
ACCEPTED FOR PUBLICATION TO APPEAR IN THE IEEE TRANSACTIONS ON COMPUTERS FPLA SPECIAL ISSUE IN EARLY 2005. 1

The MOLEN Polymorphic Processor
S. Vassiliadis,Fellow, IEEE,S. Wong, G. Gaydadjiev,Member, IEEE,K. Bertels,Member, IEEE,

G. Kuzmanov,Student Member, IEEE,, and E. Moscu Panainte

Abstract— In this paper, we present a polymorphic proces-
sor paradigm incorporating both general purpose and custom
computing processing. The proposal incorporates an arbitrary
number of programmable units, exposes the hardware to the pro-
grammers/designers and it allows them to modify and extend the
processor functionality at will. To achieve the previously stated
attributes, we present a new programming paradigm, a new in-
struction set architecture, a microcode-based microarchitecture,
and a compiler methodology. The programming paradigm, in
contrast with the conventional programming paradigms, allows
general-purpose conventional code and hardware descriptions to
coexist in a program. In our proposal, for a given instruction set
architecture a one-time instruction set extension of8 instructions
is sufficient to implement the reconfigurable functionality of the
processor. We propose a microarchitecture based on reconfig-
urable hardware emulation to allow high-speed reconfiguration
and execution. To prove the viability of the proposal we exper-
imented with the MPEG-2 encoder and decoder and a Xilinx
Virtex II Pro FPGA. We have implemented three operations,
SAD, DCT, and IDCT. The overall attainable application speedup
for the MPEG-2 encoder and decoder is between2.64 - 3.18 and
between1.56 - 1.94, respectively, representing between93% and
98% of the theoretically obtainable speedups.

Index Terms— Custom computing machines, FPGA, firmware,
reconfigurable microcode, polymorphic processors, reconfig-
urable processors.

I. I NTRODUCTION

General-purpose processors allow us to run the same pro-
gram over a range of implementations of the same architectural
family [1] in a compatible manner. Furthermore, they allow
various programs to run on the same system and the same
program to run over multiple processing families. One of
the major continuous concerns of general-purpose processors
is performance. Reconfigurable hardware coexisting with a
core processor has been considered as a good candidate to
address such a concern. Even though such an approach is

S. Vassiliadis is with the Computer Engineering Laboratory, Delft Uni-
versity of Technology, Mekelweg 4, 2628CD Delft, The Netherlands. Email:
S.Vassiliadis@ewi.tudelft.nl.

S. Wong is with the Computer Engineering Laboratory, Delft Univer-
sity of Technology, Mekelweg 4, 2628CD Delft, The Netherlands. Email:
J.S.S.M.Wong@ewi.tudelft.nl.

G. Gaydadjiev is with the Computer Engineering Laboratory, Delft Uni-
versity of Technology, Mekelweg 4, 2628CD Delft, The Netherlands. Email:
G.N.Gaydadjiev@ewi.tudelft.nl.

K. Bertels is with the Computer Engineering Laboratory, Delft Univer-
sity of Technology, Mekelweg 4, 2628CD Delft, The Netherlands. Email:
K.L.M.Bertels@ewi.tudelft.nl.

G. Kuzmanov is with the Computer Engineering Laboratory, Delft Uni-
versity of Technology, Mekelweg 4, 2628CD Delft, The Netherlands. Email:
G.Kuzmanov@ewi.tudelft.nl.

E. Moscu Panainte is with the Computer Engineering Laboratory, Delft
University of Technology, Mekelweg 4, 2628CD Delft, The Netherlands.
Email: elena@ce.et.tudelft.nl.

Manuscript received ..

promising and several processor paradigms have been pro-
posed, see numerous examples in [2], [3], the organization
of such a hybrid processor can be viewed mostly as an open
topic. In this paper, we propose a polymorphic processor that
improves substantially various aspects, including performance,
of such hybrid general purpose processor paradigm. The main
contributions of the proposed approach can be summarized by
the following:
• For a given ISA, a one time architectural extension (based

on the co-processor architectural paradigm) comprising8
instructions suffices to provide an almost arbitrary num-
ber of reconfiguration “functions” per single program-
ming space. This realization resolves the opcode space
explosion and modularity problems and provides ISA
compatibility and portability of reconfigurable programs,
present in previous proposals, such as the ones described
in [4]–[6].

• We propose a new processor organization and we describe
a programming paradigm based on sequential consistency
that allows the proposed co-processor environment to
coexist with the general-purpose processor and to resolve
parameter limitations and parallel execution problems,
present in other proposals (see for example [7], [8]).

• We propose a back-end compiler technology that allows
to target the proposed processor architecture, a microar-
chitecture based on reconfigurable emulation (ρµ-code),
and an implementation that allows the compiled code to
execute.

The paper is organized as follows. Section II discusses
related work and describes the general approach of how to
modify an existing program to support reconfigurable comput-
ing. Section III introduces the Molen organization, the Molen
programming paradigm, and the polymorphic instruction set
architecture (πISA). Section IV discusses the sequencing
and compiler extensions required to implement the Molen
programming paradigm. Section V describes in detail the
underlying microarchitecture and theρµ-code unit. Section VI
presents an evaluation of the proposed Molen architecture.
Section VII presents the overall conclusions.

II. RELATED WORK AND GENERAL APPROACH

As indicated earlier, reconfigurable hardware coexisting
with a core general-purpose processor has been considered by
several researchers as a good candidate for speeding up appli-
cations. For the description of most of the existing proposals,
the interested reader is referred to two review/classification
articles [2], [3]. Current reconfigurable computing proposals,
where the possibility exists to combine general-purpose com-
puting with reconfigurable fabric, fall short of expectation
because of the following shortcomings:

ACCEPTED FOR PUBLICATION TO APPEAR IN THE IEEE TRANSACTIONS ON COMPUTERS FPLA SPECIAL ISSUE IN EARLY 2005. 2

• Opcode space explosion: For reconfigurable fabric, a
common approach (e.g., [4], [5], [6]) is to introduce a new
instruction for each portion of application mapped on the
field-programmable gate array (FPGA). The consequence
is the limitation of the number of operations implemented
on the FPGA, due to the limitation of the opcode space.
More specifically stated, for a specific application domain
intended to be implemented on the FPGA, the designer
and compiler are restricted by the unused opcode space.
Furthermore, this results in ad hoc instruction set archi-
tecture (ISA) extensions which excludes compatibility.

