
Runtime Filesystem Support for Reconfigurable FPGA Hardware Processes in
BORPH

Hayden Kwok-Hay So
Dept. of Electrical and Electronic Engineering

University of Hong Kong, Hong Kong
hso@eee.hku.hk∗

Robert Brodersen
Dept. of Electrical Engineering and Computer Sciences

University of California, Berkeley, CA94720, U.S.A.
rb@eecs.berkeley.edu

Abstract

This paper presents the design of BORPH’s file system
layer for FPGA-based reconfigurable computers. BORPH
provides user FPGA designs that execute as hardware pro-
cesses access to the general file system using familiar UNIX
file I/O semantics. Such capability provides FPGA design-
ers an intuitive interface not only for regular file I/O, but
also for representing streaming hardware/software and ha-
rdware/hardware communication using UNIX pipes. De-
sign trade-offs among system manageability, user usability
and application performance are explored. A case of mixed
hardware/software video processing is presented as a proof-
of-concept.

1. Introduction
The Berkeley Operating system for ReProgrammable

Hardware (BORPH) is a general purpose, multi-user operat-
ing system for FPGA-based reconfigurable computers[3, 4].
By extending various conventional software-centric UNIX
semantics to reconfigurable computers, it aims to make
FPGA systems more accessible to even non-FPGA experts.
This paper presents a brief overview of the file system layer
design of BORPH.

In a reconfigurable computer managed by BORPH, user
FPGA applications, called gateware designs, execute as
special hardware processes. A hardware process behaves
in the same way as any normal UNIX process except its
“program” executes on reconfigurable hardware instead of
using up CPU time slices.

BORPH’s hardware process concept allows gateware de-
signs to execute independent of any controlling software.
This enables an FPGA-centric compute model for reconfig-
urable computing, which also calls for a gateware-centric
data I/O model. Among all types of gateware initiated data
I/O, general UNIX file system access is one of the most im-

∗This work was funded in part by C2S2, the MARCO Focus Center for
Circuit & System Solutions, under MARCO contract 2003-CT-888.

portant. In a UNIX system, many important entities such as
sockets, pipes, and even device driver handles are all rep-
resented using the same file abstraction. Providing file sys-
tem access to gateware therefore opens up many novel com-
munication scenarios that are previously impossible when
FPGA designs are run as mere accelerators of software.

Furthermore, BORPH extends the usual semantics of a
UNIX pipe (FIFO) to represent hardware/software and ha-
rdware/hardware data stream. In particular, when two hard-
ware processes are connected through a pipe, the kernel sets
up direct connection such that they may communicate with
cycle-accurate streaming data. The switching between reg-
ular file access and cycle accurate data streaming is handled
by the kernel. Therefore, without recompilation, the same
gateware design may engage in different modes of file ac-
cess by a simple run time file redirection.

2. Design Issues
This section compares the differences between file sys-

tem access by standard software and gateware designs.

2.1. High Speed Data Access

Even in a traditional software system, any kernel over-
head on data I/O has significant impact on the over appli-
cation performance. In the case of BORPH, since gateware
designs run at “hardware speed,” the effect of such software
kernel overhead is much more prominent. It is especially
true as the performance of most gateware designs are I/O
bounded.

Our current implementation has partially addressed this
problem by optimizing the case when two hardware pro-
cesses are connected by a UNIX pipe. In that case, a direct
hardware connection is setup between them to allow unin-
terrupted cycle-accurate data streaming.

2.2. Dynamic Switching Between Different
File Access Modes

The optimization for hardware/hardware streams de-
scribed in previous subsection creates a challenge to BO-

16th International Symposium on Field-Programmable Custom Computing Machines

978-0-7695-3307-0/08 $25.00 © 2008 IEEE

DOI 10.1109/FCCM.2008.7

285

Authorized licensed use limited to: Politechnika Lodzka. Downloaded on May 06,2010 at 09:43:32 UTC from IEEE Xplore. Restrictions apply.

RPH’s interface design. In a UNIX system, during run time,
the target of a file operation may dynamically be altered by
means of I/O redirection.

