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Abstract— A dynamically reconfigurable device is a device
which can change its hardware configuration arbitrarily often
in order to achieve the desired performance and functions.
Since several tasks are executed on the device concurrently,
scheduling of both task execution and reconfiguration is an im-
portant problem. In our model, the dynamically reconfigurable
device is represented by a two-level hierarchical automaton,
and execution of each of periodic tasks is represented by a
timed discrete event system. We propose a composition rule to
get an automaton, which represents non-preemptive execution
of periodic tasks on the dynamically reconfigurable device. We
introduce a method to get a feasible scheduling by using state
feedback control.

I. INTRODUCTION

A dynamically reconfigurable device is an important class

of reconfigurable systems. It can be reconfigured arbitrarily

often and reconfiguration times are on the order of mil-

liseconds [1], [2], [3]. Several hardware architectures of the

dynamically reconfigurable device have been developed. So,

real-time embedded computing platforms using such a device

are expected to be applied in many engineering fields such as

real-time control, communication networks, mobile systems,

and multimedia applications.

When several tasks are executed in the device concur-

rently, it is partitioned into several blocks called process

blocks and each task is assigned to one of them. Depending

on tasks required to be executed in the device, we have

to reconfigure it dynamically while it is working. To adopt

an appropriate configuration in compliance with the current

executable tasks, it is an important problem how and when

to reconfigure the device. This problem is reduced to a

scheduling problem under the limited hardware resource, that

is, the number of process blocks. Steiger et al. propose an

operating system with on-line scheduling for the dynamically

reconfigurable device [3]. A device is modeled as a one

or two dimensional resource area, which is partitioned into

units. Each task is modeled as a rectangular area of units

needed for its execution. An unused area in it is split into

several smaller rectangular areas and assigned to tasks re-

quiring the usage of the device. Taking into consideration the
execution time of the assigned tasks, this problem is reduced

to a two or three dimensional bin-packing problem since time

dimension is added to the dimension of the resource area.

However, the computational complexity of the bin-packing
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problem is NP -hard and some approximation technique will

be needed from practical point of view. Noguera and Badia

developed a microarchitecture of a multitasking support unit

which performs dynamic scheduling for assignment of tasks

to process blocks [4].

On the other hand, scheduling algorithms are key issues in

real-time systems and several approaches have been consid-

ered [5], [6]. Recently, applications of discrete event system

(DES) theory to scheduling have been paid attention. Real-

time systems are modeled by timed automata and scheduling

algorithms are regarded as controllers for the task execution

[7]. Abdeddaı̈m et al. derive an optimal scheduling using

the shortest path algorithms for the timed automata [8]. A

schedulability checking problem is reduced to a reachability

problem of the timed automata and its decidability is dis-

cussed in [9], [10]. Chen and Wonham apply the supervisory

control of a timed DES with forcible events proposed by

Brandin and Wonham [11] to synthesis of a scheduler for

a non-preemptive task set and the controlled system by

the supervisor generates all safe execution sequences which

guarantee that the deadlines of all tasks are met [12].

In this paper, we consider a DES model based approach to

scheduling of both the task execution and the reconfiguration

in the dynamically reconfigurable device. We model the task
execution by a timed DES, which will be called a task
automaton. To model both transitions between configurations

and status of each process blocks in the device, we introduce

an untimed two-level hierarchical automaton. Hierarchical

modeling of DESs is useful for composite systems to reduce

the number of states which grows exponentially in general

[13] and several studies on control of hierarchical DESs can

be found in [14], [15], [16], [17]. In the two-level hierarchical

automaton modeling the dynamically reconfigurable device,

each state of the upper-level automaton corresponds to a con-

figuration of the device and its transition function describes

reconfigurations between possible configurations while the

lower-level automaton models status of each process block in

the configuration. So, each state of the upper-level automaton

has a lower-level automaton and, by the transition of states

of the upper-level automaton, the state of the lower-level

automaton also jumps to that of the lower-level automaton

corresponding to the state after the transition in the upper-

level automaton. The hierarchical automaton will be called a

device automaton. To describe all possible timed sequences

when a task set is executed on the dynamically reconfigurable

device, we propose a composition rule of the task automata

and the device automaton and introduce a new state called

a deadline-miss state. To obtain all safe event sequences by

Proceedings of the 8th International
Workshop on Discrete Event Systems
Ann Arbor, Michigan, USA, July 10-12, 2006

