
FPGA-friendly Code Compression
for Horizontal Microcoded Custom IPs

Bita Gorjiara and Daniel Gajski
Center for Embedded Computer Systems

University of California, Irvine

{bgorjiar, gajski}@cecs.uci.edu

ABSTRACT
Shrinking time-to-market and high demand for productivity
has driven traditional hardware designers to use design
methodologies that start from high-level languages. However,
meeting timing constraints of automatically generated IPs is
often a challenging and time-consuming task that must be
repeated every time the specification is modified. To address
this issue, a new generation of IP-design technologies that is
capable of generating custom datapaths as well as
programming an existing one is developed. These technologies
are often based on Horizontal Microcoded Architectures.
Large code size is a well-know problem in HMAs, and is
referred to as “code bloating” problem.

In this paper, we study the code size of one of the new HMA-
based technologies called NISC. We show that NISC code size
can be several times larger than a typical RISC processor, and
we propose several low-overhead dictionary-based code
compression techniques to reduce the code size. Our
compression algorithm leverages the knowledge of “don’t
care” values in the control words to better compress the
content of dictionary memories. Our experiments show that by
selecting proper memory architectures the code size of NISC
can be reduced by 70% (i.e. 3.3 times) at cost of only 9%
performance degradation. We also show that some code
compression techniques may increase number of utilized block
RAMs in FPGA-based implementations. To address this issue,
we propose combining dictionaries and implementing them
using embedded dual-port memories.

Categories and Subject Descriptors
C.3 [Special-Purpose and Application-based Systems]:
Microprocessor/microcomputer applications.

General Terms
Algorithms, Design, Performance, Experimentation.

Keywords
Microcoded Architectures, No-Instruction-Set Computer,
Memory optimization, Dictionary-based compression, FPGA.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise,
or republish, to post on servers or to redistribute to lists, requires prior
specific permission and/or a fee.
FPGA’07, February 18–20, 2007, Monterey, California, USA.
Copyright 2007 ACM 978-1-59593-600-4/07/0002...$5.00.

1. INTRODUCTION
Shrinking time-to-market and high demand for productivity
has driven traditional hardware designers to use design
methodologies that start from high-level languages. However,
meeting timing constraints of automatically generated IPs is
often a challenging and time-consuming task for designers.
Moreover, slight changes in the high-level specification
require re-running the behavioral synthesis tools, producing a
new datapath, and redoing the process of meeting timing
constraints. To avoid repeating timing-closure phase, a new
generation of custom-IP design technology that is capable of
both generating custom datapaths as well as re-programming
existing ones (without further modifications) is developed. In
these technologies, first a custom datapath is generated for an
application, and then the datapath is synthesized and laid out
properly to meet timing and physical constraints. The final step
is to compile the program on the generated datapath. If the
application is changed after synthesis, it is simply recompiled
on the existing datapath. This feature significantly improves
the productivity of the designer by avoiding repetition of
timing closure phase. Examples of such technology include
ARM OptimoDE [1], [2], NISC [4], [5], [6], and TIPI [7].
These techniques are targeted for statically-scheduled
Horizontal Microcoded Architectures (HMA) [8].

A microcode is a set of bits that controls the units of datapath
for one cycle. In statically scheduled HMAs, the compiler
compiles the program directly to microcode without
instruction abstraction. HMAs can potentially have better
performance, lower power, and lower area than conventional
RISC processors. This is due to replacing the costly hardware
schedulers with off-line compiler algorithms. As a result,
highly parallel architectures can be designed as HMA without
any concern about the complexity of controller and hardware
scheduler. Despite all these benefits, HMAs suffer from code
size problem, known as “code bloating”.

This paper studies the code size of a new HMA-based design
methodology, called NISC, and compares it with that of
traditional RISC processors. We observed that although NISC
IPs outperform RISC processors by five times on average,
their code sizes are about four times larger than those of RISC.
In this paper, we propose low-overhead, yet effective, code
compression techniques for NISC IPs targeted for FPGAs. Our
compression approach is based on dictionary-based
compression algorithms. In our approach each microcode (or
control word) is partitioned to two or more slices and
dictionaries of unique slices are constructed. The compressed
code contains the addresses of slices in the dictionaries. Our

108

experiments show that optimum number of dictionaries varies
for different application sizes. Our approach has very low
performance overhead (i.e. 9% on average) and can compress
NISC binaries by 3.3 times. Such significant savings makes
the code size of NISC only 16% (on average) worse than that
of traditional RISC processors. We also show that some of the
proposed code compression techniques, despite decreasing the
code size, increase number of utilized block RAMs in FPGA-
based implementations. We address this issue by combining
dictionaries and implementing them using embedded dual-port
memories.

This paper is organized as follows: Section 2 presents an
overview of related works. Section 3 presents a motivational
example that compares the performance and code size of NISC
with RISC. Section 4 presents our code compression
techniques followed by experimental results in Section 5.
Section 6 concludes the paper.

