayed and
execution 5 for task 7% can only start at F'T7 qual .0 — FT}+
3 % T2/2.

aw,

1 Latency reduction

Width Width
(a) (b)

Fig. 11. Left placement for instances of first task. (a) More fragmentation. (b)
Less fragmentation.

Of course, if the area of task 75 is greater than the area of task
T, letting both copies of 17 end at the same time instant would
lead to a shorter schedule.

b) Adjacent Task Instances: Another simple observation to
improve MFF specifically for parallelism granularity selection
is shown in Fig. 11. Placing multiple copies of a task adjacent
to each other intuitively helps reduce fragmentation.

PARLGRAN is an adaptation of MFF that essentially tries
to greedily add multiple copies of data parallel tasks as long
as it estimates that adding a new copy is beneficial for per-
formance (shorter schedule length). The concepts of dynami-
cally adjusting the workload combined with local optimizations
makes it effective. We summarize our PARLGRAN approach
shown as follows.

PARLGRAN (Parallelism Granularity Selection)

Place first copy of task 77 starting from left-most column for
each task (T;,7 > 1)
Compute earliest execution start of task (space search

by last-fit)
if (parent task is data-parallel)

while (no degradation in start time of T5)

add new copy of parent (assign start time,
physical location)

adjust workload of existing scheduled copies
of parent

Schedule (and place) T;
apply local optimizations from MFF for improving
schedule

endfor

In the previous code segment, one task is considered in each
iteration of the outer loop. Using a last-fit-based placement
strategy, we obtain the earliest time-instant that this task can
start execution. The inner loop selects the granularity of its
parent task, i.e., selects the number of instances and workload
of the parent task such that the current task can start execution
earlier (of course this is applicable only to parent tasks that are
data-parallel). As each new instance of a parent task is added,
the algorithm uses the fragmentation reduction strategies de-
scribed earlier to try and reduce the schedule length. When

Authorized licensed use limited to: Politechnika Lodzka. Downloaded on August 6, 2009 at 05:27 from IEEE Xplore. Restrictions apply.

BANERIJEE et al.: EXPLOITING APPLICATION DATA-PARALLELISM ON DYNAMICALLY RECONFIGURABLE ARCHITECTURES 243

it is not possible to improve the start time of the current task
any further, the inner loop terminates and the next task in the
chain is selected. Note that granularity selection is very tightly
integrated with placement—at each step, the schedule length is
computed based on the physical location of tasks on the device.
While this approach appears to be simplistic, experimental re-
sults in the following section show it typically does better than
statically deciding to parallelize each task to its maximum de-
gree. For real image-processing applications such as JPEG en-
coding, blind parallelization can lead to significantly inferior re-
sults, even worse than RTR-aware first-fit, because of the recon-
figuration overhead and the physical (placement) constraints.

VI. EXPERIMENTS

We conducted a wide variety of experiments to validate our
proposed approach. We demonstrate the quality of schedules
generated by our heuristics with a very large set of synthetic ex-
periments (consisting of over a thousand data-points) along with
a detailed application case study. Additionally, we demonstrate
the semi-online applicability of PARLGRAN with detailed anal-
ysis of estimated execution time on a typical embedded pro-
cessor, the PPC405 (PowerPC) processor with an operating fre-
quency of 400 MHz.

It is important to remember that our goal is to maximize per-
formance (minimize schedule length) for an application task
chain in an on-demand computing scenario where a dynami-
cally invoked application is assigned logic resources (area for
mapping application task graph) depending on the number and
resource requirement of other applications simultaneously exe-
cuting on the reconfigurable device. Thus, while it is possible
to fit our applications onto suitably sized target devices, we
assume for experimental purposes that the hard resource con-
straint C..ps 18 less than the aggregate size of all tasks.

A. Experimental Setup

We assumed a target device with 24 columns, similar to
Xilinx XC2V2000.5 From the XC2V2000 data sheet, we es-
timate that the reconfiguration overhead for the smallest task
occupying one column on our architecture is 0.38 ms at the
maximum suggested reconfiguration frequency of 66 MHz.
We obtained area and timing data for well-known tasks such
as Huffman encoding, DCT, etc., by synthesizing them with
columnar placement and routing constraints on the XC2V2000,
similar to the Xilinx methodology suggested for reconfigurable
modules.%

We explored a large set of scenarios with the following
strategy:

1) We generated task chains of varying chain length, ranging

from 4 to 15 tasks in the chain.