• No modularity : Each approach has a specific definition
and implementation bounded for a specific reconfigurable
technology and design. Consequently, the applications
cannot be (easily) ported to a new reconfigurable plat-
form. Further, there are no mechanisms allowing recon-
figurable implementation to be developed separately and
ported transparently, as indicated in [9]. This implies
that a reconfigurable implementation developed by a
vendor A can not be included without substantial effort
by the compiler developed for an FPGA implementation
provided by a vendor B.

Additional shortcomings of current proposals regarding per-
formance gains include the following:

• Limitation of the number of parameters: In a number
of approaches, the operations mapped on an FPGA can
only have a small number of input and output parameters
(e.g., [7], [8]). For example, in the architecture presented
in [7], due to the encoding limits, the fragments mapped
into the FPGA have at most4 inputs and2 outputs; also,
in [8], the maximum number of input registers is9 and
it has one output register.

• No support for parallel execution on the FPGA of
sequential operations: An important and powerful feature
of FPGAs can be the parallel execution of sequential
operations when they have no data dependency. Many
architectures (see for examples in [2]) do not take into
account this issue and their mechanism for FPGA inte-
gration cannot be extended to support parallelism.

In the discussion to follow, we present the general concept
of transforming an existing program to one that can be
executed on the reconfigurable computing platform we propose
and hints to the new mechanisms, intended to improve existing
approaches.

Fig. 1. Program transformation example.

The conceptual view of how program P (intended to ex-
ecute only on the general-purpose processor (GPP) core) is
transformed into program P’ (executing on both the GPP
core and the reconfigurable hardware) is depicted in Figure 1.
The purpose is to obtain a functionally equivalent program

P’ from program P which (using specialized instructions)
can initiate both the configuration and execution processes
on the reconfigurable hardware. The steps involved in this
transformation are the following:

1) identify code “α” in program P to be mapped in recon-
figurable hardware.

2) show that “α” can be implemented in hardware in an
existing technology, e.g., FPGA, and map “α” onto
reconfigurable hardware (RH).

3) eliminate the identified code “α” and add “equivalent”
code (A) assuming that A “calls” the hardware with
functionality “α”. The code A comprises the following:
• Repair code inserted to communicate parameters

and results to/from the reconfigurable hardware
from/to the general-purpose processor core.

• “HDL”-like hardware code and emulation code in-
serted to configure the reconfigurable hardware and
to perform the functionality that is initialized by the
“execute code”.

4) compile and execute program P’ with original code plus
code having functionality A (equivalent to functionality
“α”) on the GPP/reconfigurable processor.

���

��
�����	
��

����

�������������
�
��������������
� !�
��������"������#���$%

&'
(
)

*+,-.
/012340526

787

9:;

<=>?@<>AB

C<DEF<DG

HGIGD<>?D

J2K
4-1L242M
NO,P0Q21

R0.-1S
NOM2

TUVVWXYZ[\]

_̂̀abcd̀ce_d

fgg

hiijklmn

opqrpstu
svk

Fig. 2. Program transformation methodology for reconfigurable computing.

The mentioned steps illustrate the need for a new pro-
gramming paradigm in which both software and hardware
descriptions are present in the same program. It should also
be noted that the only constraint on “α” is implementability,
which possibly implies complex hardware. Consequently, the
microarchitecture may have to support emulation [11] via
microcode. We have termed this reconfigurable microcode
(ρµ-code) as it is different from the traditional microcode. The
difference is that such microcode does not execute on fixed
hardware facilities. It operates on facilities that theρµ-code
itself “designs” to operate upon. The methodology of the trans-
formation described previously for the reconfigurable comput-
ing platform is depicted in Figure 2. First, the code to be
executed on the reconfigurable hardware must be determined.
This is achieved by high-level to high-level instrumentation
and benchmarking. This results in several candidate pieces
of code. Second, we must determine which piece of code is
suitable for implementation on the reconfigurable hardware.
The suitability is solely determined by whether the piece of

ACCEPTED FOR PUBLICATION TO APPEAR IN THE IEEE TRANSACTIONS ON COMPUTERS FPLA SPECIAL ISSUE IN EARLY 2005. 3

code is implementable (i.e., “fits in hardware”). Those parts
can then be mapped into hardware via a hardware description
language (HDL). In case the HDL corresponds to “critical”
hardware in terms of, for instance, area, performance, memory
and power consumption, the translation will be done manually
(see Figure 2). Otherwise, the translation can be done auto-
matically, as for example described in [10], [12], [13], or be
extracted from a library.

III. O RGANIZATION , ISA, AND PROGRAMMING

The two main components in the Molen machine organiza-
tion [14] (depicted in Figure 3) are the ‘Core Processor’, which
is a general-purpose processor (GPP), and the ‘Reconfigurable
Processor’ (RP). Instructions are issued to either processors
by the ‘Arbiter’ and data are fetched(stored) by the ‘Data
Fetch’ units. The ‘Memory MUX’ unit is responsible for
distributing(collecting) data.

Fig. 3. The Molen machine organization.

The reconfigurable processor is further subdivided into
the ρµ-code unit (discussed in Section V) and thecustom
configured unit(CCU). The CCU consists of reconfigurable
hardware, e.g., a field-programmable gate array (FPGA), and
memory. All code runs on the GPP except pieces of (appli-
cation) code implemented on the CCU in order to speed up
program execution. Exchange of data between the GPP and
the RP are performed via the exchange registers (XREGs)
(described in Section IV) depicted in Figure 3. The envisioned
support of operations1 by the reconfigurable processor can be
initially divided into two distinct phases: set and execute. In
the set phase, the CCU is configured to perform the supported
operations. Subsequently, in the execute phase the actual
execution of the operations is performed. This decoupling
allows the set phase to be scheduled well ahead of the execute
phase and thereby hiding the reconfiguration latency. As no
actual execution is performed in the set phase, it can be
even scheduled upwards across the code boundary in the code
preceding the RP targeted code.