2. RELATED WORKS
In the past, a large body of code-size-reduction techniques for
processors has been proposed. The techniques can be
categorized in three groups:

(1) Compiler optimizations: techniques such as register
renaming, inter-procedural optimization, and procedural
abstraction can be implemented in compiler to reduce the code
size [12], [13], [14], [15], [16]. These techniques can be
applied to microcoded architectures as well, and they are out of
scope of this paper.

(2) Instruction set: instruction-set abstraction is often used to
reduce the code size of processors. In RISC processors,
designers define 32-bit or 16-bit [17] [18] instructions to
encode wide control words. At runtime, the instructions are
decoded back to the control words using a hardware decoder.
The software development tools must also support and utilize
the instructions. However designing instruction-set is a very
complex and time-consuming task for a typical IP designer;
because compiler, assembler, linker and instruction decoder
must be re-designed to handle the custom instructions.
Furthermore, the instruction decoder imposes unnecessary
hardware overhead in custom IPs. Therefore, it is desirable to
avoid instruction-set abstraction.

(3) Code compression: in these techniques, the executable
program is compressed offline and decompressed on-the-fly
during execution. Code compressions affect only memory
structure without changing compiler or processor architecture.

Most proposed code-compression techniques are based on
dictionary-based compression algorithms. In [19], a dictionary-
based compression technique, known as CCRP, was proposed
in which instruction cache is modified to run compressed
programs. In this approach, unique instructions in the program
are stored in a dictionary, where the location of the instructions
is determined by Huffman coding. Most frequent instructions
in the program are placed in low addresses of the dictionary
and are coded with less number of bits. Due to Huffman
coding, the compressed instructions have variable sizes. At
runtime, the compressed codes are fetched from main memory,
decompressed and put in the instruction cache. In this
approach cache misses are problematic because missed

instructions in the cache do not reside at the same address in
main memory. CCRP uses a Line Address Table (LAT) to map
missed instruction cache addresses to main memory addresses
where the compressed code is located. IBM CodePack [20],
[21], [22] is another compression technique that has the same
memory structure as of CCRP. In CodePack, each instruction
is partitioned to two halves and two dictionary memories are
used to store the unique patterns of each half. CodePack also
uses Huffman encoding to gain better compression ratio. Both
CCRP and CodePack are complex and have high
decompression delay. Therefore, they rely on using cache to
hide the decompression latency. However, in most custom IPs,
cache imposes an unnecessary hardware overhead and is often
avoided. As a result, these compression techniques are not
easily applicable. In [23], the authors extend the two-
dictionary architecture (i.e. CodePack) by rearranging the
instruction bits to balance the size of the two dictionaries.

Also, in [24] and [25], the authors extend the concept of
dictionary-based compression to sequence of instructions. In
these approaches, unique sequences of instructions are
identified and stored in a dictionary memory. In the executable
code, these sequences are replaced by the corresponding code-
words. These approaches also result in variable code size and
need cache for hiding the latency. Furthermore, they need
additional controller hardware to run the sequence of
instructions.

The proposed code-compression techniques increase the
hardware complexity significantly by requiring complex cache
structures. Therefore they are not suitable for custom IPs. In
this paper, we study the efficiency of multi-dictionary
compression techniques on code size of applications compiled
on NISC. We use one to four dictionaries in our compression
approaches, and show that optimum number of dictionaries
varies for different application sizes. To reduce the delay of
decompression, we use a fixed size coding style, which can be
implemented even without cache. Our dictionary compression
algorithm leverages the knowledge of “don’t care” values in
the control words to better compress the content of
dictionaries. We also show that some code compression
techniques, despite decreasing the code size, increase number
of utilized block RAMs in FPGA-based implementations.

3. MOTIVATIONAL EXAMPLE
To study the code size of HMA-based architectures we choose
NISC technology, since we had access to its toolset. NISC
technology is HMA-based and it relies on a sophisticated
compiler [5] to compile a program described in a high-level
language to binary that directly drives the control signals of
components in the datapath. The values of control signals
generated for each cycle are called a Control Word (CW). The
CWs are stored in Control Memory (CMem) in programmable
IPs, while they are synthesized to lookup-table logic in
hardwired dedicated IPs. In NISC, the area is relatively small
because of elimination of instruction decoder and hardware
scheduler. However, the code size is very large compared to
RISC processors.

109

C
W

P
C CMem

AG

RF

COMP ALU MUL DMem DIV

Figure 1- Block diagram of GN architecture.

To compare NISC with RISC, we designed datapath shown in
Figure 1, called GN, and synthesized it on Xilinx FPGA using
NISC tools [4]. The GN architecture has a register file (RF), a
comparator (COMP), an ALU, a multiplier (MUL), and a
divider (DIV), where some of the units are pipelined.