2) For atask chain of given chain length, each individual task
was assigned a set of parameters (execution time, reconfig-
uration delay, number of columns) randomly selected from
our database of synthesized tasks. Thus, we generated mul-
tiple task chains for a given chain length.

SWhile the XC2V2000 datasheet specifies a 56 x 48 matrix of logic blocks,
architectural constraints for partial RTR necessitate that one dynamically recon-
figurable column equals two columns of logic on the physical device as shown
online http://www.xilinx.com/bvdocs/appnotes/xapp290.pdf.

6[Online]. Available: http://www.xilinx.com/bvdocs/appnotes/xapp290.pdf

3) Finally, for each individual task chain, we conducted mul-
tiple experiments by varying the area constraint across a
wide range, to represent situations with less area, as well
as situations with more area available for mapping the ap-
plication.

Our overall strategy resulted in a set of over a thousand in-
dividual experiments. Note that the database of task parame-
ters included information corresponding to images of various
sizes—since each individual task is completely pipelined, the
reconfiguration delay and number of columns occupied by the
task is independent of the image size, but the execution time is
directly proportional to the image size.

In subsequent discussions, the following notation denotes
schedule length generated by various approaches, including our
proposed approach, the exact formulation, and other heuristics
implemented to evaluate the quality of schedules generates by
our approach.

Lexact: corresponds to our exact (ILP) formulation.

e Ly corresponds to our MFF approach for scheduling
chains with no data-parallelism considerations.

* Lpgran: corresponds to our proposed PARLGRAN ap-
proach.

* Lg: corresponds to a simple first-fit (FF) approach [9] for
scheduling chains with no data-parallelism considerations.

* Lmaxp: corresponds to maximum parallelization (MAX-
PARL) approach.

Along with our implementation of MFF, PARLGRAN, and
the ILP, we additionally implemented MAXPARL to evaluate
the quality of our schedules. MAXPARL attempts to maximize
parallelization by statically selecting the maximum number of
copies possible for each task subject to resource constraints
only, and assigning equal workload to each such task instance.
Note that MAXPARL includes detailed configuration prefetch
considerations. Because of equal workload distribution, mul-
tiple instances of a task finish at different time-instants, unlike
Lemma 1—however, the freed-up area is utilized to instantiate
multiple copies of any data-parallel child task. Thus, the sched-
ules generated by MAXPARL are of reasonable quality and sig-
nificantly better than an approach with no configuration prefetch
considerations.

B. Schedule Quality on Synthetic Experiments

1) Schedule Quality of MFF (Compared to FF): Our first set
of experiments consisted of comparing schedule lengths gener-
ated by MFF with that of first-fit, on the set of experiments as
described above.

The experimental data confirmed that schedules generated
by MFF were almost always equal to or better than FF. The
schedule lengths generated by MFF were better in 207 out of
1096 tests, i.e., approximately 19% of the tests, worse in 6 out
of 1096 tests. In 114 tests, around 10% of the total, MFF was
better by at least 3%. In the worst experiment for MFF, first-fit
generated a schedule longer by 0.44%. Overall, on longer chains
(more tasks) and looser constraints (more columns), both al-
gorithms were almost equally able to hide the reconfiguration
overhead. However, on more constrained problems with shorter
chains and tighter area constraints, MFF tends to generate better
schedules.

2) Comparing PARLGRAN Schedule Length With ILP for
Small Tests: Our next set of experiments consisted of comparing

Authorized licensed use limited to: Politechnika Lodzka. Downloaded on August 6, 2009 at 05:27 from IEEE Xplore. Restrictions apply.