MB2.2

1-4244-0053-8/06/$20.00 ©2006 IEEE 82

Authorized licensed use limited to: Politechnika Lodzka. Downloaded on July 21, 2009 at 10:00 from IEEE Xplore.  Restrictions apply. 



which all tasks can meet their deadlines, we apply a state

feedback control [18], [19], for which a control specification

is that all deadline-miss states are illegal.

II. TASK MODEL

This section describes a model of the task execution. Each

task is periodic and is represented by a job shop model. Each

task consists of a sequence of one or more subtasks, which

are executed in a specified process block of the dynamically

reconfigurable device. A global clock is assumed to be

discrete time and the task execution is modeled as a timed

discrete event system (TDES).

Definition 1 (Task model): Let {θ1, θ2, . . . , θnt} be a

task set, where θi is a periodic task consisting of a sequence

of ni subtasks θi,j (k = 1, 2, . . . , ni). Each task is described

by a 4-tuple θi = (pi, di, φi, ni), where pi is the task period,

di is the relative deadline, φi is the initial phase, and ni is

the number of subtasks. Each subtask θi,j is also described

by 4-tuple θi,j = (ci,j , di,j , ri,j , Vi,j), where ci,j is its

execution time, di,j and ri,j are its deadline and release time

relative to the invocation of the first subtask, respectively,

and Vi,j is a process block on which the subtask executes.

Vi = (Vi,1, Vi,2, . . . , Vi,ni) will be called a visit sequence.

Note that ri,1 = 0, di,j1 ≤ di,j2 (j1 ≤ j2), and di,ni = di.

Without loss of generality, we assume that ci,j ≤ di,j − ri,j .

Definition 2 (Task automaton): A task automaton Gi

which describes execution of a periodic task θi is defined

by the following automaton:

Gi := (Qi × Ti, Σi, δi, q
t
i,1),

where Qi is the state set of the task, Ti =
{(τp

i , τe
i ) | τp

i and τe
i are integers with 0 ≤ τp

i ≤
pi and 0 ≤ τe

i ≤ max{ci,1, . . . , ci,ni}} consists of two clock

variables, Σi is the event set, δi : Σi × Qi × Ti → Qi × Ti

is the transition function, and qt
i,1 ∈ Qi × Ti is the initial

state. Denoted by Qt
i = Qi × Ti is the set of timed states

of the task.

The state set Qi is given by

Qi = {Wi,1, Ii,1, Ei,1, Wi,2, Ii,2, . . . , Ei,ni , Di},
where Wi,j is a waiting state of the subtask θi,j , Ii,j is

an executable state, Ei,j is an execution state, and Di is

a deadline-miss state. The initial state qt
i,1 = (Wi,1, 0, 0).

The clock variable τp
i is reset to 0 when the first subtask

is invoked while τe
i is reset to 0 whenever the execution

of a subtask completes. The event set Σi consists of the

following four kinds of events: αi,j , βi,j , γi,j , and tick.

The events αi,j , βi,j , and γi,j mean the execution start,

the execution completion, and the invocation of the subtask

θi,j , respectively. By the occurrence of the event tick, a

global clock is advanced by one unit time. The event αi,j is

controllable and forcible while the others are uncontrollable.

We use the following notation: Σα
i = {αi,j |1 ≤ j ≤

ni}, Σβ
i = {βi,j |1 ≤ j ≤ ni}, Σγ

i = {γi,j |1 ≤ j ≤ ni}.