Since NISC tools generate synthesizable code for Xilinx
FPGA, we choose Xilinx MicroBlaze for comparing RISC and
NISC on the same platform. We configured MicroBlaze to
include a divider core, and synthesized both processors on a
Xilinx Virtex4 (90nm) FPGA package using ISE 8.1. Table 1
shows the area and clock frequency of the processors. Both
processors could run at about 100MHz, while the area of GN is
smaller than MicroBlaze.

Table 1- Area and clock frequency of
MicroBlaze and GN

Processors Clock freq.(MHz) Area (gates)
MicroBlaze 105 39574

GN 100 32632
We compiled and ran a set of benchmarks including dijkstra,
sha, adpcm_coder, adpcm_decoder and CRC32 from MiBench
(the free version of EEMBC embedded benchmarks available
at [10]), and a fixed-point Mp3 decoder (more than 10,000
lines of C code available at [11]). For each benchmarks, to get
the accurate execution cycle count, we generated and
simulated RTL Verilog code of the design.

 Table 2 shows the number of cycles and code size of each
benchmark on the two processors. MiBench provides a small
and a large input for the benchmarks. The reported cycle
numbers are for simulating the small input of MiBench
benchmarks. For simulating the Mp3 decoder, we used the
scope1.mp3 (44.1KHz, 96kbit/s, stereo) available at [11], and
ran the simulation to process 1 frame of the Mp3 file. For these
experiments, we set the compiler optimizations to the
maximum level to achieve the best performance with both
NISC and MicroBlaze. The code size of MicroBlaze (third
column) is the size of instruction section (.text) of the .elf file
generated by the compiler. The sixth column shows speedup of
GN compared to MicroBlaze. The seventh column shows the
ratio of GN code size to that of MicroBlaze. On average GN
runs 5.54 times faster than MicroBlaze, while its code size is
four times larger. The large code size increases the size of
control memory, in programmable IPs, and the area of control
logic, in dedicated IPs. The goal of our code optimization
technique is to reduce the code size of NISC processors while
maintaining the performance benefits.

Table 2- Comparing GN with MicroBlaze

 MicroBlaze GN GN vs.
MicroBlaze

Benchmarks #cycles code size
(KB) #cycles code size

(KB)
speedup

(x)
code size

ratio
adpcm_coder 256748693 1.956 74321930 6.960 3.45 5.10

adpcm_decoder 322766405 1.364 63082673 5.075 5.12 2.59
CRC32 209436647 1.264 21901993 2.567 9.56 2.03
dijkstra 25927532 1.928 9764682 9.614 2.66 4.99

sha 183030479 3.156 19282976 14.123 9.49 4.47
Mp3 2668445 44.62 897452 216.659 2.97 4.86

Average 5.54 4.01

4. OUR CODE COMPRESSION
APPROACH
The dictionary based compression techniques rely on the fact
that same binary patterns (BP) appear many times in the
program. Figure 2 shows how these techniques typically work.
If a program has N instructions and each instruction is n bits,
then N×n bits must be stored in the memory. If the number of
distinct BPs is M and m=log2M is much smaller than n, then a
dictionary based technique can compress the code down to
N×m+M×n bits in the memory instead of N×n. However, this
compression costs one extra memory access during CW fetch.

Figure 2-Dictionary-based code compression

To reduce the code size, we construct a dictionary of unique
Control Words (CWs) and, in the executable binary, replace
control words by the corresponding dictionary line addresses.
Figure 3 shows a one-dictionary code compression approach.
The memory structure consists of a code lookup table
(CodeLUT) and a dictionary. The Program Counter (PC)
contains the address of CodeLUT and is used to fetch the next
code word. The code word is then used to fetch the
corresponding control word from dictionary.

lookup lookup

CodeLUT

Dictionary

Figure 3- One-dictionary code compression (opt1)

Suppose that Figure 4 shows the control words of a sample
program. Each control word has 16 bits and the program has
nine control words. Therefore, the code size of the program is
144 bits (16×9). Figure 5 shows the compressed

110

implementation of Figure 4, where the dictionary contains five
unique control words and the CodeLUT contains the
corresponding address of the CWs. To address the dictionary
three bits is needed, thus the code words are three-bit wide.
After compression the total memory size is reduced to 107 (i.e.
3×9+16×5).

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
1 0 0 1 0 1 1 0 0 0 1 0 1 0 1 0
1 0 0 0 1 1 1 1 0 0 1 0 1 0 1 0
1 0 0 1 0 1 1 0 1 1 1 0 1 0 1 0
1 0 0 0 1 1 1 1 0 0 1 0 1 0 1 0
0 0 1 0 1 0 1 0 1 0 0 0 1 1 1 1
0 0 1 0 1 0 1 0 1 0 0 1 0 1 1 0
1 0 0 1 0 1 1 0 0 0 1 0 1 0 1 0
0 0 1 0 1 0 1 0 1 0 0 0 1 1 1 1
1 0 0 1 0 1 1 0 1 1 1 0 1 0 1 0