244 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 17, NO. 2, FEBRUARY 2009

TABLE I
PARLGRAN VERSUS ILP FOR SMALL TESTS

Testcase | Levact | Lperan
test2 25 25
test3 23 23
tests 19 22
test7 25 27
test8 23 24
jpe3 48 49
TABLE 11

REDUCTION IN SCHEDULE LENGTH FOR COMPLETELY DATA
PARALLEL CHAINS WITH PARLGRAN

Chain PARLGRAN Vs FF | PARLGRAN Vs MAXPARL
length Avg Avg Best Worst
4-6 44% 7.1% 93.1% -49.6%
7-9 55% 20.5% | 1392% | -31.2%
10-12 63% 31.8% | 142.7% | -27.3%
13-16 71% 38.9% 125% -7.1%
Avg gain > 50% >20%

the schedule length generated by PARLGRAN with that gener-
ated by the exact formulation. The implementation of the ILP
using the commercial solver CPLEX7 requires hours for even
very small testcases on our implementation platform (SunOS
5.9 with a 502 MHz Sparcv9 processor). Thus, for experiments
involving the exact formulation, we report results on a small set
of synthetic experiments with short chains where chain length
varies between 3 to 5 tasks (the experiments also include one
testcase (jpg3) from the detailed case study presented in the next
subsection).

In Table I, the second column represents schedule lengths
generated by the ILP, while the third column represents schedule
lengths generated by PARLGRAN. For this set of experiments,
the schedule length is reported in time-steps where one time-
step corresponds to the reconfiguration delay for a single CLB
column.

As the table shows, the schedules generated by PARLGRAN
for small experiments (short chains) are reasonably close to that
of the exact approach.

3) Overall Schedule Quality of PARLGRAN: Next, in
Table II, we present a summary of results covering the entire
set of synthetic experiments. The data in each row of the
table corresponds to experiments on chains of corresponding
length—as an example, data in the second row (chain length
7-9) was obtained from experiments on chains with at least
7 tasks and at most 9 tasks. Note that this set of experiments
is identical to that we used to validate MFF—we additionally
assume that each task in the chain is completely data-parallel.
For comparison with MAXPARL and FF, our quality measure is
simply the percentage increase in schedule length generated by
the other approach compared to PARLGRAN. As an example,
for comparison with MAXPARL, the quality measure is simply

((Lma)cp - Lpgran)/Lpgran) * 100

The second column in Table II represents the Average per-
centage improvement of PARLGRAN as compared to FF. Each

7[Online]. Available: http://www.ilog.com/products/cplex

Colour image

RGB2YCbCr

Compressed image

Fig. 12. JPEG encoder task graph.

TABLE III
CASE STUDY OF JPEG ENCODING: SCHEDULE LENGTH WITH DIFFERENT
IMAGE SIZE AND AREA CONSTRAINTS

Case Ceons Ly Liaxp | Lpgran
(ms) | (ms) (ms)

256X256 JPG 5 12.71 12.73 12.36
6 11.24 | 12.52 10.81

7 11.24 | 11.38 10.05

8 11.24 | 12.11 9.08

9 10.10 | 12.79 9.08

512X512 JPG 5 42.86 | 40.68 | 40.30
6 41.34 | 3532 35.13

7 41.34 | 34.18 | 34.37

8 41.34 | 29.08 | 28.60

9 40.20 | 28.38 | 27.71

entry in the second column is an average of a large number
of experiments conducted on chains of corresponding length.
The third, fourth and fifth columns, respectively, represent the
Average, the Best, and the Worst performance of our approach
compared to MAXPARL. As an example, the data in the second
row, fourth column, states that on a large number of experi-
ments with chain length between 7 and 9 tasks, the best result
generated by our approach corresponds to an experiment where
MAXPARL generated a schedule 139% longer.

Expectedly, there is significant improvement in schedule
length with PARLGRAN compared to the sequential (FF)
approach, as shown in the second column of the table. More
importantly, the data in the third column clearly shows that our
proposed granularity selection heuristic, PARLGRAN, gener-
ates increasingly better results compared to MAXPARL when
more space is available. Intuitively, with more available area,
it is possible to make more instances of the data-parallel tasks.
However, with each additional instance, the workload (execu-
tion time) decreases per instance, resulting in execution time
comparable to the reconfiguration overhead—PARLGRAN is
better capable of deciding when to stop instantiating multiple
copies, as opposed to MAXPARL. The local optimizations in
PARLGRAN play an active role in such circumstances to help
improve the schedule length.

