REpP
| THREADN |
THREAD 1

THREAD 3
THREAD 2

Instructionless processor
architecture
using
dynamically reconfigurable
logic

Rafat Kielbik, Grzegorz Jabtonski, Barttomiej éwiercz, Piotr Amrozik
Technical University of +odz

Department of Microelectronics and Computer Science
¥ 6dz, Poland

% MIXDES 2010 1

Our Idea

Dynamically REconfigurable FPGA
as general purpose (Processor

Configuration bitstreams instead of
a sequence of instructions

RE“P Control Unit

THREAD N

THREAD 1
THREAD 3

THREAD 2

DNGSY MIXDES 2010
coh

HIPEAC Clusters & Task Forces

e Reconfigurable computing

Current Trends

e Programming models and operating systems
e Adaptive compilation

Typical applications of reconfigurable devices

e External coprocessors (for the most demanding calculations)
» Integrated coprocessors (with the microprocessor core implemented in FPGA)

e Application-Specific-Instruction set-Processor — ASIP (the pipeline
structure can be customized and utilized in the program through custom
instructions)

e No-Instruction-Set-Computer — NISC (the application is mapped directly to
the datapath, the pipeline structure remains constant throughout the entire
execution of the program)

* PipeRench, KiloCore — A virtualized Programmable Datapath

% MIXDES 2010 3

FPGA as Processor

up D RE uP X |
: ontrol Unit
(THREAD 1 |
S tial THREAD 2 | :
s =na THREAD 3 | ¢ Concurrent Thread
Thread :]

g : : Execution
Execution— |)| — & =
Time THREAD 1 | i
Division THREAD 2 THREAD 1

: THREAD 3
\ THREAD 3 |
eeeeennnnnnaeed : THREAD 2
Remarks:

e Concurrent execution of many threads constitutes a first source of data processing acceleration.

e Most threads are ,too big” to be implemented outright in the FPGA at the same time!!!

@;@ MIXDES 2010 4

Thread Partitioning Operation 1

Partitlion 1

v
Operation 2

Partition 2
Operation 3

Partition 2

Partition — a set of Operations
Operation 4

Partition 3

Operation — a part of a program (basic block)*
without any jumps out neither in

Condition
Partition 3

(*) — probably some basic blocks should be
merged in one operation (e.g. for better loops
optimization)

Operation 5
Partition 4

Operation 6
g Partition 5

Interrupt handler

Condition
Partition 5

Operation 9 Operation 8 Operation 7

i@ Partition 6 N Partition 6 N Partition 6

@'@ MIXDES 2010

Scheduling the Partitions

New partition appears In case of forks all
before predecessor successor partitions
disappear (ALAP) appear (ALAP)

Useless partitions
disappear (ASAP)
or stay for future
reuse

A |
I .
2 |
2 = |
q) [}
IS —¢ i
o < |
i J{ le)
"""""""" B R
a- |

Interrupt handler
__v ________ | - - |
Remarks: P Operation time |

e It should be possible to place each partition in any part of FPGA

e Each branching partition must inform the configuration Control Unit about the chosen branch

@'@ MIXDES 2010

Software to Hardware Conversion

C++ to VHDL C++ to ASM
/' Conversion Compilation
‘/—/\‘ Partitioning
Part tlonlng Logical Synthesis T VIDL
< Logical \€ y/» Partitioning Conversion
Synthesis : .
Physical Synthesis Loglga;/ln:cl_hzgifmm

—

Set of Bitstreams for
Each Partition

Very Complex, Limited
and Imperfect Solutions

@E@ MIXDES 2010 7

ASM to VHDL Conversion

char fun(char a, char Db)
{
char ¢, d, r; LDS R25,0x0186 Load direct from data space
c =a* 2; LDS R24,0x0182 Load direct from data space
d=Db * 4;
r=c¢ - d; LSL R25 Logical Shift Left
return r; LSL R24 Logical Shift Left
} LSL R24 Logical Shift Left
SUB R25,R24 Subtract without carry
int main (void)
{ STS 0x0183,R25 Store direct to data space
c = fun(a,b);
}
LDS R, X
X : in std_logic_vector (N-1 downto 0);
variable R : std_logic_vector (X"high downto X’ low);
R = X;

' LSL R i
i R := R(R"high-1 downto R’low) & ‘0’;

i SUB Rx, Ry i
i Rx := Rx — Ryj; i
1 STS X,R i
i X : out std_logic_vector (R’high downto R’ low); i

% MIXDES 2010

ASM to VHDL Conversion — Example

LDS R25, X1
LDS R24,X2
entity TEST is LSL R25
port (X1, X2 in: ...; LSL R24
X3 out: ...); L.SL R24
SUB R25,R24
architecture TEST_behav of entity TEST is
begin
STS X3,R25
process (clk)
variable R25 : std_logic_vector (X1’high downto X1’ low);
variable R24 : std_logic_vector (x2"high downto X2’ low);
begin
if rising _edge(clk) then
R25 := X1;
R24 := X2;
R25 := R25(R25"high-1 downto R25"1ow) & ‘0';
R24 := R24(R24’"high-1 downto R24’"1ow) & ‘0';
R24 := R24 (R24’"high-1 downto R24’"1low) & ‘0';
R25 := R25 - R24;
X3 <= R24;
end if;
end process;
end architecture;
m MIXDES 2010 9