Figure 4- Control words of a sample program

000
001
010
000
011
100
001
011
010

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
1 0 0 1 0 1 1 0 0 0 1 0 1 0 1 0
1 0 0 0 1 1 1 1 0 0 1 0 1 0 1 0
1 0 0 1 0 1 1 0 1 1 1 0 1 0 1 0
0 0 1 0 1 0 1 0 1 0 0 0 1 1 1 1
0 0 1 0 1 0 1 0 1 0 0 1 0 1 1 0

Figure 5- Single-dictionary compression on control words
of Figure 4

00 00
01 00
00 01
00 00
10 10
10 11
01 00
10 10
00 01

0 1 2 3 4 5 6 7
1 0 0 1 0 1 1 0
1 0 0 0 1 1 1 1
0 0 1 0 1 0 1 0

8 9 10 11 12 13 14 15
0 0 1 0 1 0 1 0
1 1 1 0 1 0 1 0
1 0 0 0 1 1 1 1
1 0 0 1 0 1 1 0

Figure 6- two-dictionary compression on
 control words of Figure 4

Since CWs can be very wide with many unique patterns, the
dictionary may have many entries. To increase the chances of
finding matching patterns, we partition the CWs to smaller
slices and construct multiple dictionaries. Usually the total
code size of the partitioned dictionaries is much smaller than
that of a single big dictionary. However, corresponding to each
dictionary, a code field must be added to code words. Figure 6
shows the two-dictionary implementation of the example
control words shown in Figure 4. The top dictionary contains
the unique patterns of the least-significant half of the control
words, while the bottom dictionary has those of the most-
significant halves. Note that number of unique control word
slices in each half is less than total number of unique control
words. The code words have two fields to address the two
dictionaries. Since each dictionary has four or less entries, the
code word fields are only two bits. Using two-dictionary
implementation the code size is reduced to 92 bits (i.e.
4×9+8×3+8×4).

As number of dictionaries increases, the number of CodeLUT
fields increases. As a result, at some point, the size increase of
CodeLUT cancels out the gain of having more dictionaries.

Figure 7, Figure 8, and Figure 9 show two-, three- and four-
dictionary code compression approaches called opt2, opt3, and
opt4, respectively. Since all the dictionaries are accessed in
parallel, more dictionaries do not affect the performance
penalty.

In NISC the control words are relatively wide (50 bits or more
depending on the architecture features). Since the size of
performance-critical applications implemented using custom
IPs is usually small, the number of unique control words is
usually small as well. Therefore, the dictionaries can be
addressed with relatively few bits. Consequently, the width of
code words is far smaller than the width of control words. This
property makes it possible to reduce code size using multiple
dictionaries without requiring Huffman encoding. Without
Huffman encoding, the width of all code words becomes the
same and the decoding becomes easier.

Figure 7- Two-dictionary code compression (opt2)

Figure 8- Three-dictionary code compression (opt3)

Figure 9- Four-dictionary code compression (opt4)

4.1 Reducing number of block RAMs
The CodeLUT and dictionaries may be implemented using
hardwired lookup tables or programmable memories (RAM),
depending on the design re-programmability goals. If all are
implemented using RAM, the datapath is completely
reprogrammable. However, if dictionaries are implemented

111

using hardwired logic, and CodeLUT is implemented using
RAM, the reprogramming is limited to applications that
contain the hardwired CWs.

Figure 10- Two-dictionary code compression using a dual-

port memory (opt2DP)

Figure 11- Three-dictionary code compression using a

dual-port memory (opt3DP)

Figure 12- Four-dictionary code compression using two

dual-port memories (opt4DP)

In today’s FPGAs, tens or even hundreds of compact and fast
memory blocks exist. Each block has a predefined size: for
example, in Xilinx Virtex4 FPGA, each block RAM is
18Kbits. Although our code compression techniques reduce
the code size, they tend to increase number of memory (or
LUT) units, thus occupying more under-utilized block RAMs.
For very small programs that only occupy one block RAM, the
dictionary-based compression approach is not suitable,
because it increases number of utilized block RAMs to two or
more.

To reduce number of utilized RAMs in larger programs that
occupy more than one RAMs, we propose to integrate every
two available dictionaries into one dual-port memory. Since in
FPGAs, one block RAM can be configured as single-port or
dual port, integrating dictionaries can help in reducing number
of utilized RAMs. Figure 10, Figure 11, and Figure 12 show
the dual-port implementation of opt2, opt3, and opt4,

respectively. Note that, the merged dictionary contents may
have more entries than each individual dictionary. However,
the size of the merged dictionary is less than the total size of
the two dictionaries, because redundant entries can be removed
after merging the contents. Since merging dictionaries increase
the depth of the dictionary unit, the width of code words may
increase as well. As a result, the total code size may remain the
same as before, but number of utilized block RAMs decreases.

Figure 13 shows the dictionary content and CodeLUT of the
dual-port implementation of Figure 6. The seven entries of the
two dictionaries in Figure 6 are compacted to four unique
entries in Figure 13. The code words are also updated to refer
to the correct bit patterns. Compared to Figure 6 that requires
three block RAMs, Figure 13 requires only two RAMs. Also,
the code size is reduced to 68 bits (i.e. 4×9+8×4).