One key aspect of the data in Table Il is that for smaller chains,
our presented results cover a very large range of varying area
constraints—for longer chains, the presented results cover the
scenarios where the available HW area is at most 40%—45%
of the aggregate HW area of the tasks. For chains with more
than 9-10 tasks, a loose area constraint results in even more
significant improvement with PARLGRAN compared to other
approaches.

Authorized licensed use limited to: Politechnika Lodzka. Downloaded on August 6, 2009 at 05:27 from IEEE Xplore. Restrictions apply.

BANERIJEE et al.: EXPLOITING APPLICATION DATA-PARALLELISM ON DYNAMICALLY RECONFIGURABLE ARCHITECTURES 245

Colour image

|

Colour image Colour image Colour image
| RGB2YCbCr_3 ‘ RGB2YCbCr_1 | RGBZYCbCr_2| |RGB2YCbCr_4
|RGB2YCbCr_1| IRGBZYCbCr_Zl | RGB2YCbCr | T I T T |RGB2YCbCr 1] |RGB2YCbCr 2|
1 1
| DCT_1 I | DCT.2 | ‘ beT ‘ | ber2 | DCT_I | | DCT_2 I
Quantize | Quantize_1 | | Quantize_2 I . .

- ‘ Quantize_1 ‘ | Quantize_2 | Quantize_1 | | Quantize_2 |

Compressed image Compressed image Compressed image

Compressed image

(@ (b) (© (d)

Fig. 13. Transformed JPEG task graph: (a) Image size: 256 X 256, C'cons = 5. (b) 256 X 256, Ccons = 8. (c) maximum parallelization, C.,,.. = 8. (d) Image

size: 512 x 512, Ceons = 8.

C. Detailed Application Case Study: JPEG Encoding

After conducting a wide range of experiments on synthetic
graphs, we conducted a detailed application case study on
the JPEG encoding algorithm, represented as a chain of four
key tasks (RGB2YCbCr— > DCT- > Quantize— >
Huffman), shown in Fig. 12. Note that Huffman is a sequential
task (no data-parallelism) while the remaining 3 tasks are
data-parallel. Table III presents some results from our case
study. Entries in the first column, Case, denote the image
size—256 X 256 denotes experiments on a 256 x 256 color
image. For each case, we varied the number of columns and
observed the resulting schedule lengths (the aggregate area
requirement of all tasks in the chain is 11 columns). The second
column C.,y5 represents the area constraint in columns. The
third, fourth and fifth columns correspond to schedule lengths
(in milliseconds) generated by MFF, MAXPARL, and PARL-
GRAN, respectively.

The data in Table IIT demonstrates that as available area in-
creases, our proposed approach PARLGRAN consistently gen-
erates shorter schedules. As an example, for the 256 x 256
image, we consider the data corresponding to Cons = 5, and
the data corresponding to Cons = 8. The corresponding trans-
formed task graphs are shown in Figs. 13(a) and (b), respec-
tively. The DCT task is the most computation-intensive task in
the chain (maximum execution time). However, a tighter area
constraint (Ceons = 5) does not allow multiple instances of the
DCT task. Thus, PARLGRAN improves performance by adding
one instance of the RGB2YCRCB task, as shown in Fig. 13(a).
However, with more area (Ceons = 8), PARLGRAN is capable
of deciding that it is more beneficial to instantiate two copies of
the DCT and only have a single instance of the RGB2YCRCB
task. For comparison, we note that an approach oblivious to
partial RTR constraints would generate four instances of the
RGB2YCRCB task with C,,s = 8, as shown in Fig. 13(c).

Next, we observe how our approach adapts to varying data
size with Figs. 13(b) and (d). For the same area constraint
(Ceons = 8), the transformed task graph for the 256 x 256
image has six tasks while that for the 512 x 512 image has
seven tasks. For the larger image, the task execution time is
significantly higher than the task reconfiguration time, resulting
in more scope for exploiting data-parallelism, as in Lemma 2.