Operation-dedicated Hardware

FF

FF

X3 FF | FF | FF | FF | FF | FF | FF | FF

Remark:

FF | FF
1
]
LDS R25, X1
LDS R24, X2
LSL R25
LSL R24
LSL R24
SUB R25,R24
STS X3,R25

e Generating the operation-dedicated hardware constitutes a second (and essential) source of data

processing acceleration

% MIXDES 2010

10

Horizontal Parallelism

Lt r [[T 1 I I I N I
Lt r [[T 1 I I I N I
SUB SUB LDS R25, X1
LDS R24,X2
LDS R23, X3
N N N I I | I [[[|1DS R22, X4
SUB R25,R24
SUB R23,R22
Remark: STS X5,R25
» Independent logic or arithmetic instructions in the given software operation STS X6,R23
will be implemented separately and executed concurrently, without any effort
on the programmer’s side. This feature constitutes a third source of data
processing acceleration
% MIXDES 2010 11

Long Combinational Paths

Clock period: 10 ns
I N A I O I I A I O N
[
X3 FF | FF | FF | FF | FF | FF | FF | FF SUB6 ns Multi-cycle paths:
- 1 [I e allow individual operations to cross
clock cycle boundaries (fourth
Int diat isters: source of data processing
ntermediate registers: AD [g ns acceleration), e.g.:
6 ns+ 6 ns+ 8ns = 20ns (2 clock
e allow implementing pipelined I cycles) (
processing, e.g. to overlap
operations from the
subsequent iterations of the 8 ns
loop (vertical parallelism) MUL
e require additional clock S I O
cycles, e.g.: 3x10ns =30 ns X4 [[v [v [[v [o [

MIXDES 2010

12

Reconfiguration Time

Clock period: 10 ns

X1 [][] []] X2 [=[]]]]
N N

X3 [=[] =] =]

6 ns .
o B R B SUB Multi-cycle paths:

« allow individual operations to cross
clock cycle boundaries, e.g.:
6ns+ 6ns + 8ns =20 ns (2 clock
cycles)

Intermediate registers:

« allow implementing pipelined
processing, e.g. to overlap
operations from the
subsequent iterations of the
loop (vertical parallelism)

 require additional clock
cycles, e.g.: 3x 10ns = 30ns

Xa[=[=[=[=[=]=]~]~]

Remarks:

e Regardless of chosen technique of achieving the
timing closure, the exact number of clock cycles for
each partition will be determined during the synthesis
process

e The size and the execution time of each partition
should be balanced in order to have the possibility to:
- configure the successive partition during the
previous partition is ,running”
- have the possibility to implement as many
concurrent partitions (threads) as possible

disappear (ALAP) appear (ALAP)

- Useless partitions
New partition appears In case of forks all disappear (ASAP)
or stay for future

before predecessor \ (successor partitions

A\

[b

10
o | |2

i [

N I

y / (_/I

| —

Available Resources
ax Thread Resourct
L %
P4
P5

-4
Fe/

Interrupt handler

Operation time

OIIVE OI']

gical + Physi
Synthesis

not
balanced

m MIXDES 2010

13

Reconfiguration Technique

Creeping partitions Multi-context reconfiguration
P1
2 - -+ REG
REG> P2 [» REG RECC (RS

REG

Remark:

e Current off-the-shelf reconfigurable devices do not offer the demanded reconfiguration flexibility

@@ MIXDES 2010 14
3T

Operating System RE“P Control Unit
THREAD N

Required functionality : :
e Common programming interface (POSIX)
o Interrupt management THREAD 1
e Memory management THREAD 3
e Inter-process communication and synchronization THREAD 2
¢ Scheduling and placing the partitions to fully utilize the

reprogrammable array, taking into account the:
- priorities of partitions

- sizes of partitions Remark:

- dependencies among partitions
o It must be stressed that the placement is
understood here as a selection of the appropriate
- locked partitions location of the entire partitions in the fabric. The
placement in the traditional sense is performed
during the bitstream generation phase. Similarly,
e Routing the partitions the routing connects the interfaces of the
internally routed partitions

DHGSY MIXDES 2010 15
<%

- memory access requests of partitions

e Loading the partition bitstreams

Conclusions

e Interdisciplinary project

- Computer architecture

- Reconfigurable computing
- Compilers

- Operating systems

- Application Specific Integrated Circuits

¢ High processing speed-up potential (four sources of acceleration)
e Energy saving solution (efficient resource utilization)
e Revolutionary architecture without impact on software development

e Dedicated dynamically reconfigurable ASIC required

% MIXDES 2010

16

S

Thank you

MIXDES 2010

17