11 00
10 00
11 01
11 00
00 10
00 11
10 00
00 10
11 01

0 0 1 0 1 0 1 0
1 1 1 0 1 0 1 0
1 0 0 0 1 1 1 1
1 0 0 1 0 1 1 0

Figure 13- dual-port memory implementation of Figure 6

4.2 Smart resolution of “don’t care” bits
In NISC, each control word contains values of control signals
in the datapath. At each cycles, some of the control signals in
the datapath may have “don’t care” values. This means that
either ‘0’ or ‘1’ can be assigned to those control signals
without affecting the correctness of the program. For example,
if a 4-input Mux unit is not used in a given cycle, its selection
signal can be assigned ‘00’, ‘01’, ‘10’ or ‘11’. NISC compiler
maintains the information of “don’t care” values and marks
them by ‘X’ in the output binary. Some of the control signals
such as register-file write enable cannot be ‘X’, because if ‘X’
gets resolved to ‘1’, an incorrect data is written to the RF.
Control signals such as register-file read and write addresses,
Mux selection signal, and ALU operation signal can be ‘X’
when the units are not used. Figure 14 shows an example of
NISC control words.

1 0 X X 1 1 X X X 1 1 0 X 0 1
0 X X 1 1 0 0 0 1 X 0 X X 1 1
X 0 0 1 X 1 0 1 0 X X 0 0 0 X
1 X 0 X 1 X 0 X 0 1 1 X 0 X 1
0 0 X 1 1 0 X 0 1 0 0 0 0 1 1
 Figure 14- Example of control words

generated by NISC compiler

To build a dictionary for CWs of Figure 14, one may replace
‘X’ values by ‘0’ and then extract the unique patterns. In that
case, the dictionary (shown in Figure 15) will have four
entries, because only the second and the last vectors match.
However, if the ‘X’ values are smartly resolved, then the
dictionary will have only two entries shown in Figure 16. The
‘X’ values can be resolved so that the first, third, and fourth
vectors in Figure 14 are mapped to the first entry of Figure 16,
and the other two vectors are mapped to the second entry of
Figure 16.

112

1 0 0 0 1 1 0 0 0 1 1 0 0 0 1
0 0 0 1 1 0 0 0 1 0 0 0 0 1 1
0 0 0 1 0 1 0 1 0 0 0 0 0 0 0
1 0 0 0 1 0 0 0 0 1 1 0 0 0 1

Figure 15- Dictionary content for CWs of Figure 14
(‘X’ are replace by ‘0’)

1 0 0 1 1 1 0 1 0 1 1 1 0 0 1
0 0 0 1 1 0 0 0 1 0 0 0 0 1 1

Figure 16- Dictionary content for CWs of Figure 14
(using smart ‘X’ resolution)

The problem that must be solved is to resolve ‘X’ values in
CWs so that the total number of unique patterns is minimized.
To solve this problem, we convert it to graph coloring [27]
problem. For a given list of bit-vectors, we construct a graph
G(V, E), where the vertices in V are the bit-vectors, and the
edges in E show the conflict between the vectors. Two bit-
vectors v1 and v2 do NOT have conflict if they can be merged
to a single bit vector:

∀i∈{1,…, N}, v1[i]=v2[i] OR v1[i]=’X’ OR v2[i]=’X’
Where, N is the number of bits in a bit-vector. The edges in E
are defined between the vectors that have conflict with each
other:

E = {(v1, v2) | v1 has conflict with v2}
The algorithm must partition the vertices (or vectors) to sub-
categories so that there is no edge (i.e. conflict) between any
two vertices in the same category while minimizing the total
number of categories. This is exactly the graph coloring
problem where each category is represented by a distinct color
[27]. Solving the graph coloring problem optimally is NP-hard
[26]. But there are many well-known heuristics that generate
efficient results in polynomial time. After coloring the graph,
corresponding to each color a new vector is generated and all
the same-color vectors are merged into that vector. The new
vectors are used to fill the dictionary.

Figure 17 shows our dictionary compression algorithm in more
details. First a conflict graph is constructed from the given set
of bit-vectors V. Then, using the graph coloring algorithm, a
color is assigned to each vector and the set of generated colors
(i.e. C) is returned back to the algorithm. For each color in the
set, a new combined bit-vector cv is created and all of its bits
are initialized by ‘X’. Then, all the same-color vectors are
merged into their corresponding cv, and the remaining ‘X’ bits
are replaced by ‘0’. The final compact bit vectors (i.e. CV) are
used to fill the content of a dictionary.

5. EXPERIMENTAL RESULTS
We implemented all the compression techniques, opt1 (Figure
3), opt2 (Figure 7), opt3 (Figure 8), opt4 (Figure 9), opt2DP
(Figure 10), opt3DP (Figure 11), and opt4DP (Figure 12). We
used the benchmarks of Section 3 in these experiments as well.
In Section 5.1, compression techniques are compared in terms
of their Code Compression Ratio. In Section 5.2, compression
techniques are compared in terms of number of utilized block
RAMs in a fully programmable RAM-based implementation.
Finally, in Section 5.3 the performance penalty of the
techniques is presented.