Next we focus on experimental results for the 256 x 256
image. For this set of experiments, where the reconfiguration

overheads are comparable to the task execution times, our ap-
proach frequently does much better than statically parallelizing
everything (MAXPARL). Additionally, the data demonstrates
that such blind parallelization can lead to results worse than
a simple sequential scheduling approach. For an area con-
straint of eight columns, schedule length of FF is longer than
PARLGRAN by (11.24 — 9.08)/9.08 = 23.5%. Blind (static)
parallelization leads to significantly worse schedule longer
by (12.11 — 9.08)/9.08 = 33.3%. This is in spite of the
fact that the effective transformed graph from MAXPARL
[see Fig. 13(c)] consists of nine tasks with apparently more
parallelism, while the transformed graph from PARLGRAN
[Fig. 13(b)] consists of six tasks only.

For the 512 x 512 image, each task execution time is signifi-
cantly greater than the reconfiguration overhead. In such a sce-
nario, where, additionally, the chain length is short, MAXPARL
generates good results—of course, PARLGRAN typically does
somewhat better. But, both parallelizing approaches result in
significant speedups.

D. Applicability in Semi-Online Scenario

The experimental data clearly demonstrates that PARL-
GRAN generates high-quality schedules. However, our ob-
jective is for PARLGRAN to be applicable in a semi-online
scenario where the task precedence relations, and the task
area-timing characteristics are available at compile-time, while
the available HW area for mapping the application is known
only at run-time. Task management under such dynamic re-
source availability is a key issue in modern operating systems
for reconfigurable architectures [5]. So, we next obtained
detailed execution time estimates for MFF, PARLGRAN, and
MAXPARL on the PPC405 operating at 400 MHz—such a
processor is available in the Xilinx Virtex-II Pro platform.

We obtained heuristic execution time estimates for the JPEG
encoding application with three different image sizes: 256 x
256, 384 x 384, 512 x 512. For each image size, we varied
the area constraint and obtained cumulative execution time as
shown in Figs. 14(a)—(c). In each of these figures, the X -axis
represents the area constraint as a percentage of the aggregate
area required by all tasks. The Y -axis represents the cumulative
execution time (schedule length computed by heuristic + execu-
tion time of heuristic).

Authorized licensed use limited to: Politechnika Lodzka. Downloaded on August 6, 2009 at 05:27 from IEEE Xplore. Restrictions apply.

246 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 17, NO. 2, FEBRUARY 2009

27 T T T T T T

PARLGRAN -+
MAXPARL -~~~ | 2%
25

24

1l .
2t]

kY
21 P

20k "‘__. R - i

19+ B g

Cumulative time (execution + scheduling) in ms
Cumulative time (execution + scheduling) in ms

95 L L L ! L '
03 04 05 06 07 08 09 1

Area Constraint (% of aggregate area) Area Constraint (% of aggregate area)

(@) (b)

Fig. 14. Schedule length + heuristic execution time: (a) JPEG encoding 256 X
constraint.

MEFF of course has the least execution time overhead. Thus,
for short chains with a very tight area constraint, cumulative
execution time with MFF is comparable to other heuristics, as
in Fig. 14(a). However, as available area increases or, image
size increases, scope for exploiting data-parallelism increases.
In such scenarios, PARLGRAN and MAXPARL generate
shorter schedules that more than compensate for the increased
heuristic execution time.

This is explicitly demonstrated in Fig. 14(d) where we present
data for three different image sizes scheduled with the same
(relaxed) area constraint. Note that increase in image size re-
sults in increased ratio of task execution time to reconfiguration
overhead, making more data-parallel instances feasible (as in
Lemma 2). As image size increases, cumulative execution time
with MFF increases almost linearly, i.e., cumulative execution
time for a 512 x 512 image is almost 4 times that of the 256
X 256 image. However, with approaches that attempt to exploit
data-parallelism, the cumulative execution time increases at a
slower rate—for PARLGRAN, the cumulative execution time
for the 512 x 512 image is only around 2.5 times that for the
256 x 256 image.

Heuristic execution time for all approaches increase as
more area is available for mapping the application. How-
ever, MAXPARL is significantly more sensitive, as shown in
Figs. 14(a) and (b). This is because MAXPARL attempts to
maximize parallelism by scheduling a graph with the maximum
number of tasks possible in the given area.