In order to target theρµ-code processor, we propose
a sequential consistency programming paradigm [15]. The

1An operation can be as simple as a single instruction or as complex as a
piece of code.

paradigm allows for parallel and concurrent hardware execu-
tion and it is intended (currently) for single program execution.
It requires only a one-time architectural extension of few
instructions to provide a large user reconfigurable opera-
tion space. The complete list of the eight required instruc-
tions, denoted as polymorphic (πoλνµoρφικó) InstructionSet
Architecture (πISA), is as follows:
• Six instructions are required for controlling the reconfig-

urable hardware, namely:
– Two set instructions: these instructions initiate the

configurations of the CCU. Two instructions are
added for partial reconfiguration:
∗ the partial set (p-set<address>) instruction per-

forms those configurations that cover common
parts of multiple functions and/or frequently used
functions. In this manner, a considerable number
of reconfigurable blocks in the CCU can be pre-
configured.

∗ the complete set (c-set <address>) instruction
performs the configurations of the remaining
blocks of the CCU (not covered by thep-set) to
completethe CCU functionality.

We must note that in case no partial reconfigurable
hardware is present, thec-set instruction alone can be
utilized to perform all the necessary configurations.

– execute<address>: this instruction controls the ex-
ecution of the operations implemented on the CCU.
These implementations are configured onto the CCU
by theset instructions.

– set prefetch<address>: this instruction prefetches
the needed microcode responsible for CCU reconfig-
urations into a local on-chip storage facility (theρµ-
code unit) in order to possibly diminish microcode
loading times.

– execute prefetch<address>: the same reasoning
as for theset prefetchinstruction holds, but now re-
lating to microcode responsible for CCU executions.

– break: this instruction is utilized to facilitate the
parallel execution of both the reconfigurable pro-
cessor and the core processor. More precisely, it is
utilized as a synchronization mechanism to complete
the parallel execution.

• Two move instructions for passing values between the
register file and exchange registers (XREGs):

– movtx XREGa ← Rb: (move to XREG) used to
move the content of general-purpose register Rb to
XREGa.

– movfx Ra ← XREGb: (move from XREG) used to
move the content of exchange register XREGb to
general-purpose register Ra.

The <address> field in instructions introduced above de-
notes the location of the reconfigurable microcode responsible
for the configuration and execution processes (see Section V).
It must be noted that a single address space is provided
with at least2(n−op) addressable functions for reconfigura-
tion, wheren represents the instruction length andop the
opcode length. If2(n−op) is found to be insufficient, indirect

ACCEPTED FOR PUBLICATION TO APPEAR IN THE IEEE TRANSACTIONS ON COMPUTERS FPLA SPECIAL ISSUE IN EARLY 2005. 4

pointing or GPP-like status word mechanisms can extend
the addressing of the reconfigurable function space at will.
Code fragments constituting of contiguous statements (as they
are represented in high-level programming languages) can be
isolated as generally implementable functions (that is code
with multiple identifiable input/output values). The parameters
are passed via the exchange registers (XREGs). In order to
maintain correct program semantics, the code is annotated
and a hardware description file provides the compiler with
implementation specific information such as the addresses
where the reconfigurable microcode are to be stored, the
number of exchange registers, etc. It should be noted that it is
not imperative to include all instructions when implementing
the Molen organization. The programmer/implementor can opt
for different ISA extensions depending on the performance that
needs to be achieved and the available technology. There are
basically three distinctiveπISA possibilities with respect to
the Molen instructions introduced earlier - theminimal, the
preferred and thecompleteπISA extension. In more detail,
they are the following:

• The minimal πISA: This is essentially the smallest
set of Molen instructions needed to provide a working
scenario. The four basic instructions needed areset
(more specifically:c-set), execute, movtx and movfx.
By implementing the first two instructions (set/execute)
any suitable CCU implementation can be loaded and
executed in the reconfigurable processor. Furthermore,
reconfiguration latencies can be hidden by scheduling
the set instruction considerably earlier than theexecute
instruction. Themovtx andmovfx instructions are needed
to provide the input/output interface between the RP
targeted code and the remainder application code.

• The preferred πISA: In order to address reconfiguration
latencies bothp-set andc-set instructions are utilized. In
this case, as the reconfiguration latencies are substantially
(or completely) hidden, the loading time of microcode
will play an increasingly important role. In these cases,
the two prefetch instructions (set prefetch and execute
prefetch) provide a way to diminish the microcode load-
ing times by scheduling them well ahead of the moment
that the microcode is needed. Parallel execution, for both
minimal and preferredπISA, is initiated by aset/execute
instruction and ended by an general-purpose instruction
as described in Figure 4(a).

• The complete πISA: This scenario involves allπISA
instructions including thebreak instruction. In some
applications, it might be beneficial performance-wise to
execute instructions on the core processor and the recon-
figurable processor in parallel. In order to facilitate this
parallel execution, the preferred ISA is further extended
with the break instruction. Thebreak instruction pro-
vides a mechanism to synchronize the parallel execution
of instructions by halting the execution of instructions
following thebreak instruction. The sequence of instruc-
tions performed in parallel is initiated by anexecute
instruction. The end of the parallel execution is marked
by the break instruction. It indicates where the parallel

execution stops (see Figure 4 (b)). Theset instructions
are executed in parallel according to the same rules.

synchronizationBreak

π(the complete ISA)

EXECUTE op2
EXECUTE op3
GPP Instructions

EXECUTE op1
GPP instruction

in parallel

work in parallel
b) synchronization when GPP and FPGA

synchronization

π(the preferred ISA)

EXECUTE instructions are performed

in parallel
EXECUTE op1
EXECUTE op2
EXECUTE op3

EXECUTE op4
GPP Instructions

GPP Instruction

in parallel and GPP is stalled

a) synchronization when consecutive

Fig. 4. Parallel execution and models of synchronization.

