
Design and Implementation of a TriCore Backend
for the LLVM Compiler Framework

Studienarbeit

Christoph Erhardt

Friedrich-Alexander-Universität Erlangen-Nürnberg

November 20, 2009

A TriCore Backend for LLVM (November 20, 2009) 1 – 25

Overview

Overview

The TriCore Processor Architecture

The LLVM Compiler Infrastructure

Design and Implementation of the Backend

Evaluation & Conclusion

A TriCore Backend for LLVM (November 20, 2009) Overview 2 – 25

Motivation What do we need it for?

TriCore chips are omnipresent around here:

Quadcopter
High striker
Carolo Cup
...

The RTSC (Real-Time Systems Compiler) project:

Operating system aware compiler for real-time applications
Processes atomic basic blocks
Based on LLVM

RTSC should be able to generate TriCore machine code

A TriCore Backend for LLVM (November 20, 2009) Overview 3 – 25

Motivation What do we need it for?

TriCore chips are omnipresent around here:

Quadcopter
High striker
Carolo Cup
...

The RTSC (Real-Time Systems Compiler) project:

Operating system aware compiler for real-time applications
Processes atomic basic blocks
Based on LLVM

RTSC should be able to generate TriCore machine code

A TriCore Backend for LLVM (November 20, 2009) Overview 3 – 25

The TriCore Processor Architecture Overview

Three-in-one architecture

Real-time microcontroller unit

DSP

Superscalar RISC processor

Basic features

Load/store architecture

32-bit data, address, and instruction words

Some special 16-bit instruction words for higher code density

Little-endian byte order

16 data + 16 address registers

A TriCore Backend for LLVM (November 20, 2009) The TriCore Processor Architecture 4 – 25

The TriCore Processor Architecture Overview

Three-in-one architecture

Real-time microcontroller unit

DSP

Superscalar RISC processor

Basic features

Load/store architecture

32-bit data, address, and instruction words

Some special 16-bit instruction words for higher code density

Little-endian byte order

16 data + 16 address registers

A TriCore Backend for LLVM (November 20, 2009) The TriCore Processor Architecture 4 – 25

Peculiarities Some things that TriCore handles in an unusual way

Strict distinction between data and address registers:

Also reflected in the calling conventions
Serious problem for the compiler!

Data registers are also used for floating-point operands

Special DSP-oriented instructions and addressing modes

Task/context model:

Automatic context save/restore upon call/return
Context save areas (linked lists managed by hardware)

A TriCore Backend for LLVM (November 20, 2009) The TriCore Processor Architecture 5 – 25

The LLVM Compiler Infrastructure Overview

Open-source compiler infrastructure project started in 2000

Main sponsor: Apple Inc.

Written in C++

A TriCore Backend for LLVM (November 20, 2009) The LLVM Compiler Infrastructure 6 – 25

Basic Architecture The classical three tiers of a compiler

x86
assembly

SPARC
assembly

C source

Fortran
source

LLVM-GCC
frontend Optimizer

x86 code
generator

SPARC code
generator

Clang
frontend

... ...

LLVM
assembly/

bitcode

LLVM
assembly/

bitcode

... ...

Language-specific frontends

Optimizer: generic IR, analysis/transformation passes

Several backends for machine code generation

A TriCore Backend for LLVM (November 20, 2009) The LLVM Compiler Infrastructure 7 – 25

Unique Characteristics What does LLVM have that others don’t?

Not merely a compiler, but a compiler infrastructure:

Static compilation
Just-in-time compilation

Strictly modular, library-based architecture:

Easily extendible
Possibility to incorporate parts of LLVM in other projects

BSD-style licence

Produces highly optimized machine code in an efficient way:

Memory-efficient
Time-efficient

A TriCore Backend for LLVM (November 20, 2009) The LLVM Compiler Infrastructure 8 – 25

Design and Implementation of the Backend Overview

Extensive generic code generation framework:

Makes work a lot easier
... but also imposes some problems in specific cases

Fixed class hierarchy

Many target-independent algorithms:

Instruction scheduling
Register colouring
...