Comparing the data in Table III with that in Fig. 14(a) shows
that PARLGRAN execution time overhead is approximately
(9.85 — 9.08) = 0.77 ms for the 256 x 256 image with
Cecons = 8. This is quite low compared to the schedule length
Lygran = 9.08 ms. Much more importantly, for all experiments
on the JPEG application, cumulative execution time for PARL-
GRAN monotonically decreases confirming its viability in a
semi-online environment.

Our wide range of experiments and case studies confirm
that PARLGRAN generates high-quality schedules in all situa-
tions—tightly constrained problems with shorter chains, fewer
columns, as well as problems with more degrees of freedom,
i.e., longer chains, more available columns. Additionally, the

45 T T T T

MFF
PARLGRAN -
40l MAXPARL -----

MFF ——
PARLGRAN -+

2t 3 g

30

Cumulative time (execution + scheduling) in ms
S
T
1
Cumulative time (execution + scheduling) in ms

5
256X 384X 512X
256 384 512

Image size

(© (d)

28 1 1 1 1 1
03 04 05 06 07 08 09 1
Area Constraint (% of aggregate area)

256. (b) JPEG encoding 384 x 384. (c) JPEG encoding 512 X 512. (d) Loose area

estimated run-time of our approach on a typical embedded
processor is comparable to the HW task execution times.

VII. CONCLUSION

In this paper, we proposed PARLGRAN, a semi-online sched-
uling approach that selects granularity of data-parallelism to
maximize performance of application task chains executing on
architectures with partial RTR capability. Our approach selects
both the number of instances of a data-parallel task, and, the ex-
ecution time (workload) of each such instance—it is integrated
in a joint scheduling and placement formulation, necessitated by
the underlying physical and architectural constraints imposed
by partial RTR.

To evaluate our proposed heuristic, we have formulated and
implemented an exact (ILP) approach, and a simpler strategy
that attempts to statically maximize data-parallelism. Results on
smaller experiments show that PARLGRAN generates sched-
ules reasonably close in quality to that of the exact approach.
Experimental results on a very large space with over a thou-
sand synthetic experiments confirm that PARLGRAN generates
schedules that are on an average better by 20% compared to the
simpler strategy that attempts to statically maximize data-paral-
lelism based on logic availability only.

A detailed case study on JPEG encoding confirms that in real-
istic scenarios, the simpler approach that tries to maximize data
parallelism without accounting for the underlying RTR-related
constraints can end up generating schedules much worse than
even a data-parallelism-oblivious (but RTR-aware) approach.
Finally, detailed execution-time estimates indicate that our ap-
proach is suitable for integration in a semi-online scheduling
methodology where the goal is to maximize performance of an
application given an area constraint and input characteristics
(image size) available only at run-time.

While our approach demonstrates the potential for significant
performance improvement, there are some key aspects that we
want to address in our future work. Most importantly, we have
assumed in this work that we are not constrained by memory/
communication bandwidth. Our initial estimates indicate that
even with increased parallelism, the additional bandwidth re-
quirement for realistic applications (including the JPEG appli-

Authorized licensed use limited to: Politechnika Lodzka. Downloaded on August 6, 2009 at 05:27 from IEEE Xplore. Restrictions apply.

BANERIJEE et al.: EXPLOITING APPLICATION DATA-PARALLELISM ON DYNAMICALLY RECONFIGURABLE ARCHITECTURES 247

cation) can be satisfied by a typical memory-bus configuration
such as a PC3200 DDR memory integrated with a suitable bus.
However, we agree that with increased task granularity (more
instances) and ever-increasing device sizes (enabling more ap-
plications to execute concurrently), the data transfer to and from
memory, both on-chip and off-chip, has the potential to become
a bottleneck, and will be considered in future work. Last, but not
the least, we have focussed on exploiting data-parallelism with
partial RTR. An operating system [5] that handles resource man-
agement in a true on-demand computing environment requires a
toolbox that can suitably mix and match a variety of techniques
including but not limited to inter-task pipelining, clustering, etc.

REFERENCES

[1] M. J. Wirthlin, “Improving functional density through run-time cir-
cuit reconfiguration,” Ph.D. dissertation, Elect. Comput. Eng. Dept.,
Brigham Young Univ., Provo, UT, 1997.