For example, assuming f1, f2 are both implemented as
gateware, the following UNIX command will setup a direct
high-speed connection between f1 and f2 that bypass OS
intervention.

bash$ decode video.in | f1 | f2 > video.out

However, say for debugging purposes, one may save the
output of f1 easily using I/O redirection as follow:

bash$ decode video.in | f1 > debug.out

BORPH shields the user from all complexities involved
in switching between the two modes described above.
Therefore, without recompilation, the same gateware design
may engage in either mode of file operations, making it easy
to use on one hand, yet not degrading performance on the
other hand.

2.3. Blocking vs. Nonblocking File Access

In standard UNIX systems, during the period in which
the OS kernel services a file access system call, the calling
user process is usually blocked until the system call com-
mences. At that time, the calling process is resumed at the
point where it was suspended, having the illusion that the
system call has completed instantaneously. However, unlike
software programs, a gateware application exhibit a parallel
computation model in which every part of the design exe-
cute concurrently. Therefore, it is unwise for the kernel to
block the entire hardware process using techniques such as
clock gating because it will inevitably result in unacceptable
performance penalties.

As a result, all hardware system calls are executed asyn-
chronously to the user gateware designs in our current im-
plementation. User designs must handle signals from the
kernel that indicate the progress of a system call.

2.4. Concurrent File System Access

Since gateware designs compute in parallel, it is possible
that multiple portions of the same design demand OS ser-
vices concurrently. As oppose to the “logical” concurrent
system calls generated by multi-threaded software applica-
tions, gateware designs may issue file system requests on
the exact same hardware cycle. Therefore, the OS kernel
must physically be able to service such concurrent requests.

2.5. Partial Result and Error Status

The semantics of standard software file read/write sys-
tem call state that the OS kernel may return less data or
commit less data than what the user has requested. It is
useful when the file doesn’t have enough data to return, or
when the user’s disk quota has exceeded. Furthermore, the

kernel may return status code that indicates situations such
as I/O error or reaching the end of a file.

While such concept of partial data delivery and error re-
porting is common among software developers, they are
seldom considered by gateware designers. Our current im-
plementation retains such software semantics and mandates
gateware deigns to handle them gracefully similar to the
ways software programs handle them. A set of user-space
gateware libraries is provided to hardware-centric designers
to ease their development efforts.

3. Example
As a proof-of-concept design, we have implemented

various video processing filters using FPGAs on a BEE2
platform[1]. These gateware filters accept the common
video streaming format used by the Linux MJPEG tools[2].
As a result, we were able to dynamically construct video
processing chains during run time by mixing-and-matching
gateware and unmodified software filters from the MJPEG
tools as follow:

bash$ lav2yuv test.avi | yuvedgdet.bof \
| mpeg2enc -o output.mpg

where lav2yuv and mpeg2enc are unmodified Linux
software and yuvedgdet.bof is implemented in FPGA.

4. Conclusion
In this paper, we have presented an overview of the de-

sign of BORPH’s file system layer. Providing file system
access to gateware not only provides an easy-to-understand
I/O interface for novel FPGA designers, but it also presents
a novel FPGA-centric communication model that is only
made possible by BORPH’s hardware process model. A
prototype system has been built that demonstrated the fea-
sibility of constructing complex applications at run time by
combining unmodified Linux software with gateware de-
signs using UNIX pipes.

References
[1] C. Chang, J. Wawrzynek, and R. W. Brodersen. BEE2: A

high-end reconfigurable computing system. IEEE Design &
Test, 22(2):114–125, 2005.

[2] mjpegtools. [Online] http://mjpeg.sourceforge.net.
[3] H. K.-H. So and R. Brodersen. A unified hardware/software

runtime environment for FPGA-based reconfigurable com-
puters using BORPH. Trans. on Embedded Computing Sys.,
7(2):1–28, 2008.

[4] H. K.-H. So and R. W. Brodersen. Improving usability
of FPGA-based reconfigurable computers through operating
system support. In Proc. FPL’06, pages 349–354, 2006.

286

Authorized licensed use limited to: Politechnika Lodzka. Downloaded on May 06,2010 at 09:43:32 UTC from IEEE Xplore. Restrictions apply.