Code generation process executed by a series of passes

A TriCore Backend for LLVM (November 20, 2009) Design and Implementation of the Backend 9 – 25

Code Generation Process

DAG
Lowering

DAG
Legalization

Instruction
Selection

Scheduling
SSA-Based
Optimization

Register
Allocation

Pro-/Epilogue
Insertion

Peephole
Optimization

Assembly
Printing

List
LLVM code
(SSA form)

DAGs
not legalized

DAGs
legalized

DAGs
native

instructions

List
SSA form

List
SSA form

List
with physical

registers

List
with resolved

stack
references

List
with resolved

stack
references

Text
assembly

code

TriCoreTargetLowering TriCoreDAGToDAGISel
TriCoreInstrInfo

TriCoreRegisterInfo
TriCoreInstrInfoTriCoreAsmPrinter

TriCoreInstrInfo

TriCoreInstrInfoTriCoreLoadStoreOpt

Post-
Allocation
Passes

List
with physical

registers

TriCoreVirtInstrResolver

A TriCore Backend for LLVM (November 20, 2009) Design and Implementation of the Backend 10 – 25

TableGen One tool to rule them all...

Problem

Backend contains large portions of descriptive data

C++ obviously not suitable

TableGen

Language for domain-specific modelling

Similar to object-oriented approach:

Classes, records (objects), attributes
Inheritance

Definition files (.td) preprocessed by tblgen tool
→ Auto-generation of C++ code

Used for description of:

Subtargets, registers
Calling conventions
Instruction set

A TriCore Backend for LLVM (November 20, 2009) Design and Implementation of the Backend 11 – 25

TableGen One tool to rule them all...

Problem

Backend contains large portions of descriptive data

C++ obviously not suitable

TableGen

Language for domain-specific modelling

Similar to object-oriented approach:

Classes, records (objects), attributes
Inheritance

Definition files (.td) preprocessed by tblgen tool
→ Auto-generation of C++ code

Used for description of:

Subtargets, registers
Calling conventions
Instruction set

A TriCore Backend for LLVM (November 20, 2009) Design and Implementation of the Backend 11 – 25

SelectionDAG Construction Largely automated

Directed acyclic graph

Per basic block

Nodes: instructions

Edges:

Data dependencies
Control flow dependencies

Example

%mul = mul i32 %a, %a

%mul4 = mul i32 %b, %b

%add = add nsw i32 %mul4, %mul

ret i32 %add

↗

isel input for euclidSquare:entry

EntryToken

0xa8321e8

ch

Register %reg1024

0xa832900

i32

Register %reg1025

0xa832988

i32

Register %D2

0xa8327f0

i32

CopyFromReg

0xa832a10

i32 ch

CopyFromReg

0xa832878

i32 ch

mul

0xa8325d0

i32

mul

0xa832548

i32

add

0xa832658

i32

CopyToReg

0xa8324c0

ch flag

TriCoreISD::RET_FLAG

0xa8326e0

ch

GraphRoot

SelectionDAG Construction Largely automated

Directed acyclic graph

Per basic block

Nodes: instructions

Edges:

Data dependencies
Control flow dependencies

Example

%mul = mul i32 %a, %a

%mul4 = mul i32 %b, %b

%add = add nsw i32 %mul4, %mul

ret i32 %add

↗

isel input for euclidSquare:entry

EntryToken

0xa8321e8

ch

Register %reg1024

0xa832900

i32

Register %reg1025

0xa832988

i32

Register %D2

0xa8327f0

i32

CopyFromReg

0xa832a10

i32 ch

CopyFromReg

0xa832878

i32 ch

mul

0xa8325d0

i32

mul

0xa832548

i32

add

0xa832658

i32

CopyToReg

0xa8324c0

ch flag

TriCoreISD::RET_FLAG

0xa8326e0

ch

GraphRoot

Troubles The integer vs. pointer problem

Problem

TriCore strictly distinguishes between addresses and data integers

Have to be put into separate register files → calling conventions!

LLVM’s backend framework treats pointers just like integers...

Solution

Annotation of “pointer / no pointer” flag in value type class

Promotion of this flag throughout the DAG construction phase
(required some hacks...)

Case differentiations in all relevant situations

A TriCore Backend for LLVM (November 20, 2009) Design and Implementation of the Backend 13 – 25

Troubles The integer vs. pointer problem

Problem

TriCore strictly distinguishes between addresses and data integers

Have to be put into separate register files → calling conventions!

LLVM’s backend framework treats pointers just like integers...

Solution

Annotation of “pointer / no pointer” flag in value type class

Promotion of this flag throughout the DAG construction phase
(required some hacks...)