[2] H. Quinn, L. A. S. King, M. Leeser, and W. Meleis, “Runtime assign-

ment of reconfigurable hardware components for image processing

pipelines,” in Proc. IEEE Symp. Field Program. Custom Comput.

Mach. (FCCM), 2003, pp. 173-182.

J. Noguera and R. M. Badia, “Power-performance trade-offs for re-

configurable computing,” in Proc. IEEE/ACM/IFIP Int. Conf. Hardw.-

Softw. Codesign Syst. Synth. (CODES+ISSS), 2004, pp. 116-121.

J. Noguera and R. M. Badia, “Performance and energy analysis of task-

level graph transformation techniques on dynamically reconfigurable

architectures,” in Proc. Int. Conf. Field Program. Logic Appl. (FPL),

2005, pp. 563-567.

C. Steiger, H. Walder, and M. Platzner, “Operating systems for recon-

figurable embedded platforms: Online scheduling of real-time tasks,”

IEEE Trans. Computers, vol. 53, no. 11, pp. 1393-1407, Nov. 2004.

[6] G. Brebner, “A virtual hardware operating system for the Xilinx
XC6200,” in Proc. Int. Workshop Field-Program. Logic, 1996, pp.
327-336.

[7] S. Hauck, “Configuration pre-fetch for single context reconfigurable
processors,” in Proc. ACM/SIGDA Int. Symp. Field Program. Gate Ar-
rays (FPGA), 1998, pp. 65-74.

[8] S. P. Fekete, E. Kohler, and J. Teich, “Optimal FPGA module place-

ment with temporal precedence constraints,” in Proc. Des. Automat.

Test Europe (DATE), 2001, pp. 658-667.

S. Banerjee, E. Bozorgzadeh, and N. Dutt, “Integrating physical con-

straints in HW-SW partitioning for architectures with partial dynamic

reconfiguration,” IEEE Trans. Very Large Scale Integr. (VLSI) Syst.,

vol. 14, no. 11, pp. 1189-1202, Nov. 2006.

[10] J. Resano, D. Mozos, and F. Catthoor, “A hybrid prefetch scheduling
heuristic to minimize at run-time the reconfiguration overhead of dy-
namically reconfigurable architectures,” in Proc. Des. Automat. Test
Europe (DATE), 2005, pp. 106-111.

[11] C. Bobda, M. Majer, A. Ahmadiniya, T. Haller, A. Linarth, and
J. Teich, “The Erlangen slot machine: Increasing flexibility in
FPGA-based reconfigurable platforms,” in Proc. Field-Program.
Technol. (FPT), 2005, pp. 37-42.

[12] N. Sedcole, P. Y. K. Cheung, G. A. Constantinides, and W. Luk,
“A reconfigurable platform for real-time embedded video image
processing),” in Proc. Field Program. Logic Appl. (FPL), 2003, pp.
606-615.

[13] P.-H. Yuh, C.-L. Yang, Y.-W. Chang, and H.-L. Chen, “Temporal floor-
planning using the T-tree formulation,” in Proc. Int. Conf. Comput.-
Aided Des. (ICCAD), 2004, pp. 300-305.

[14] H. Murata, K. Fujiyoshi, S. Nakatake, and Y. Kajitani, “Rectangle-
packing based module placement,” in Proc. Int. Conf. Comput.-Aided
Des. (ICCAD), 1995, pp. 472-479.

[15] J. Harkin, T. M. Mcginnity, and L. P. Maguire, “Modeling and
optimizing run-time reconfiguration using evolutionary computation,”
ACM Trans. Embedded Comput. Syst., vol. 3, no. 4, pp. 661-685,
2004.

[16] H. Singh, G. Lu, E. M. C. Filho, R. Maestre, M.-H. Lee, F. J. Kurdah,
and N. Bagherzadeh, “MorphoSys: Case study of a reconfigurable com-
puting system targeting multimedia applications,” in Proc. Des. Au-
tomat. Conf. (DAC), 2000, pp. 573-578.

[17] K. N. Vikram and V. Vasudevan, “Mapping data-parallel tasks onto
partially reconfigurable hybrid processor architectures,” IEEE Trans.
Very Large Scale Integr. (VLSI) Syst., vol. 14, no. 9, pp. 1010-1023,
Sep. 2006.