Denoted by Σc
i is the set of controllable events, and Σuc

i the

set of uncontrollable events except tick:

Σc
i = Σα

i and Σuc
i = Σβ

i ∪ Σγ
i .

The transition function δi is defined as follows:

• The event αi,j ∈ Σα
i is enabled at states (Ii,j , t

p, te)
with tp ≤ di,j − ci,j , which ensures that the deadline of

the subtask θi,j can be met. By the occurrence of αi,j ,

the current state moves to the execution state and the

clock τe
i is reset to 0, that is,

δi(αi,j , (Ii,j , t
p, te)) = (Ei,j , t

p, 0).

• The event βi,j ∈ Σβ
i occurs when the execution of the

subtask θi,j completes, that is, at the state (Ei,j , t
p, ci,j)

for any tp. Note that, whenever the system Gi is at

the state (Ei,j , t
p, ci,j), tick never occurs just before

βi,j occurs. By the occurrence of βi,j , the current state

moves to the waiting state of the next subtask: for 1 ≤
j < ni,

δi(βi,j , (Ei,j , t
p, ci,j)) = (Wi,j+1, t

p, ci,j),

and for k = ni,

δi(βi,ni , (Ei,ni , t
p, ci,ni)) = (Wi,1, t

p, ci,ni).

• The event γi,j ∈ Σγ
i (j �= 1) occurs at the state

(Wi,j , t
p, te) if tp ≥ ri,j . Note that tick never occurs

just before γi,j occurs. By the occurrence of γi,j , the

current state moves to the executable state: for any
j �= 1 and tp ≥ ri,j ,

δi(γi,j , (Wi,j , t
p, te)) = (Ii,j , t

p, te).

For the first job, γi,1 occurs at the state (Wi,1, φi, 0).
The current state moves to the executable state and the

clock τp
i is reset to 0 at the same time:

δi(γi,1, (Wi,1, φi, 0)) = (Ii,1, 0, 0).

When the next job is invoked, γi,1 occurs at the state

(Wi,1, pi, t
e):

δi(γi,1, (Wi,1, pi, t
e)) = (Ii,1, 0, te).

We suppose (Wi,1, φi, 0) = (Wi,1, pi, t
e) for any te

since δi(γi,1, (Wi,1, φi, 0)) = δi(γi,1, (Wi,1, pi, t
e)) =

(Ii,1, 0, te).
• If the system is in the executable state (Ii,j , t

p, te)
where tp ≥ di,j − ci,j , then the task θi does not meet

its deadline. So, the occurrence of tick leads to the

deadline-miss state when tp ≥ di,j − ci,j :

δi(tick, (Ii,j , t
p, te)) = (Di, 0, 0).

If tp < di,j − ci,j holds, then the occurrence of tick
advances the global clock by one unit time:

δi(tick, (Ii,j , t
p, te)) = (Ii,j , t

p + 1, te).

The occurrence of tick is also defined at the waiting

states (Wi,j , t
p, te) if tp < ri,j , and at the execution

states (Ei,j , t
p, te) if te < ci,j :

δi(tick, (Wi,j , t
p, te)) = (Wi,j , t

p + 1, te),
δi(tick, (Ei,j , t

p, te)) = (Ei,j , t
p + 1, te + 1).

Example 1: Figure 1 shows an automaton which represents

the execution of a periodic task θi: the number of subtasks
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Fig. 1. Task automaton of Example 1.

ni = 3, the initial period pi = 7, the deadline di = 7,

and the phase φi = 2. The execution time, the release time,

and the deadline of subtasks are (ci,1, ci,2, ci,3) = (2, 2, 1),
(ri,1, ri,2, ri,3) = (0, 3, 5), and (di,1, di,2, di,3) = (5, 6, 7),
respectively.