Compress (V, N)
 //Inputs:
 //V: the list of vectors
 //N: the bit width of the vectors
 //output: CV, the list of compact vectors.
 G = ConstructConflictGraph(V);
 C = Color(G); // C is the set of colors
 for each color c in C
 // create a new vector that contains only ‘X’
 cv = new BitVector('X', N);
 for each v in V
 if (color of v is c)
 //merging the two vectors
 for i=1 to N
 if(v[i] != 'X')
 cv[i] = v[i];

 for each v in CV
 replace the remaining 'X' in v with '0'
 CV.Add(cv);
 return CV;
Figure 17- Our dictionary compression algorithm

5.1 Code-size comparison
Table 3 shows the code size of the benchmarks running on
NISC with different code compressions. The second column
shows the baseline code size of NISC with no code
compression (No-opt). As number of dictionaries increases
(columns 3, 4, 5, and 6), the code size (i.e. the total size of
dictionaries and CodeLUT) of all the benchmark decrease up
to certain points (the highlighted values) and then increases
again. These are the points where the increase in CodeLUT
size cancels out the benefit of having more dictionaries. As
shown in the table, the minimum point for each benchmark is
different and depends on the baseline size of the benchmarks.
For CRC32, which is the smallest benchmark, four dictionaries
(i.e. opt4) achieve the minimum code size. For medium size
benchmarks (adpcm_coder, adpcm_decoder, dijkstra, and
sha), the minimum code size is achieved with three
dictionaries (i.e. opt3). For MP3, which is significantly larger
than others, the two-dictionary compression (i.e. opt2) is the
best. Nevertheless, on average, the code size is reduced by 3.3
times comparing the best compressed code sizes to the
baseline (No-opt column).

The last row in the table shows the Code Compression Ratio
(CCR) a metric commonly used to evaluate a compression
algorithm. CCR is the ratio between the compressed size and
the original size, and smaller CCR numbers show a better
compression. On average for all these benchmarks, the three-
dictionary compression (i.e. opt3) outperforms the others with
CCR of 0.3. Note that without Huffman encoding, multiple
dictionaries can easily outperform the single-dictionary
compression. Furthermore, these experiments highlight that
number of dictionaries must be selected based on the size of
the target applications, to achieve the minimum code size. In
these experiments, using dual-port memories does not improve
code size compared to single-port memory implementation.

113

Table 3- Code size of benchmarks with
different code compressions

 Memory size (Kbytes)
 No-opt opt1 opt2 opt3 opt4 opt2DP opt3DP opt4DP

adpcm_coder 6.96 3.77 2.44 2.19 2.19 2.53 2.30 2.49
adpcm_decoder 5.08 3.24 1.98 1.59 1.68 2.04 1.76 1.80

CRC32 2.57 1.72 1.04 0.85 0.80 1.06 0.88 0.85
dijkstra 9.61 4.32 2.71 2.52 2.68 2.86 2.78 2.93

sha 14.12 6.75 4.45 4.12 4.14 4.69 4.63 4.88
Mp3 216.66 82.00 63.08 67.66 76.05 68.72 73.43 81.84

average CCR 1.00 0.53 0.34 0.30 0.31 0.35 0.33 0.34

Table 4- Code size of GN-opt vs. MicroBlaze
 Memory size (Kbytes) GN-opt vs. MBlaze
 MBlaze GN-opt code ratio

adpcm_coder 1.956 2.19 1.12
adpcm_decoder 1.364 1.59 1.16

CRC32 1.264 0.80 0.63
dijkstra 1.928 2.52 1.31

sha 3.156 4.12 1.41
Mp3 44.62 63.08 1.31

average 1.16

By selecting the fittest code compression technique, the code
size of NISC becomes very close to that of MicroBlaze. Table
4 compares the code size of the MicroBlaze (second columns)
with the best compressed code size of benchmarks (i.e. third
column; GN-opt). The fourth column shows the ratio of GN-
opt code size vs. that of MicroBlaze. For adpcm_coder and
adpcm_decoder, NISC code size is only 12% and 16% worse
than that of MicroBlaze. For CRC32, NISC code size is even
40% less than MicroBlaze. However, for dijkstra, sha, and
MP3, the code size is still 30%-40% more than MicroBlaze.
On average, the code size of fittest NISC is only 16% more
than the code size of MicroBlaze.