Case differentiations in all relevant situations

A TriCore Backend for LLVM (November 20, 2009) Design and Implementation of the Backend 13 – 25

Instruction Selection Largely auto-generated

isel input for euclidSquare:entry

EntryToken

0xa8321e8

ch

Register %reg1024

0xa832900

i32

Register %reg1025

0xa832988

i32

Register %D2

0xa8327f0

i32

CopyFromReg

0xa832a10

i32 ch

CopyFromReg

0xa832878

i32 ch

mul

0xa8325d0

i32

mul

0xa832548

i32

add

0xa832658

i32

CopyToReg

0xa8324c0

ch flag

TriCoreISD::RET_FLAG

0xa8326e0

ch

GraphRoot

Pattern matching
→

def MULrr2 : Rr2Instr<0x0a,

(outs DR:$c), (ins DR:$a, DR:$b),

"mul\t$c, $a, $b",

[(set DR:$c, (mul DR:$a, DR:$b))]>;

scheduler input for euclidSquare:entry

EntryToken

0xa8321e8

ch

Register %reg1024

0xa832900

i32

Register %reg1025

0xa832988

i32

Register %D2

0xa8327f0

i32

CopyFromReg

0xa832a10

i32 ch

CopyFromReg

0xa832878

i32 ch

MULrr2

0xa832548

i32

MADDrrr2

0xa832658

i32

CopyToReg

0xa8324c0

ch flag

RETsys

0xa8326e0

ch

GraphRoot

Instruction Selection Largely auto-generated

isel input for euclidSquare:entry

EntryToken

0xa8321e8

ch

Register %reg1024

0xa832900

i32

Register %reg1025

0xa832988

i32

Register %D2

0xa8327f0

i32

CopyFromReg

0xa832a10

i32 ch

CopyFromReg

0xa832878

i32 ch

mul

0xa8325d0

i32

mul

0xa832548

i32

add

0xa832658

i32

CopyToReg

0xa8324c0

ch flag

TriCoreISD::RET_FLAG

0xa8326e0

ch

GraphRoot

Pattern matching
→

def MULrr2 : Rr2Instr<0x0a,

(outs DR:$c), (ins DR:$a, DR:$b),

"mul\t$c, $a, $b",

[(set DR:$c, (mul DR:$a, DR:$b))]>;

scheduler input for euclidSquare:entry

EntryToken

0xa8321e8

ch

Register %reg1024

0xa832900

i32

Register %reg1025

0xa832988

i32

Register %D2

0xa8327f0

i32

CopyFromReg

0xa832a10

i32 ch

CopyFromReg

0xa832878

i32 ch

MULrr2

0xa832548

i32

MADDrrr2

0xa832658

i32

CopyToReg

0xa8324c0

ch flag

RETsys

0xa8326e0

ch

GraphRoot

Scheduling & Register Allocation Target-independent algorithms

Scheduling

DAGs → list (SSA form)

Target-independent algorithm using data from the instruction
description table

Register Allocation

Virtual registers → physical registers

SSA deconstruction

Target-independent colouring algorithm using the register
information table

A TriCore Backend for LLVM (November 20, 2009) Design and Implementation of the Backend 15 – 25

Scheduling & Register Allocation Target-independent algorithms

Scheduling

DAGs → list (SSA form)

Target-independent algorithm using data from the instruction
description table

Register Allocation

Virtual registers → physical registers

SSA deconstruction

Target-independent colouring algorithm using the register
information table

A TriCore Backend for LLVM (November 20, 2009) Design and Implementation of the Backend 15 – 25

Final passes Handwork

Virtual Instruction Resolution

Some instructions (e. g., moves) had operands of unknown
register classes at the time of their creation

Now that physical registers have been assigned, these instructions
can be resolved

Pre-/Epilogue Insertion

Insertion of pre-/epilogue code to entry/exits of all functions

Virtual stack slots → physical stack frame references

A TriCore Backend for LLVM (November 20, 2009) Design and Implementation of the Backend 16 – 25

Final passes Handwork

Virtual Instruction Resolution

Some instructions (e. g., moves) had operands of unknown
register classes at the time of their creation

Now that physical registers have been assigned, these instructions
can be resolved