IV. COMPILER AND PROGRAM SEQUENCECONTROL

We begin by discussing the exchange registers (XREGs)
and the parameter and result passing mechanism between the
general-purpose processor and the reconfigurable processor.
The Exchange Registers:The XREGs are used for passing
operation parameters to the reconfigurable hardware and re-
turning the computed values after operation execution. Param-
eters are moved from the register file to the XREGs (movtx)
and the results stored back from the XREGs in the register
file (movfx) and the reconfigurable microcode is responsible
for managing the parameters from the XREGs and returning
the result(s). The following conventions are introduced for
single and parallel execution. All parameters of an operation
are allocated by the compiler in consecutive XREGs forming
a block of XREGs. The microcode of eachexecuteinstruction
has a fixed XREG, which has been assigned during the
microcode development. The compiler places in this XREG
a link to the block of XREGs where all parameters are stored.
This link is the number of the first XREG in the block. Based
on these conventions, the parameters for all operations can
be efficiently allocated by the compiler and the microcode of
eachexecuteinstruction is able to locate its associated block
of parameters. An example is presented in Figure 5, where
two operations, namelyop1 andop2,are executed in parallel.
Their fixed XREGs (XREG0 and XREG1) are communicated
to the compiler in a hardware description file. As indicated
by the number stored in XREG0, the compiler allocates for
operationop1 two consecutive XREGs for passing parameters
and returning results, namely XREG2 and XREG3. The oper-
ation op2 requires only one XREG for parameters and results
passing, which in the example is XREG4, as indicated by the
content of XREG1.

� � � � � � � � � � � �
� � � � � � � � � � � �
� � � � � � � � � � � �
� � � � � � � � � � � �

� � � � � � � � � � � �
� � � � � � � � � � � �
� � � � � � � � � � � �
� � � � � � � � � � � �

EXECUTE address_op2

op2 : fix XR −> XR1

XRn

XR3

XR2 Param/Results op1

XR0 2
EXECUTE address_op1

op1 : fix XR −> XR0

XR1 4

XR4 Param/Result op2

Fig. 5. Exchange Registers allocation by the compiler.

The Compiler: Currently, the compiler [16] relies on the
Stanford SUIF2 [17] (Stanford University Intermediate For-
mat) Compiler Infrastructure for the front-end and for the

ACCEPTED FOR PUBLICATION TO APPEAR IN THE IEEE TRANSACTIONS ON COMPUTERS FPLA SPECIAL ISSUE IN EARLY 2005. 5

back-end on the Harvard Machine SUIF [18] framework. The
following essential features for a compiler targeting a custom
computing machines (CCM) have currently been implemented:

• Code identification: for the identification of the code
mapped on the reconfigurable hardware, we added a
special pass in the SUIF front-end. This identification is
based on code annotation with special pragma directives
(similar to [6]). In this pass, all the calls of the recognized
functions are marked for further modification.

• Instruction set extension: the instruction set has been ex-
tended withset/executeinstructions at both the medium
intermediate representation level and low intermediate
representation (LIR) level.

• Register file extension: the register file set has been ex-
tended with the exchange registers. The register allocation
algorithm allocates the XREGs in a distinct pass applied
before the register allocation; it is introduced in Machine
SUIF, at LIR level. The conventions introduced for the
XREGs are implemented in this pass.

• Code generation: code generation for the reconfigurable
hardware (as previously presented) is performed when
translating SUIF to Machine SUIF intermediate repre-
sentation, and affects the function calls marked in the
front-end.

An example of the code generated by the extended compiler
for the Molen programming paradigm is presented in Figure 6.
On the left, the C code is depicted. The function implemented
in reconfigurable hardware is annotated with a pragma direc-
tive namedcall fpga. It has incorporated the operation name,
op1as specified in the hardware description file. In the middle,
the code generated by the original compiler for the C code
is depicted. The pragma annotation is ignored and a normal
function call is included. On the right, the code generated by
the compiler extended for the Molen programming paradigm
is depicted; the function call is replaced with the appropri-
ate instructions for sending parameters to the reconfigurable
hardware in XREGs, hardware reconfiguration, preparing the
fixed XREG for the microcode of theexecute instruction,
execution of the operation and the transfer of the result back
to the general-purpose register file. The presented code is at
medium intermediate representation level in which the register
allocation pass has not been applied yet.

c=0;

for(i=0; i<b; i++)

 c = c + a<<i + i;

c = c>>b;

return c;

}

void main(){
int x,z;

z=5;

}

x= ; f(z, 7)

#pragma call_fpga op1

int c,i;

int f(int a, int b){
movtx $vr1.s32(XR) < $vr2.s32

mrk 2, 14

mov $vr2.s32 < main.z

ldc $vr4.s32 < 7

set address_op1_SET

movtx $vr3.s32(XR) < $vr4.s32

main:

mov main.x < $vr1.s32

.text_end main

mrk 2,13

ldc $vr0.s32 < 5

mov main.z < $vr0.s32

mrk 2, 14

ldc $vr2.s32 < 7

mrk 2, 15

ldc $vr3.s32 < 0

ret $vr3.s32

C code Original medium intermediate
representation code

Medium intermediate representation
code extended with instructions for
FPGA

mov main.x < $vr8.s32

movfx $vr8.s32 < $vr5.s32(XR)

movtx $vr7.s32(XR) < vr6.s32

exec address_op1_EXEC

ldc $vr6.s32(XR) < 0cal $vr1.s32 < f(main.z, $vr2.s32)

Fig. 6. Medium intermediate representation code.

The compiler extracts from a hardware description file the
information about the target architecture such as the microcode
address of theset andexecuteinstructions for each operation
implemented in the reconfigurable hardware, the number of
XREGs, the fixed XREG associated with each operation, etc.

Parameter exchange, parallelism and modularity: As
shown earlier, the exchange registers solve the limitation on
the number of parameters present in other reconfigurable com-
puting approaches. If the parameters do not exceed the number
of XREGs, parameters are passed by value, otherwise - by
reference. The Molen architecture also addresses an additional
shortcoming of other reconfigurable computing approaches
concerning parallel execution. In case two or more functions
considered for CCU implementation do not have any true
dependencies, they can be executed in parallel. An example of
how this can be performed is depicted in Figure 7. It should
be noted that kernels can, as far as such kernels can, be appro-
priately transformed to the Molen programming paradigm by:
a) rewriting the kernel as a separate function, and b) defining
a clear set of parameters as interface and passing them as
values (or references) between the modified “old” and the
new function code. All of the communication between the two
functions should be done as much as possible via input/output
parameters since both parts will execute in different contexts.
The Molen paradigm facilitates modular system design. For
instance, hardware implementations described in an HDL
(VHDL, Verilog or System-C) are mappable to any FPGA
technology in a straightforward manner. The only requirement
is to satisfy the Molen set and execute interface. In addition, a
wide set of functionally similar CCU designs (from different
providers), e.g., sum of absolute differences (SAD) or IDCT,
can be collected in a database allowing easy design space
explorations.