III. DYNAMICALLY RECONFIGURABLE DEVICE

A. Two-level hierarchical automaton model

A dynamically reconfigurable device can form several

configurations and change to an appropriate one dynamically
in compliance with the current request of the execution of

subtasks. Each configuration is composed of one or more

process blocks. Let {b1, b2, . . . , bL} be the set of all possible

process blocks realized in configurations of the device. Each

process block is used for the execution of a certain subtask.

A process block can process just one subtask at a time. For

each l (1 ≤ l ≤ L), let η(C, bl) be the number of the process

blocks bl in the configuration C. So, in the configuration

C, η(C, bl) subtasks can execute using the process block bl

concurrently.

The dynamically reconfigurable device is modeled by an

untimed two-level hierarchical automaton called a device
automaton. The upper-level automaton represents transition

relations between possible configurations of the device while

a state of the lower-level automaton represents the status of

the process blocks.

Definition 3 (Upper-level automaton): An upper-level

automaton GU is defined as follows:

GU := (QU , Λ, ξ, C1),

where QU = {C1, C2, . . . , Cnc} is the set of all possible

configurations of the device, Λ is the set of events corre-

sponding to the change of configurations, ξ : Λ×QU → QU

is a partial function which defines transitions between the

configurations, which correspond to reconfigurations, and

C1 ∈ QU is the initial configuration. Denoted by λk,k′ ∈ Λ
is the event by which the configuration of the device changes

from Ck to Ck′ , that is, ξ(λk,k′ , Ck) = Ck′ if it is defined.

Definition 4 (Lower-level automaton): A lower-level

automaton describes status of the process blocks in each

configuration. The lower-level automaton assigned to each

state Ck ∈ QU of the upper-level automaton is defined as

follows:

GL
k := (QL

k , ΣL, δL
k , xk,1) (k = 1, 2, . . . , nc),

where QL
k is the set of states, and ΣL is the set of events, δL

k :
ΣL × QL

k → QL
k is the state transition function, and xk,1 ∈

QL
k is the initial state. Each state xk,h ∈ QL

k represents the

status of the process blocks in the configuration Ck. We

extend η in such a way that η(xk,h, bl) (l = 1, 2, . . . , L)
represents the number of the process blocks bl which is

working at the state xk,h ∈ QL
k . Note that 0 ≤ η(xk,h, bl) ≤

η(Ck, bl) and that η(xk,h, bl) = 0 if η(Ck, bl) = 0. We

suppose η(xk,1, bl) = 0 (1 ≤ l ≤ L) for each Ck ∈ QU .

The event set ΣL is shared with all lower-level automata and

consists of two kinds of events αl and βl: by the occurrence

of αl, a subtask is dispatched to the process block bl and

βl occurs when a subtask executing on bl completes. The

transition function δL
k is defined as follows:

η(δL
k (αl, xk,h), bl) = η(xk,h, bl) + 1 ≤ η(Ck, bl),

η(δL
k (αl, xk,h), bm) = η(xk,h, bm) if m �= l,

η(δL
k (βl, xk,h), bl) = η(xk,h, bl) − 1 ≥ 0,

η(δL
k (βl, xk,h), bm) = η(xk,h, bm) if m �= l.

Other transitions are undefined.

From Definition 3, δL
k (αl, xk,h) is defined if η(xk,h, bl)+

1 ≤ η(Ck, bl), otherwise it is undefined. Note that QL
k ∩

QL
k′ = ∅ if k �= k′, ΣL ∩ (∪iΣi) = ∅, and Λ ∩ ΣL = ∅.
When a state transition occurs in the upper-level au-

tomaton, which means that the configuration of the device

changes, the state of the lower-level automaton in the new

configuration is specified by the reset function Fk,k′ :
QL

k → QL
k′ , which is a partial function. For example,

xk′,h′ = Fk,k′(xk,h) if Ck′ = ξ(λk,k′ , Ck), η(xk,h, bl) =
η(xk′h′ , bl) ≤ η(Ck′ , bl). Enablingness of the event λk,k′

depends on the current state of the lower-level automaton

GL
k , that is, it is enabled at Ck with the state xk,h of GL

k

if Fk,k′(xk,h) is defined. So, the reset function is also a

guard of λk,h. The two-level hierarchical automaton defined

by (GU , {GL
k }, {Fk,k′}) will be called a device automaton.