Pre-/Epilogue Insertion

Insertion of pre-/epilogue code to entry/exits of all functions

Virtual stack slots → physical stack frame references

A TriCore Backend for LLVM (November 20, 2009) Design and Implementation of the Backend 16 – 25

Code Emission Partly auto-generated

Peephole Optimization

Merging of two subsequent 32-bit loads/stores into a single 64-bit
load/store

Before:
st.w [%a10]4, %d9
st.w [%a10]0, %d8

After:
st.d [%a10]0, %e8

Assembly Printing

Output of assembly code in text form

Large parts auto-generated from the instruction description table

A TriCore Backend for LLVM (November 20, 2009) Design and Implementation of the Backend 17 – 25

Code Emission Partly auto-generated

Peephole Optimization

Merging of two subsequent 32-bit loads/stores into a single 64-bit
load/store

Before:
st.w [%a10]4, %d9
st.w [%a10]0, %d8

After:
st.d [%a10]0, %e8

Assembly Printing

Output of assembly code in text form

Large parts auto-generated from the instruction description table

A TriCore Backend for LLVM (November 20, 2009) Design and Implementation of the Backend 17 – 25

In practice How do I use it?

Required software

Clang compiler frontend (support has been integrated)

GNU Binutils for TriCore:

Assembler
Linker

Headers and libraries from TriCore-GCC

Small Perl wrapper script

A TriCore Backend for LLVM (November 20, 2009) Evaluation & Conclusion 18 – 25

Comparison to GCC

Criteria

1. Compilation speed

2. Code size

3. Code performance

Testing system

Benchmark application: CoreMark

Compilation PC: Core 2 Quad Q6600 (2.40 GHz)

Runtime system: TC1796 board (40 MHz)

A TriCore Backend for LLVM (November 20, 2009) Evaluation & Conclusion 19 – 25

Comparison to GCC

Criteria

1. Compilation speed

2. Code size

3. Code performance

Testing system

Benchmark application: CoreMark

Compilation PC: Core 2 Quad Q6600 (2.40 GHz)

Runtime system: TC1796 board (40 MHz)

A TriCore Backend for LLVM (November 20, 2009) Evaluation & Conclusion 19 – 25

The CoreMark Benchmark

Alternative to the well-known Dhrystone benchmark

C source code publicly available (albeit not open source software)

Easily portable

Prevents compilers from “cheating” by optimizing away unused
computation results

Operations:

Linked list processing
Matrix manipulation
State machine operations
CRC computation

Results can be validated

A TriCore Backend for LLVM (November 20, 2009) Evaluation & Conclusion 20 – 25

Compilation Time

 0

 50

 100

 150

 200

 250

 300

 350

 400

 450

 500

-O0 -O1 -O2 -O3 -Os

C
om

pi
la

tio
n

tim
e

(in
 m

illi
se

co
nd

s)

Optimization level

GCC
LLVM

Takes about 10 % less time than GCC

Even faster when compiling at -O0

A TriCore Backend for LLVM (November 20, 2009) Evaluation & Conclusion 21 – 25

Code Size

 0

 5

 10

 15

 20

 25

 30

-O0 -O1 -O2 -O3 -Os

Si
ze

 o
f t

he
 te

xt
 s

eg
m

en
t (

in
 K

iB
)

Optimization level

GCC
LLVM

Generates slightly smaller code

A TriCore Backend for LLVM (November 20, 2009) Evaluation & Conclusion 22 – 25

Code Performance

 0

 5

 10

 15

 20

 25

 30

 35

 40

-O0 -O1 -O2 -O3 -Os

Ite
ra

tio
ns

 p
er

 s
ec

on
d

Optimization level

GCC
LLVM

Code 12–20 % slower than the code generated by GCC

Further work needed to become fully competitive

A TriCore Backend for LLVM (November 20, 2009) Evaluation & Conclusion 23 – 25

Summary

All of the basic functionality is there and is working reliably

Space for further optimizations and extensions

First TriCore compiler to be released under a BSD-style licence!

End goal: inclusion into LLVM’s repository

A TriCore Backend for LLVM (November 20, 2009) Evaluation & Conclusion 24 – 25

The End

Any Questions?

A TriCore Backend for LLVM (November 20, 2009) Evaluation & Conclusion 25 – 25

	Overview
	The TriCore Processor Architecture
	The LLVM Compiler Infrastructure
	Design and Implementation of the Backend
	Evaluation & Conclusion