#pragma call_fpga op1

{

.............

}

#pragma call_fpga op2

int g(int x)

{

...........

}

{

int f(int x, int y)

int h(int a, int b, int c)

h:

 movtx r2 −>XR3

 movtx r1 −>XR2

 mov a −> r1

 mov b −> r2

 mov c −> r3

 movtx r3 −> XR4

 set address_set_op1

 set address_set_op2

 ldc 2 −>r4

 movtx r4 −>XR0

 ldc 4 −>r5

 movtx r5 −>XR1

 execute address_ex_op2

 movfx XR2 −> r6

 mov r6 −> m

 movfx XR4 −> r7

 mov r7 −> n

 int m,n, ...;

}

no data dependency

 execute address_ex_op1 } in parallel

 m=f(a, b);

 n=g(c); }

Fig. 7. Parallel execution in Molen.

Interrupts and miscellaneous considerations:Our ap-
proach is based on the GPP co-processor paradigm (see for
example [19], [20]). Consequently, all known co-processor
interrupt techniques [21] are applicable. In order to support
the core processor interrupts properly, the following parts are
essential for any Molen implementation:

1) Hardware to detect interrupts and terminate the exe-
cution before the state of the machine is changed are
assumed to be implemented in both core processor (as
usual) and reconfigurable processor.

2) Interrupt policies, e.g., priorities, are usually handled by
the core processor. Consequently, hardware to commu-
nicate interrupts to the core processor is implemented in
the reconfigurable processor.

3) Initialization (via the core processor) of the appropriate
routines for interrupt handling.

ACCEPTED FOR PUBLICATION TO APPEAR IN THE IEEE TRANSACTIONS ON COMPUTERS FPLA SPECIAL ISSUE IN EARLY 2005. 6

The compiler assumption is that the program-
mer/implementor of a reconfigurable hardware follows a
co-processor paradigm and that (as in the GPP paradigm)
the reconfigurable co-processor facility can be viewed as
an extension of the core processor architecture, the way
co-processors, such as floating point, vector facilities, etc.,
have been viewed in conventional architectures.

V. A M ICROARCHITECTURE AND ITSIMPLEMENTATION

In this section, we discuss issues encountered in implement-
ing a microarchitecture supporting the minimal MolenπISA
on the Virtex II Pro with the embedded PowerPC 405 serving
as the core processor. Experienced microcode designers will
recognize that for performance reasons, there is the necessity
of having microcode that resides permanently in the control
store and microcode that is pageable. We borrow a ‘bit’ from
the instruction to implement resident/pageable microcode. In
the instruction format (see Figure 8), the location of the
microcode is indicated by the resident/pageable-bit (R/P-bit)
which implicitly determines the interpretation of the address
field, i.e., as a memory addressα (R/P=1) or as aρ-control
store addressρCS-α (R/P=0) indicating a location within the
ρµ-code unit. This location contains the first instruction of
the microcode which must always be terminated, e.g., by an
endop microinstruction.

OPC R/P ρCS-α/α

p-set/c-set/execute

opcode

resident/pageable

address

0/1

Fig. 8. Thep-set, c-set, andexecuteinstruction format.

Residence

Table
H

Determine next

microinstruction Sequencer

ρCSAR

SET

EXECUTE

fixed

pageable

fixed

pageable

ρ-Control Store

M

I

R

α/ρCS-αR/P

ρCS-α

ρCS-α, if present

α

ρCS-α

ρCS-α

from CCU

to CCU

ρµ-code

loading

unit

������

microcode

Fig. 9. ρµ-code unit internal organization.

The ρµ-code unit: The reconfigurable microcode (ρµ-code)
unit can be implemented in configurable or fixed hardware.
In this section, for simplicity, we assume that theρµ-code

α ρCS-
��������

�	��

ρCS-
�

α

���
���
��	���

Fig. 10. The sequencer’s residence table.

α

ρCS-
�

ρ������������	

α + 1
α + 2

µ−
��
���

������

µ−
��
���

�����
�

���	�

���	���	

����
ρµ���
��
�� �
�!��

Fig. 11. Internal organization of one section of theρ-control store.

unit is hardwired. The internal organization of theρµ-code
unit is depicted in Figure 9. Theρµ-code unit comprises
three main parts: the sequencer, theρ-control store, and the
ρµ-code loading unit. The sequencer mainly determines the
microcode execution sequence. Theρ-control store is used as a
storage facility for microcode. Theρµ-code loading unit, as its
name suggests, is responsible for the loading of reconfigurable
microcode from the memory. The execution of microcode
starts with the sequencer receiving an address from the arbiter
(see Figure 3) and interpreting it according to the R/P-bit.
When receiving a memory address, it must be determined
whether the microcode is already cached in theρ-control store
or not. This is done by checking the residence table (see
Figure 10) which stores the most frequently used translations
of memory addresses intoρ-control store addresses and keeps
track of the validity of these translations. It can also store other
information: least recently used (LRU) and possibly additional
information required for virtual addressing2 support. In the
case that a memory address is received and the associated
microcode is not present in theρ-control store, theρµ-code
unit initiates the loading of microcode from the memory
into the ρ-control store. In the case aρCS-α is received
or a valid translation into aρCS-α is found, the ρCS-α
is transferred to the ‘determine next microinstruction’-block.
This block determines which (next) microinstruction needs to
be executed:

• When receiving the address of the first microinstruction:
Depending on the R/P-bit, the correctρCS-α is selected,
i.e., from the instruction field or from the residence table.

• When already executing microcode: Depending on previ-
ous microinstruction(s) and/or results from the CCU, the
next microinstruction address is determined.

The resultingρCS-α is stored in theρ-control store address
register (ρCSAR) before entering theρ-control store. Using the
ρCS-α, a microinstruction is fetched from theρ-control store

2For simplicity of discussion, we assume that the system only allows real
addressing.

