
MIXDES 2010 1

Instructionless processor
architecture

using
dynamically reconfigurable

logic
Rafał Kiełbik, Grzegorz Jabłoński, Bartłomiej Świercz, Piotr Amrozik

Technical University of Łódź
Department of Microelectronics and Computer Science

Łódź, Poland

Control Unit

THREAD 1
THREAD 3

THREAD 2

REµµµµP
THREAD N

MIXDES 2010 2

Our Idea

Dynamically REconfigurable FPGA
as general purpose µµµµProcessor

Configuration bitstreams instead of
a sequence of instructions

Control Unit

THREAD 1
THREAD 3

THREAD 2

REµµµµP
THREAD N

Control Unit

THREAD 1
THREAD 3

THREAD 2

REµµµµP
THREAD N

MIXDES 2010 3

Current Trends
HiPEAC Clusters & Task Forces

• Reconfigurable computing

• Programming models and operating systems

• Adaptive compilation

Typical applications of reconfigurable devices

• External coprocessors (for the most demanding calculations)

• Integrated coprocessors (with the microprocessor core implemented in FPGA)

• Application-Specific-Instruction set-Processor – ASIP (the pipeline
structure can be customized and utilized in the program through custom
instructions)

• No-Instruction-Set-Computer – NISC (the application is mapped directly to
the datapath, the pipeline structure remains constant throughout the entire
execution of the program)

• PipeRench, KiloCore – A virtualized Programmable Datapath

MIXDES 2010 4

Remarks:

• Concurrent execution of many threads constitutes a first source of data processing acceleration.

• Most threads are „too big” to be implemented outright in the FPGA at the same time!!!

FPGA as Processor

THREAD 1

THREAD 2

THREAD 3

THREAD 1

THREAD 2

THREAD 3

Sequential
Thread
Execution –
Time
Division

Control Unit

THREAD 1

Concurrent Thread
Execution

THREAD 3

THREAD 2

µµµµP REµµµµP

MIXDES 2010 5

Operation 1
Partition 1

Operation 3
Partition 2

Operation 4
Partition 3

Condition
Partition 3

Operation 5
Partition 4

Operation 6
Partition 5

Operation 7
Partition 6

Condition
Partition 5

Interrupts

Finish

Start

Interrupt handler

Operation 2
Partition 2

Operation 8
Partition 6

Operation 9
Partition 6

Thread Partitioning

Partition – a set of Operations

Operation – a part of a program (basic block)*
without any jumps out neither in

(*) – probably some basic blocks should be
merged in one operation (e.g. for better loops
optimization)

MIXDES 2010 6
P5

P2

P1

Interrupt handler

P2

P3

P4

P5

P6

P3

P4 P6

Av
ai

la
bl

e
R
es

ou
rc

es

Operation time

P2

M
ax

 T
hr

ea
d

R
es

ou
rc

es

New partition appears
before predecessor
disappear (ALAP)

In case of forks all
successor partitions
appear (ALAP)

Useless partitions
disappear (ASAP)
or stay for future
reuse

Scheduling the Partitions

Remarks:

• It should be possible to place each partition in any part of FPGA

• Each branching partition must inform the configuration Control Unit about the chosen branch

MIXDES 2010 7

Thread in C++

C++ to VHDL
Conversion

C++ to ASM
Compilation

Partitioning

Logical + Physical
Synthesis

Logical Synthesis

Partitioning

Physical Synthesis

Partitioning

ASM to VHDL
Conversion

Logical + Physical
Synthesis

Set of Bitstreams for
Each Partition

Very Complex, Limited
and Imperfect Solutions

Software to Hardware Conversion

MIXDES 2010 8

LDS R25,0x0186 Load direct from data space

LDS R24,0x0182 Load direct from data space

LSL R25 Logical Shift Left

LSL R24 Logical Shift Left

LSL R24 Logical Shift Left

SUB R25,R24 Subtract without carry

STS 0x0183,R25 Store direct to data space

char fun(char a, char b)

{

char c, d, r;

c = a * 2;

d = b * 4;

r = c - d;

return r;

}

int main(void)

{

...

c = fun(a,b);

...

}

LDS R,X

X : in std_logic_vector(N-1 downto 0);

variable R : std_logic_vector(X’high downto X’low);

R := X;

LSL R

R := R(R’high-1 downto R’low) & ‘0’;

SUB Rx, Ry

Rx := Rx – Ry;

STS X,R

X : out std_logic_vector(R’high downto R’low);

X <= R;

ASM to VHDL Conversion

MIXDES 2010 9

entity TEST is

port(X1, X2 in: ...;

X3 out: ...);

architecture TEST_behav of entity TEST is

begin

process(clk)

variable R25 : std_logic_vector(X1’high downto X1’low);

variable R24 : std_logic_vector(x2’high downto X2’low);

begin

if rising_edge(clk) then

R25 := X1;

R24 := X2;

R25 := R25(R25’high-1 downto R25’low) & ‘0’;

R24 := R24(R24’high-1 downto R24’low) & ‘0’;

R24 := R24(R24’high-1 downto R24’low) & ‘0’;

R25 := R25 – R24;

X3 <= R24;

end if;

end process;

end architecture;

LDS R25,X1

LDS R24,X2

LSL R25

LSL R24

LSL R24

SUB R25,R24

STS X3,R25

ASM to VHDL Conversion – Example

MIXDES 2010 10

SUB

X1

X3

X2
FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF

FF FF FF FF FF FF FF FF

LDS R25,X1

LDS R24,X2

LSL R25

LSL R24

LSL R24

SUB R25,R24

STS X3,R25

Operation-dedicated Hardware

Remark:

• Generating the operation-dedicated hardware constitutes a second (and essential) source of data
processing acceleration

MIXDES 2010 11

Horizontal Parallelism

Remark:

• Independent logic or arithmetic instructions in the given software operation
will be implemented separately and executed concurrently, without any effort
on the programmer’s side. This feature constitutes a third source of data
processing acceleration

SUB

X1
FF FF FF FF FF FF FF FF

X5 FF FF FF FF FF FF FF FF

X2
FF FF FF FF FF FF FF FF

SUB

X3
FFFFFFFFFFFFFFFF

X6FFFFFFFFFFFFFFFF

X4
FFFFFFFFFFFFFFFF

LDS R25,X1

LDS R24,X2

LDS R23,X3

LDS R22,X4

SUB R25,R24

SUB R23,R22

STS X5,R25

STS X6,R23

MIXDES 2010 12

Long Combinational Paths

Clock period: 10 ns

MUL

X1

X4

X2
FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF

FF FF FF FF FF FF FF FF

SUB
X3

FF FF FF FF FF FF FF FF

ADD
6 ns

6 ns

8 ns

Intermediate registers:

• allow implementing pipelined
processing, e.g. to overlap
operations from the
subsequent iterations of the
loop (vertical parallelism)

• require additional clock
cycles, e.g.: 3 x 10 ns = 30 ns

Multi-cycle paths:

• allow individual operations to cross
clock cycle boundaries (fourth
source of data processing
acceleration), e.g.:
6 ns + 6 ns + 8 ns = 20 ns (2 clock
cycles)

MIXDES 2010 13

Reconfiguration Time

Clock period: 10 ns

MUL

X1

X4

X2FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF

FF FF FF FF FF FF FF FF

SUB
X3 FF FF FF FF FF FF FF FF

ADD
6 ns

6 ns

8 ns
MUL

X1

X4

X2FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF

FF FF FF FF FF FF FF FF

SUB
X3 FF FF FF FF FF FF FF FF

ADD
6 ns

6 ns

8 ns

Intermediate registers:

• allow implementing pipelined
processing, e.g. to overlap
operations from the
subsequent iterations of the
loop (vertical parallelism)

• require additional clock
cycles, e.g.: 3 x 10 ns = 30 ns

Multi-cycle paths:

• allow individual operations to cross
clock cycle boundaries, e.g.:
6 ns + 6 ns + 8 ns = 20 ns (2 clock
cycles)

P5

P2

P1

Interrupt handler

P2

P3

P4

P5

P6

P3

P4 P6Av
ai

la
bl

e
R

es
ou

rc
es

Operation time

P2

M
ax

 T
hr

ea
d

R
es

ou
rc

es

New partition appears
before predecessor
disappear (ALAP)

In case of forks all
successor partitions
appear (ALAP)

Useless partitions
disappear (ASAP)
or stay for future
reuse

P5

P2

P1

Interrupt handler

P2

P3

P4

P5

P6

P3

P4 P6Av
ai

la
bl

e
R

es
ou

rc
es

Operation time

P2

M
ax

 T
hr

ea
d

R
es

ou
rc

es

New partition appears
before predecessor
disappear (ALAP)

In case of forks all
successor partitions
appear (ALAP)

Useless partitions
disappear (ASAP)
or stay for future
reuse

Remarks:

• Regardless of chosen technique of achieving the
timing closure, the exact number of clock cycles for
each partition will be determined during the synthesis
process

• The size and the execution time of each partition
should be balanced in order to have the possibility to:

- configure the successive partition during the
previous partition is „running”
- have the possibility to implement as many
concurrent partitions (threads) as possible

Execution
Time

vs. Size

End

balanced

not
balanced

Partitioning

Logical + Physical
Synthesis

ASM to VHDL
Conversion

MIXDES 2010 14

P1
REG

P2REG REG

P3REG

P1
REG

P2

REGREG

P3

REG

Reconfiguration Technique

Creeping partitions Multi-context reconfiguration

Remark:

• Current off-the-shelf reconfigurable devices do not offer the demanded reconfiguration flexibility

MIXDES 2010 15

Operating System

Remark:

• It must be stressed that the placement is
understood here as a selection of the appropriate
location of the entire partitions in the fabric. The
placement in the traditional sense is performed
during the bitstream generation phase. Similarly,
the routing connects the interfaces of the
internally routed partitions

Required functionality
• Common programming interface (POSIX)

• Interrupt management

• Memory management

• Inter-process communication and synchronization

• Scheduling and placing the partitions to fully utilize the
reprogrammable array, taking into account the:

- priorities of partitions

- sizes of partitions

- dependencies among partitions

- memory access requests of partitions

- locked partitions

• Loading the partition bitstreams

• Routing the partitions

Control Unit

THREAD 1
THREAD 3

THREAD 2

REµµµµP
THREAD N

Control Unit

THREAD 1
THREAD 3

THREAD 2

REµµµµP
THREAD N

MIXDES 2010 16

Conclusions

• Interdisciplinary project

- Computer architecture

- Reconfigurable computing

- Compilers

- Operating systems

- Application Specific Integrated Circuits

• High processing speed-up potential (four sources of acceleration)

• Energy saving solution (efficient resource utilization)

• Revolutionary architecture without impact on software development

• Dedicated dynamically reconfigurable ASIC required

MIXDES 2010 17

Thank you