From Definitions 3 and 4, the initial state of the device

automaton is the initial state x1,1 of the initial configuration
C1.

Note that the event αl does not specify which subtask

dispatches a job to the process block bl. Since this informa-

tion is given from the task automata, we define a mapping

P : ∪i(Σα
i ∪ Σβ

i ) → ΣL as follows: if Vi,j = bl, then

P(αi,j) = αl and P(βi,j) = βl.

Example 2: Figure 2 shows an example of a device

automaton of a dynamically reconfigurable device, where

QU = {C1, C2}, ξ(λ1,2, C1) = C2, ξ(λ2,1, C2) = C1,

(η(C1, b1), η(C1, b2), η(C2, b1), η(C2, b2)) = (2, 1, 1, 2),
η(x1,1, b1) = η(x1,1, b2) = η(x2,1, b1) = η(x2,1, b2) = 0,

which means that no process block is used at the states x1,1

and x2,1. We suppose that the reset function is defined if all

working process blocks before the reconfiguration exist after
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Fig. 2. Device automaton of Example 2.

it. Thus, we have F1,2(x1,1) = x2,1, F2,1(x2,1) = x1,1,

F1,2(x1,2) = x2,2, F1,2(x1,4) = x2,3, F1,2(x1,5) = x2,4,

F2,1(x2,2) = x1,2, F2,1(x2,3) = x1,4, and F2,1(x2,4) = x1,5.

B. Subtask execution

If the event αi,j , which makes the execution of the subtask

θi,j (Vi,j = bl) start, occurs in the automaton Gi, then

αl = P(αi,j) also occurs in the lower-level automaton GL
k

synchronously. Suppose that the configuration of the upper-

level automaton is Ck. Then, the occurrence of the event αl at

the state xk,h requires the condition η(xk,h, bl) < η(Ck, bl)
since η(δL

k (αl, xk,h), bl) = η(xk,h, bl)+1, which means that

the number of the working process blocks is increased by 1 at

the state after the occurrence. If there is not a process block

bl, or all process blocks are working at the configuration Ck,

then η(xk,h, bl) = η(Ck, bl) so that αl is disabled. When the

current state of the lower-level automaton is such a state

xk,h, for each i ∈ {1, . . . , nt}, αi,j such that P(αi,j) = αl

is disabled at any state qt
i of the task automaton Gi.

When the subtask θi,j executing on the process block bl of

the configuration Ck completes, βi,j in Gi and βl = P(βi,j)
in GL

k occur synchronously. Both γi,j and tick do not have

any effect on the status of the process block. So, no event

occurs in GL
k synchronously with their occurrences.

C. Reconfiguration

In this paper, for simplicity, we assume that the dynam-

ically reconfigurable device can form an arbitrary configu-

ration if it is not used for task execution at all. So, there

is a transition between every pair of configurations, Ck and

Ck′ (1 ≤ k, k′ ≤ nc, k �= k′), that is, ξ(λk,k′ , Ck) is always

defined.

When there is no process block used for the execution

of a subtask in the current configuration, we may have it

by reconfiguration. For example, Suppose that the event αi,j

with P(αi,j) = αl is enabled at qt
i in the task automaton

Gi and that the current state of the device automaton is

(Ck, xk,h), where Ck ∈ QU , xk,h ∈ QL
k , and η(xk,h, bl) =

η(Ck, bl). Then, αi,j can not occur since there is no idle

process block bl. If there is a configuration Ck′ such that

η(Ck′ , bl) ≥ η(Ck, bl)+1 and Fk,k′(xk,h) = xk′,h′ , then αi,j

comes to occur after the reconfiguration to Ck′ in the device

automaton. We introduce a pair of events ω ∈ Ω to describe

both changes of states of the tasks and the configurations of

the device, where Ω = Λ×∪iΣi is the set of pairs of events.