ACCEPTED FOR PUBLICATION TO APPEAR IN THE IEEE TRANSACTIONS ON COMPUTERS FPLA SPECIAL ISSUE IN EARLY 2005. 7

and then stored in the microinstruction register (MIR) before
it controls the CCU reconfiguration or before it is executed
by the CCU. Theρ-control store comprises two sections3,
namely aset section and anexecutesection. Both sections
are further divided into afixed part andpageablepart. The
fixed part stores the resident reconfiguration and execution
microcode of the set and execute phases, respectively. Resident
microcode is commonly used by several invocations (including
reconfigurations) and it is stored in the fixed part so that
the performance of the set and execute phases is possibly
enhanced. Which microcode resides in the fixed part of the
ρ-control store is determined by performance analysis of
various applications and by taking into consideration various
software and hardware parameters. Other microcode is stored
in memory and the pageable part of theρ-control store
acts like a cache to provide temporal storage. Consequently,
cache mechanisms are required to ensure properρ-control
store operation. The residence table invalidates entries when
microcode has been replaced (utilizing the valid (V) bit) or
substitutes the least recently used (LRU) entries with new
ones. Finally, the residence table can be separate or common
(requiring an additional S/E-bit to allow separation) for both
the set and execute pageableρ-control store sections. In the
remainder of this section, we present some implementation
issues of the minimal MolenπISA utilizing a PowerPC 405
as the core processor, as used in our experimental validation.
The minimalπISA consists of the following instructions:set,
execute, movtx, and movfx. The arbiter (described in detail
in [22]) performs a partial decoding of instructions in order
to determine where instructions should be issued. Theset
and executeinstructions will be issued to the reconfigurable
processor and in this specific implementation themovtx and
movfx instructions are issued to the core processor. The latter
is due to the fact that bothmove instructions are mapped
to existing PowerPC instructions, namelymtdcr and mfdcr ,
respectively.

General requirements of the arbiter: The arbiter controls
the proper co-processing of the core processor and the recon-
figurable processor (see Figure 3) by directing instructions to
either of these processors. It arbitrates the data memory access
of the reconfigurable and core processors and it distributes
control signals and the starting microcode address to theρµ-
code unit.

Decode
 Controls

Arbiter Emulation

Instructions

MUX

Control

Arbiter

Instructions from

Memory

Instructions

to the Core Processor

Occupy

Memory
 micro address
 Ex/Set

Start

reconf.

operation

End of
reconf.

operation

Fig. 12. General arbiter organization.

In Figure 12, a general view of an arbiter organization is

3Both sections can be identical, but they are probably only differing in
microinstruction word sizes.

depicted. The arbiter operation is based on the decoding of the
incoming instructions and either directs instructions to the core
processor or generates an instruction sequence to control the
state of the core processor. The latter instruction sequence is
referred to as “arbiter emulation instructions”. Upon decoding
of either aset or anexecuteinstruction, the following actions
are initiated:

1) Arbiter emulation instructions are multiplexed to the
core processor instruction bus and essentially drive the
processor into a wait state.

2) Control signals from the decode block are transmitted
to the control block in Figure 12, which performs the
following: a) Redirect the microcode location address
to the ρµ-code unit. b) Generate an internal code rep-
resenting either aset or execute instruction (Ex/Set)
and delivering it to theρµ-code unit. c) Initiate the
reconfigurable operation by generating‘start reconf.
operation’ signal to theρµ-code unit. d) Reserve the
data memory control for theρµ-code unit by generating
a memory occupysignal to the (data) memory controller.
e) Enter a wait state until the signal‘end of reconf.
operation’ arrives.

An active ‘end of reconf. operation’signal initiates the
following actions: 1) Data memory control is released back
to the core processor. 2) An instruction sequence is generated
to ensure proper exiting of the core processor from the wait
state. 3) After exiting the wait state, the program execution
continues with the instruction immediately following the last
executed reconfigurable processor instruction.

Software considerations:For performance reasons, Pow-
erPC special operating modes instructions were not used –
exiting special operating modes is usually performed by an
interrupt. We employed the‘branch to link register’ (blr)
to emulate a wait state and‘branch to link register and
link’ (blrl) to move the processor out of this state. The
difference between these instructions is thatblrl modifies the
link register (LR), whileblr does not. The next instruction
address is the effective address of the branch target, stored
in the link register. Whenblrl is executed, the new value
loaded into the link register is the address of the instruction
following the branch instruction. Thus, the arbiter emulation
instructions, stored into the corresponding block in Figure 12,
are reduced to only one instruction for wait and one for
‘wake-up’ emulation. The PowerPC architecture allows out-
of-order execution of memory and I/O transfers, which has to
be taken into account in the implementation. To guarantee that
data dependency conflicts do not occur during reconfigurable
operation, the PowerPC‘synchronization’ instruction (sync)
can be utilized before aset or execute instruction. In other
out-of-order execution architectures, data dependency conflicts
should be resolved by specific dedicated features of the target
architectures. In in-order architecture implementations, this
problem does not exist.

Instruction encoding: In the previous, we discussed that
the movtx andmovfx instructions are mapped to the existing
PowerPC instructionsmtdcr and mfdcr . This implemented
solution is imposed by the fact that the Virtex II Pro PowerPC

ACCEPTED FOR PUBLICATION TO APPEAR IN THE IEEE TRANSACTIONS ON COMPUTERS FPLA SPECIAL ISSUE IN EARLY 2005. 8

core has a dedicated interface to the so-called Device Control
Registers (DCR) [23] and two instructions that support DCR
transfers (namelymtdcr and mfdcr). It should be noted that
this is a PowerPC specific implementation and not applicable
in the general case. This leaves only theset and execute
instructions to be encoded. We follow the PowerPC I-form
and choose unused opcodes for both instructions. The manner
to distinguish aset instruction, anexecuteinstruction (using
the same opcode) and resident/pageable (R/P) addresses is via
instruction modifiers.

Arbiter hardware requirements: To implement the arbiter,
we have considered the following: 1) Information, related
to instruction decoding, arbitration and timing is obtained
only through the instruction bus (from memory). 2) PowerPC
instruction bus is 64-bit wide and instructions are fetched in
couples. 3) Speculative prefetches should not disturb the cor-
rect timing of a reconfigurable processor instruction execution.
The arbiter for PowerPC has been described in synthesizable
VHDL and mapped on the Virtex II Pro FPGA of Xilinx.