5.2 Block RAM utilization comparison
Although opt2, opt3, and opt4 significantly reduce the code size
in the lookup-table-based implementation, in a fully
programmable RAM-based implementation, they may even
increase number of used block RAMs compared to the baseline.
In FPGAs, logical memories are implemented using one or more
block RAMs depending on their width, depth, and available
primitives [28]. Table 5 shows the number of utilized 18Kbit
block RAMs in different implementations on Xilinx
Virtex4SX35. This package contains hundreds of block RAMs.
In MicroBlaze implementation (second column), most of the
benchmarks need only one block RAM for their code, except for
sha and Mp3, which need two and 21 blocks, respectively.
These numbers are significantly higher for NISC (third column),
because the CWs are wide, and block RAM primitives do not
support wide words. In terms of block RAM utilization, NISC
requires on average five times more blocks than MicroBlaze. As
expected, most of the compression techniques increase the
number of block RAMs for the smaller applications (i.e.
adpcm_coder, adpcm_decoder, and CRC32). However, for
medium and large applications (i.e. dijkstra, sha, and Mp3), the
compression techniques reduce number of block RAMs. Using
dual-port memories (i.e. opt2DP, opt3DP, and opt4DP) reduces
number of utilized block RAMs compared to single-port
memories. The minimum number of blocks is achieved using
opt2DP for adpcm_coder, adpcm_decoder, CRC32, dijkstra,
and sha. For Mp3 decoder, however, the minimum is achieved

using opt2. That is due to a significant size increase in CodeLUT
of MP3 when using dual-port dictionaries.

Note that although opt3 is the best compression technique in
terms of code size (as shown in Table 3), it wastes many block
RAMs in FPGA implementation. In terms of number of utilized
block RAMs, opt2DP is more efficient than others. These
experiments show that the code compression techniques must
take the underlying physical memory structure into account in
order to really reduce number of used block RAMs in FPGAs.
Otherwise, it may even increase number of used RAMs.

Also, note that for partially programmable IPs where
dictionaries are implemented with hardwired logic, NISC with
compression can easily achieve the same block RAM utilization
as of MicroBlaze. Furthermore, these results may vary for
different block RAM sizes and available primitives.

Table 5- Number of utilized 18Kbit block RAMs.

 Memory size (number of 18Kbit Block RAMs)
 MBlaze No-opt opt1 opt2 opt3 opt4 opt2DP opt3DP opt4DP

adpcm_coder 1 4 5 6 6 7 3 4 4
adpcm_decoder 1 3 4 5 5 6 2 3 3

CRC32 1 3 4 5 5 6 2 3 3
dijkstra 1 6 5 6 7 9 3 5 5

sha 2 11 5 6 9 11 4 5 5
Mp3 21 117 67 34 38 38 36 42 43

5.3 Performance penalty of code compression
All the proposed optimizations have the same performance
penalty. They increase the number of fetch pipeline stages by
one, which increases the branch delay by one cycle. We
described the new architectures for NISC tools in GNR format
[29] and ran the compiler to generate the executable code. We
modified the tools to generate RTL code for new memory
structure and simulated the generated code using Modelsim
simulator. In Table 6, the second column shows number of
cycles that each benchmark takes to finish after applying
optimizations. The third column shows the performance
overhead of memory optimization in terms of the slowdown
percentage compared to the baseline GN. These numbers are
computed using number of cycles with and without code
compression (see Table 2 column fourth as well). The
performance penalty depends on the average basic block length
and that how well the compiler can fill the extra branch delay
slot. On average, the performance is degraded only 9.12%. The
fifth column compares the speed of optimized GN with that of
MicroBlaze processor. The optimized GN is on average 5.21
times faster than MicroBlaze. This shows that the memory
optimizations had little effect on the performance of GN.

Table 6- Comparing performance of GN-opt with that of
GN and MicroBlaze

 GN-opt
(with compression) GN-opt. vs. GN GN-opt. vs.

MicroBlaze
Benchmarks #cycles slowdown (%) speedup (x)
adpcm_coder 84251684 13.36 3.05

adpcm_decoder 66504319 5.42 4.85
CRC32 26008604 18.75 8.05
dijkstra 10631310 8.88 2.44

sha 18371827 3.33 9.96
Mp3 927307 4.96 2.88

Average 9.12 5.21

114

6. CONCLUSION
In this paper, we study the code size of NISC IPs and compare
it with that of traditional RISC processors. We observed that
although NISC IPs outperform RISC processors by five times
on average, their code sizes are about four times larger than
that of RISC.

We study the use of different variations of dictionary-based
code compression techniques on NISC binary. Our
experiments show that optimum number of dictionaries varies
depending on the application size. By selecting proper code
compression technique the code size of NISC can be reduced
by 70% (i.e. 3.3x) at cost of only 9% performance degradation.
Furthermore, we show that some code compression
techniques, despite reducing the code size, may increase
number of utilized block RAMs in FPGA-based
implementations. To address this issue, we propose to merge
the content of every two dictionaries into a single dual-port
memory. Using this technique, block-RAM utilization is
reduced up to 60%.

7. REFERENCES
[1] M. Byatt, “Data plane processing with configurable

architectures”, ARM white paper, 2003.
[2] N. Clark, H. Zhong, K. Fan, S. Mahlke, K. Flautner, K. Van

Nieuwenhove, “OptimoDE: Programmable Accelerator
Engines Through Retargetable Customization”, Hot Chips,
2004.