In the example described above, the reconfiguration with the
start of the subtask θi,j is described by the occurrence of

the pair of events ω = (λk,k′ , αi,j). But, we may restrict the

occurrence of the event λk,k′ of the upper-level automaton

such that the execution of a subtask must start just after the

reconfiguration is done. Thus, the pairs of events can avoid

meaningless reconfigurations such as the infinite sequences

of reconfigurations without the start of any task execution.

Note that events related to task execution do not always occur

synchronously with reconfigurations. The occurrence of an

event σ ∈ ∪iΣi without any reconfiguration is represented

by the pair of events (ε, σ) ∈ Ω, where ε means that no event

occurs in the upper-level automaton. The following sequence

is an example of a sequence of pairs of events:

. . . , (ε, βi,j), (ε, tick), (ε, γi,j+1), (λk,k′ , αi,j+1), . . . ,

where the execution of θi,j has completed and the execution

of θi,j+1 starts after a reconfiguration.

IV. COMPOSITION OF AUTOMATA

To describe all possible sequences of the task set

{θ1, θ2, . . . , θnt} executing on the dynamically reconfig-

urable device, we propose a composition rule of the set of

task automata Gi(i = 1, 2, . . . , nt) and the device automaton

(GU , {GL
k }, {Fk,k′}).

Definition 5 (Composite automaton): We consider the

set of task automata Gi (i = 1, 2, . . . , nt) modeling the

task set and the device automaton (GU , {GL
k }, {Fk,k′}). A

composite automaton of these automata is defined as follows:

G := (Q, Ω, δ,q1,D),

where Q = QU × ∪kQL
k × Qt

1
× Qt

2
× · · ·Qt

nt
is the state,

Ω = Λ×∪iΣi is the set of pairs of events, δ : Ω×Q → Q is

the transition function, q1 = (C1, x1,1, q
t
1,1, q

t
2,1, . . . , q

t
nt,1)

is the initial state, and D = {(Ck, xk,h, qt
1
, qt

2
, . . . , qt

nt
) ∈

Q | ∃i (1 ≤ i ≤ nt) such that qt
i = (Di, 0, 0)} is the set of

deadline-miss states.

The transition function δ is defined as follows: for each

q = (Ck, xk,h, qt
1
, qt

2
, . . . , qt

nt
) and ω = (λ, σ),

• if λ = λk,k′ ∈ Λ with Ck′ = ξ(λk,k′ , Ck) and σ ∈ Σα
i

with P(σ) = αl,

δ(ω,q) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

(Ck′ , δL
k′(αl,Fk,k′ (xk,h)), qt

1
, . . .,

δi(σ, qt
i), . . . , q

t
nt

)
if Fk,k′ (xk,h)!
∧η(Fk,k′ (xk,h), bl) < η(Ck′ , bl),

undefined otherwise;

• if λ = ε and σ ∈ Σα
i ∪ Σβ

i ,

δ(ω,q) =

⎧⎪⎪⎨
⎪⎪⎩

(Ck, δL
k (P(σ), xk,h), qt

1
, . . .,

δi(σ, qt
i), . . ., q

t
nt

)
if δL

k (P(σ), xk,h)! ∧ δi(σ, qt
i)!,

undefined otherwise;
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Fig. 3. Task automata of θ1 and θ2 of Example 3.

Fig. 4. Device automaton of Example 3.

Fig. 5. Composite automaton of Example 3.

• if λ = ε and σ ∈ Σγ
i ,

δ(ω,q) =

⎧⎨
⎩

(Ck, xk,h, qt
1
, . . . , δi(σ, qt

i), . . . , q
t
nt

)
if δi(σ, qt

i)!,
undefined otherwise;

• if λ = ε and σ = tick,

δ(ω,q) =

⎧⎨
⎩

(Ck, xk,h, δ1(σ, qt
1
), . . . , δnt(σ, qt

nt
))

if (1 ≤ ∀i ≤ nt)δi(σ, qt
i)!,

undefined otherwise.