Microcode configuration, termination and finalization:
The FPGA reconfiguration files generated after synthesis con-
tain unpredictable bit patterns and will highly depend on the
targeted FPGA technology. It is essential to note that the same
high-level HDL description results in completely different con-
figuration bitstreams when different technologies are targeted.
In case of execution microcode, theend op microinstruction
at the end of the microcode segment is sufficient for the
proper termination of the reconfigurable operation provided
that the microcode is properly aligned into the memory.
This technique, however, would not work for reconfigura-
tion microcode, because the reconfiguration bitstreams are
an arbitrary bit sequence. Therefore, it is possible, that the
reconfiguration microcode loading is terminated earlier by a
falseend op microinstruction. One approach to resolve early
termination is the following. An additional microcode word
may be aligned at the starting address of the microprogram
segment. This word may contain either the length of the micro-
program or its end address. Since both methods do not differ
in either implementation or microcode size, we have arbitrarily
selected the latter one in our current implementation. The
process of preparing the microcode for its final alignment into
the targeted main memory is called microcode finalization.
In microcode termination, additional termination information
should be explicitly added to the microprogrammable config-
uration code. The automated process of microcode finalization
for Molen indicating the place of the finalization tool in the
Molen CCU design process is depicted in Figure 13. The CCU
design, described in HDL, can be targeted to different FPGA
technologies. This allows descriptions that can be synthesized
to any particular technology utilized by Molen.

The configuration file (indicated asconf) contains informa-
tion about the Molen organization needed for the reconfigu-
ration microcode finalization. The product of the finalization
tool is a binary file ready to be used inside the Molen
paradigm, and can be a linkable object, or a high-level data
structure, incorporating the binary information, that can be
included directly in a C project before compilation. It should
be noted that the reconfiguration microcode endianness is

Fig. 13. Molen finalization.

transparent to the proposed approach and does not require
special consideration.

ρµ-code loading unit implementation:Theρµ-code load-
ing unit (see Figure 9) is responsible for loading micropro-
grams from the external memory. Thestart op signal (not
depicted in Figure 9) is generated by the arbiter and initiates
a reconfigurable operation. Theρµ-code loading unit sequen-
tially generates the addresses of the microprogram in the main
memory and the desired microprogram is loaded into theρ-
control store. Once the microprogram is available in theρ-
control store, i.e., the end address of the microprogram in the
external memory is reached, the sequencer starts the execution
of the microcode generating microcode addresses towards the
ρCSAR. We have to note that other parts of theρµ-code unit
are not discussed as they are essentially memory-like elements
with appropriate controls.

VI. EVALUATION

In order to evaluate our proposal, we experimented with
the Alpha Data XPL Pro lite development board (ADM-
XPL) and the Xilinx Project Navigator ISE 5.1 (Service Pack
#3) design environment. As reconfigurable hardware platform,
we used the latest Xilinx xc2vp20 devices (speed grade 5)
from the Virtex II Pro family. For our experimentation, we
target and profile the MPEG-2 application. As implemented
in the platform hardware, partial reconfiguration is severely
limited because it is allowed only on fixed frame boundaries
(the xc2vp20 incorporates 8,214,624 bit configuration memory
divided into 1,756 frames) with no possibilities for frame
reduction. This limits the flexibility on CCU reconfiguration
sizes. For our experiments, we reconfigure the device at system
initialization stage. There is an additional platform restriction,
namely the available on-chip block RAM (BRAM) memory
of xc2vp20 is limited to 128kBytes for both instructions and
data. Due to the space limitation we were unable to run
any file, I/O, and operating system calls. As a consequence,
we used the profiling information to design the kernels as
CCU implementations and estimated the performance gains
rather than directly run the entire MPEG-2 application on
the Molen processor. Furthermore, the following has been

ACCEPTED FOR PUBLICATION TO APPEAR IN THE IEEE TRANSACTIONS ON COMPUTERS FPLA SPECIAL ISSUE IN EARLY 2005. 9

assumed. The parts of the applications which can be im-
plemented on the reconfigurable hardware are isolated in
functions. The core processor and the reconfigurable processor
do not run concurrently. The operations performed on the
reconfigurable processor are sequential (for now, we do not
consider potential parallelism due to the lack of compiler
support). The applications are compiled without optimizations.
The PowerPC processors in VirtexII Pro do not implement
floating-point instructions. Therefore, the floating-point data
type of the DCT coefficients utilized in the MPEG-2 encoder
benchmark has been converted to integer data types. The
proper integer arithmetic has been implemented for fairness.

Software Profiling Results: The first step involves identi-
fying the functions that are most suitable for hardware imple-
mentation. For this purpose, we performed the measurements
on a PowerPC 970 running at 1600 MHz. The considered
applications are a set of multimedia benchmarks consisting of
the Berkeley implementation of the MPEG-2 encoder and the
MPEG-2 decoder included in libmpeg2. The objective is to
identify the most time-consuming operations among the fol-
lowing operations, namely SAD (sum of absolute-difference,),
2D-DCT (2-dimensional discrete cosine transform) and 2D-
IDCT (2-dimensional inverse DCT). As input data, we used a
representative series of video sequences consisting of frames
with varying resolutions, presented in Table I, column two.

For our measurements, we used the GNU profilergprof
to determine the amount of time spent in each function and
its descendants. The results for the considered benchmarks,
input data and operations are presented in Table I. For the
MPEG2 encoder application, we notice that the SAD function
consumes more than50% of the application time (Table I,
column two) and consequently it is the best candidate for
hardware implementation. The integer DCT function accounts
for around 11% of the application time (Table I, column
three). For the IDCT function, we notice that although in the
MPEG2 encoder it takes only around1% of the application
time (Table I, column four), in the MPEG2 decoder it requires
around42% of the application time. The total execution time
spent in the SAD, DCT and IDCT operations in the MPEG2
encoder (presented in Table I, column five) emphasizes that
these functions require around 2/3 of the total application time.
Consequently, all considered functions are good candidates for
hardware implementations although their contribution to the
performance improvement may differ per application.
Molen organization synthesis results:The Molen organiza-
tion has been described in VHDL and simulated with Model-
tech’s ModelSim SE 5.7c. The synthesis has been performed
with Project Navigator ISE 5.2 SP3 from Xilinx and the Virtex
II Pro has been considered as a target reconfigurable technol-
ogy. For the prototype implementation, we have considered
a microcode word length of 64 bits. A 32 MByte memory
segment has been considered for storing microprograms into
a 64-bit organized main memory. Theρ-control store has been
designed to handle up to 8 KBytes of 64-bit microcode words.
As primary microcode storage units for theρ-control store, we
have used the BRAM blocks of the FPGA fabric, configured
as a dual port memory. Each port is unidirectional - a read-
only port is used to feed the MIR, while a write-only one