[3] S. Bashford, U. Bieker, B. Harking, R. Leupers, P.
Marwedel, A. Neumann, D. Voggenauer, “The MIMOLA
Language - Version 4.1. Technical Report.” Computer
Science Dpt., University of Dortmund, 1994.

[4] http://www.cecs.uci.edu/~nisc
[5] M. Reshadi, D. Gajski, “A cycle-accurate compilation

algorithm for custom pipelined datapaths”, In Proc.
CODES+ISSS, 2005.

[6] M. Reshadi, B. Gorjiara, D. Gajski, “Utilizing Horizontal and
Vertical Parallelism Using a No-Instruction-Set Compiler
and Custom Datapaths”, International Conference on
Computer Design (ICCD), pages 69-76, 2005.

[7] S. J Weber and K. Keutzer, “Using minimal minterms to
represent programmability”, In Proc. CODES+ISSS, 2005.

[8] A. Agrawala, T. Rauscher, Foundations of
Microprogramming: Architecture, Software, and
Applications, Academic Press, ISBN: 0120451506, 1976.

[9] R. Lysecky and F. Vahid, “A study of the speedups and
competitiveness of FPGA soft processor cores using dynamic
hardware/software partitioning”, Proc. DATE 2005, 2005.

[10] MiBench benchmark: http://www.eecs.umich.edu/mibench/
[11] MAD: MPEG Audio Decoder:

http://www.underbit.com/products/mad/
[12] K. D. Cooper and N. McIntosh, “Enhanced code compression

for embedded RISC processors”, Proc. Conf. on
Programming Languages Design and Implementation, 1999.

[13] D. Kirovski, J. Kin, and W. H. Mangione-Smith, “Procedure
based program compression”, Proc. 30th Ann. International
Symp. on Microarchitecture, 1997.

[14] S. K. Debray, W. Evans, R. Muth, and B. De Sutter,
“Compiler techniques for code compaction,” ACM
Transaction on Programming Languages and Systems, 2000.

[15] A. Halambi, A. Shrivastava, P. Biswas, N. Dutt, and A.
Nicolau, “An efficient compiler technique for code size
reduction using reduced bit-width ISAs,” Proc. Design
Automation and Test in Europe, 2002.

[16] S. Y. Liao, S. Devadas, and K. Keutzer, “Code density
optimization for embedded DSP processors using data
compression techniques,” Proc. Chapel Hill Conf. Adv.
Res.VLSI, pp. 393–399, 1995.

[17] S. Segars, K. Clarke, and L. Goudge, “Embedded control
problems, Thumb, and the ARM7TDMI,” IEEE Micro, vol.
15, no. 5, pp. 22–30, Oct. 1995.

[18] R. Grehan, “16-bit: The good, the bad, your options,”
Embedded Systems Programming, 1997 [Online]. Available:
http://www.embedded.com/1999/9908/9908sr.htm

[19] A. Wolfe and A. Chanin, “Executing compressed programs
on an embedded RISC architecture,” Proc. International
Symposium on Microarchitecture, 1992.

[20] IBM, CodePack PowerPC code Compression Utility User’s
Manual Version 3.0, IBM, 1998.

[21] T.M. Kemp, R.K. Montoye, D.J. Auerback, J.D. Harper, J.D.
Palmer, “A decompression core for PowerPC”, IBM Syst. J.
42,6(November), 1998.

[22] C. Lefurgy, E. Piccininni, T. Mudge, “Evaluation of a high
performance code compression method”, In Proc.
International Symposium on Microarchitecture, 1999.

[23] G. Pechanek, S. Larin, T. Conte, “Any-size instruction
abbreviation technique for embedded DSPs”, ASIC/SoC
Conference, 2002.

[24] M. Corliss, E. Lewis, and A. Roth. “DISE: a programmable
macro engine for customizing applications.” Proceedings of
the International Symposium on Computer Architecture
(ISCA), 2003.

[25] C. Fraser. “An instruction for direct interpretation of LZ77-
compressed programs.” Technical Report MSR-TR-2002-90,
Microsoft Research, Microsoft Corporation, 2002.

[26] M. Garey and D. Johnson, Computers and Intractability: A
Guide to the Theory of NP-Completeness. W.H. Freeman.
ISBN 0-7167-1045-5.

[27] T. Jensen, B. Toft, Graph coloring problems. Wiley-
Interscience, New York, 1995, ISBN 0-471-02865-7.

[28] Xilinx Product Specification, “Block memory generator”,
version 1.1, 2006.

[29] B. Gorjiara, M. Reshadi, P. Chandraiah, D. Gajski, “Generic
netlist representation for system and PE level design
exploration,” International Conference on
Hardware/Software Codesign and System Synthesis
(CODES+ISSS), 2006.

115

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.3
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.33333
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /PDFX1a:2001
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