Example 3: We show a simple example of a composite

automaton. We consider two tasks θ1, θ2, where n1 = n2 =
1, p1 = p2 = 2, φ1 = φ2 = 0, e1,1 = e2,1 = 1, d1 =
d1,1 = 2, and d2 = d2,1 = 1 (see Figure 3). V1,1 = b1 and

V2,1 = b2. The dynamically reconfigurable device has two

configurations: η(C1, b1) = 1, η(C1, b2) = 0, η(C2, b1) =
0, and η(C2, b2) = 1 (see Figure 4). The reset functions

are given by F1,2(x1,1) = x2,1 and F2,1(x2,1) = x1,1.

Let P(α1,1) = α1, P(α2,1) = α2, P(β1,1) = β1, and

P(β2,1) = β2. Shown in Figure 5 is the composite automaton

of these automata. The initial state is q1 and the set of the

deadline-miss states is D = {q9, q10, q12}. The list of

pairs of events is as follows:

ω0 = (ε, tick), ω1 = (ε, α1,1), ω2 = (ε, β1,1),
ω3 = (ε, γ1,1), ω4 = (ε, α2,1), ω5 = (ε, β2,1),
ω6 = (ε, γ2,1), ω7 = (λ1,2, α2,1), ω8 = (λ2,1, α1,1).

V. STATE FEEDBACK CONTROL

When a set of periodic tasks is executed on the dynam-

ically reconfigurable device, a scheduling which guarantees

that deadlines of all tasks are met is called feasible one.

We synthesize a state feedback controller to obtain all non-

preemptive feasible schedulings.

Let Ωc = ({ε} ∪ Λ) × ∪iΣc
i and Ωuc = {ε} × ∪iΣuc

i

be the sets of controllable and uncontrollable pair of events,

respectively. Note that all pairs of events in Ωc are forcible,

that is, they are forced to occur by the controller if they are

enabled in the composite automaton G. If a pair of events is

forced, (ε, tick) and other pairs in Ωc which are not forced

is disabled. If several pairs of events are forced to occur, one

of them or an enabled uncontrollable pair of event in Ωuc

must occur.

In order to obtain all feasible schedulings, we synthesize

a state feedback controller Π = (πp, πf ) for the composite

automaton G, where πp : Q → 2Ω
c

and πf : Q → 2Ω
c

are sets of the permitted and the forced pairs of events,

respectively [18], [20]. In a state q ∈ Q where δ(ω,q) is

undefined, we have ω �∈ πp(q) and ω �∈ πf (q).
When πf (q) �= ∅ in q, ω ∈ πf (q) is forced to occur just

before (ε, tick) occurs. So, (ε, tick) and all pairs of events

which are not in πf (q) are disabled, but ones in πf (q)∪Ωuc

are enabled.

If πf (q) = ∅, δ(ω,q) is defined, and ω ∈ πp(q) ∪ Ωuc ∪
{(ε, tick)}, then ω is enabled at the state q. If ω is not in

πp(q), the occurrence of the event ω is prohibited at q by

the controller.

A state feedback controller Π is said to be permissive if

the reachability set of the composite automaton G controlled
by Π does not contain any deadline-miss state, that is, any

event sequence in the controlled automaton corresponds to

a feasible scheduling. We propose a method of computing

the maximally permissive state feedback controller. Denoted

by D
A is a set of states from which deadline-miss states

are reachable under any control. Intuitively, the controller

disables any pair of events whose occurrence leads to a state

in D
A. So, we can synthesize the controller Π = (πp, πf )

by modifying an algorithm for computation of the supremal

control-invariance predicate [18], [19], [20].