3

—_

[4

finr}

[5

—_

[9

—

[18] S. Muchnick, Advanced Compiler Design and Implementation. San
Francisco, CA: Morgan Kaufmann, 1997.

[19] T. Stefanov, B. Kienhuis, and E. Deprettere, “Algorithmic transforma-
tion techniques for efficient exploration of alternative application in-
stances,” in Proc. Int. Symp. Hardw./Softw. Codesign (CODES), 2002,
pp. 7-12.

[20] J. Noguera, “Energy-efficient hardware/software co-design for dynam-
ically reconfigurable architectures,” Ph.D. dissertation, Dept. Comput.
Arch., Techn. Univ. Catalonia, Barcelona, Spain, 2005.

[21] J. Augustine, Personal Communication. 2005. [Online]. Available:
john.augustine @tcs.com

[22] W. L. Winston and M. Venkataraman, Introduction to Mathematical
Programming, 4th ed. Boston, MA: Thomson Brooks Cole, 2003.

[23] M. Handa and R. Vemuri, “An efficient algorithm for finding empty
space for online FPGA placement,” in Proc. Des. Automat. Conf.
(DAC), 2004, pp. 960-965.

Sudarshan Banerjee (M’99) received the B.Tech.
and M.Tech.degrees in computer science and en-
gineering from the Indian Institute of Technology,
Kharagpur, India, and the Ph.D. degree in informa-
tion and computer science from the University of
California, Irvine.
He is currently working on hardware-assisted
simulation with Liga Systems, Sunnyvale, CA.
. e He has extensive experience in development of
r..r"" | industry-leading logic verification tools as an
employee of Synopsys and Cadence. His current
research interests include partitioning and scheduling for HW-SW codesign,
dynamically reconfigurable FPGAs.

Elaheh Bozorgzadeh (S’00-M’03) received the B.S.
degree in electrical engineering from Sharif Univer-
sity of Technology, Iran, in 1998, the M.S. degree in
computer engineering from Northwestern University,
Evanston, IL, in 2000, and the Ph.D. degree in com-
puter science from the University of California, Los
Angeles, in 2003.

She is currently as Assistant Professor with the
Department of Computer Science, University of Cal-
ifornia, Irvine. Her research interests include design
automation for embedded systems, reconfigurable
computing, and VLSI/FPGA CAD. She has coauthored over 45 conference and
journal papers.

Prof. Bozorgzadeh was a recipient of a Best Paper Award from the IEEE FPL
2006. She is a member of ACM.

Nikil Dutt (F’08) received the Ph.D. degree in com-
puter science from the University of Illinois at Ur-
bana-Champaign, Urbana-Champaign, in 1989.

He is currently a Chancellor’s Professor with
the University of California, Irvine, with academic
appointments in the Computer Science and Electrical
Engineering and Computer Science Departments.
His research interests include embedded systems,
electronic design automation, computer architecture,
optimizing compilers, system specification tech-
niques, and distributed embedded systems.

Prof. Dutt was a recipient of Best Paper Awards from CHDL89, CHDLO1,
VLSIDesign2003, CODES+ISSS 2003, CNCC 2006, and ASPDAC-2006.
He currently serves as Editor-in-Chief of the ACM Transactions on Design
Automation of Electronic Systems (TODAES) and as an Associate Editor of the
ACM Transactions on Embedded Computer Systems (TECS) and of the IEEE
TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS (IEEE
T-VLSI). He was an ACM SIGDA Distinguished Lecturer during 2001-2002,
and an IEEE Computer Society Distinguished Visitor for 2003-2005. He has
served on the steering, organizing, and program committees of several premier
CAD and Embedded System Design conferences and workshops, including
ASPDAC, CASES, CODES+ISSS, DATE, ICCAD, ISLPED, and LCTES.
He serves or has served on the advisory boards of ACM SIGBED and ACM
SIGDA, and previously served as Vice-Chair of ACM SIGDA and of IFIP WG
10.5. He is an ACM Distinguished Scientist and an IFIP Silver Core Awardee.

Authorized licensed use limited to: Politechnika Lodzka. Downloaded on August 6, 2009 at 05:27 from IEEE Xplore. Restrictions apply.