[Algorithm]

step 1 As initialization, D
A = ∅. For all q ∈ Q, πf (q) = ∅

and πp(q) = {ωc | δ(ωc,q)!, ωc ∈ Ωc}.

step 2 For all q ∈ Q \ (D ∪ D
A) where ωuc ∈ Ωuc, which

meets δ(ωuc,q) ∈ D∪D
A, exists, DA ← D

A∪{q}.

step 3 For all ωc ∈ πp(q) and q ∈ Q \ (D ∪ D
A) which

meet δ(ωc,q) ∈ D ∪ D
A, πp(q) ← πp(q) \ {ωc}.

step 4 For all q ∈ Q\(D∪D
A) which meet δ((ε, tick),q) ∈

D∪D
A, DA ← D

A∪{q} if ωc ∈ πp(q) which meets

δ(ωc,q) �∈ D ∪ D
A does not exist.
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step 5 If there is no change in step 2, step 3, and step 4,

then go to step 6. Otherwise, go to step 2.

step 6 At q ∈ Q \ (D ∪D
A) which meets δ((ε, tick),q) ∈

D∪D
A, for all ωc ∈ πp(q), πf (q) ← πf (q)∪{ωc}.

If q1 ∈ D
A, there is no feasible scheduling.

We will prove briefly that the feedback controller com-
puted by the above algorithm is maximally permissive so that

any feasible scheduling can be generated by the controlled

composite automaton. Suppose that the system is at a state

q ∈ Q\(D∪D
A). Since q �∈ D∪D

A, it is shown by step 2

of the algorithm that no state in D∪D
A is reachable from q

by the occurrence of any pair of events. It is shown by step

3 that any transition into a state in D ∪ D
A by ωc ∈ Ωc

is disabled by the controller. A transition by (ε, tick) is

also disabled by the control since an event ωc ∈ Ωc can

be forced as mentioned in steps 4 and 6. Therefore, no

state in D ∪ D
A is reachable from the initial state under

the state feedback controller. Moreover, it is easily shown

that the state feedback controller is maximally permissive.

The definition of the composite rule implies that, in the

controlled composite automaton, a pair of events (ε, σ) with

σ ∈ (∪iΣuc
i ) ∪ {tick} is enabled at any state where all

controllable pairs of events are disabled, and at least one

uncontrollable pair of events is enabled at other states. So,

deadlock does not exist. Since the event set of the composite

automaton is given by the pairs of events and any task

automaton forms a cycle by its definition, livelock does

not exist. Therefore, if q1 �∈ D
A, we can get at least one

scheduling by which all tasks meet their deadlines.

Example 4: We apply the proposed algorithm to the com-

posite automaton shown in Figure 5, where

Ωc = {ω1, ω4, ω7, ω8}, Ωuc = {ω2, ω3, ω5, ω6},
ω0 = (ε, tick), D = {q9,q10,q13}.

Shown in Fig. 6 is the controlled composite automaton,

where all edges disabled by the controller are deleted. We can

get a feasible scheduling from the automaton. For example,

the following event sequence is an example of a feasible

scheduling.

ω6, ω7, ω3, ω0, ω5, ω8, ω0, ω2, ω6, . . . ,

which corresponds to the following event sequence:

γ2,1, λ1,2, α2,1, γ1,1, tick, β2,1, λ2,1, α1,1, tick, β1,1, γ2,1, . . .

VI. CONCLUSION

In this paper, we presented a method for scheduling the

non-preemptive execution of a set of periodic tasks on

a dynamically reconfigurable device. In this method, both

the task execution and the reconfiguration are modeled as

automata and we propose a composition rule of the automata.
Finally, state feedback control is applied to it to get all

feasible schedulings.

We assume that configurations of process blocks are given

beforehand. On-line allocation of areas to process blocks,

however, is important to achieve more flexible reconfigura-

tion. So, control with the on-line allocation is future work.

Fig. 6. Controlled automaton of Example 4.
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