loads microcodes from the external memory into the pageable
section of theρ-control store. The XREGs have been imple-
mented in a single BRAM organized as512× 32-bit storage.
Hardware costs reported by the synthesis tools are presented
in Table II. The first column presents the FPGA resources
considered. Column two reports the actual values of these
resources, consumed by the reconfigurable processor, without
considering any CCU implementation, i.e., theρµ-code unit
and the associated infrastructure. This includes theρµ-code
loading unit, the sequencer and theρ-control store. Column
three presents resource utilization of the arbiter. In column
four, the resources consumed by the entire Molen organization
are displayed, including the reconfigurable processor infras-
tructure, the arbiter and the XREGs. Finally, columns five and
six respectively present the available FPGA resources in the
xc2vp20 chip and the utilized part of these resources by the
Molen organization (in %). The results strongly suggest that

TABLE II

MOLEN ORGANIZATION SYNTHESIS RESULTS

Device xc2vp20 RP* Arbiter Total incl. Available %
Speed Grade -5 XREGs Resources
Slices 71 84 156 10304 1
Flip Flops 78 69 147 20608 1
4 inp LUTs 171 150 322 20608 1
BRAMs: 4 N.A. 5 112 3
fmax [MHz] 130 143 130 N.A. N.A.
* Reconfigurable processor without any CCU implemented

the Molen infrastructure consumes trivial hardware resources
leaving almost the entire area for CCUs.
Synthesis results for the CCUs:We implemented the func-
tionalities of the kernels, suggested by the profiling results,
into reconfigurable hardware. Synthesis results for the xc2vp20
chip are reported in Table III.

TABLE III

SYNTHESIS RESULTS PERCCU IMPLEMENTATION

Device SAD SAD SAD DCT IDCT Available
xc2vp20-5 16 128 256* Resources
Slices 831 6807 13613* 4314 5436 10304
Flip Flops 1448 11862 23724* 7964 9876 20608
4 inp LUT 1390 11379 22757* 6832 8624 20608
BRAMs: N.A. N.A. N.A. * 2 2 112
fmax[MHz] 310 310 310* 96 96 N.A.
* Results for xc2vp50 FPGA

For the SAD function, we implemented the organization
proposed in [24]. The super-pipelined 16-byte version of this
SAD organization (SAD16) is capable of processing one 16-
pixel line (1 pixel is 1 byte) of a macroblock in 17 cycles
at over 300 MHz. The 128-byte version (SAD128) processes
eight macroblock lines in 23 cycles, and the 256-byte version
(SAD256), processes an entire16 × 16-pixel macroblock in
25 cycles at 300 MHz. The latter design (SAD256) requires
more resources than available in the xc2vp20 chip used
for this experimentation, therefore, we consider it for future
implementation when the larger xc2vp50 becomes available.
To support the DCT and IDCT kernels, we synthesized the 2-
D DCT and 2D-IDCT v.2.0 cores available as IPs in the Xilinx

ACCEPTED FOR PUBLICATION TO APPEAR IN THE IEEE TRANSACTIONS ON COMPUTERS FPLA SPECIAL ISSUE IN EARLY 2005. 10

TABLE I

MPEG2PROFILING RESULTS FOR EACH OF THE CONSIDERED FUNCTIONS AND ITS DESCENDANTS

MPEG2 encoder MPEG2 decoder
sequence #frames@Resolution SAD (16 x 16) DCT (8 x 8) IDCT (8 x 8) Total IDCT (8 x 8)
carphone 96@176x144 51.1 % 12.5 % 1.3 % 64.9 % 50.4 %

claire 168@360x288 53.8 % 11.8 % 1.0 % 66.6 % 37.6 %
container 300@352x288 56.2 % 10.7 % 1.0 % 67.9 % 40.4 %

tennis 112@352/240 60.0 % 9.5 % 0.8 % 70.3 % 40.5 %

Core Generator Tool. The parameters for their synthesis are
presented in Table IV.

TABLE IV

SYNTHESIS PARAMETERS FOR THE2-D DCT AND 2-D IDCT IPS

Parameter 2-D DCT 2-D IDCT
Data width [bits] 16 (signed) 16 (signed)
Coeff. width [bits] 24 24
Result width [bits] 16 (rounded) 16 (rounded)
cycles/input sample 6 8
Internal latency [cyc] 94 97

Since the recommended maximum PowerPC frequency for
the xc2vp20-5 FPGA is 250 MHz, the ADM-XPL prototyping
board vendors recommend to obtain this frequency from a
user clock of 83MHz multiplied by 3 using the on-chip
FPGA Digital clock managers (DCMs). Considering these
recommendations and synthesis results from Table III for our
experiments, we have to run the DCT and IDCT functions at a
frequency three times lower than the PowerPC clock. The SAD
designs were clocked at the same frequency as the PowerPC.
MPEG-2 performance experiments: We have embedded
the considered CCU implementations within the Molen or-
ganization and executed the corresponding software kernels
for performance measurements. For our experiments, we first
compiled the software kernels for the original PowerPC ISA
and ran them on one of the PowerPC405 processors, embedded
in the xc2vp20 device. The kernels have been extracted from
the original application source code (the ANSI C code used for
the profiling) without any further code modifications. For our
experiments, we considered the same data sequences as used in
the profiling phase. The PowerPC timers are initialized before
a kernel is executed and are read immediately after the kernel
execution has completed. Thus, the exact number of PowerPC
cycles, required for the entire kernel execution can be obtained.
After we derived the cycle counts for the PowerPC ISA soft-
ware runs, we initiated the next stage of the experimentation.
At this stage, similar to the code transformation discussed in
Section II, the kernel software code is substituted with a new
piece of code to support theπISA. The corresponding kernel
CCU configuration is present in the reconfigurable processor
considering the discussion in the beginning of this section.
Identically to the preceding experimentation stage, we obtain
the exact number of PowerPC cycles required to complete
the entire kernel operation on Molen. The measurements
include cycle numbers for transferring parameters to/from the
exchange registers (implemented as DCRs), cycles for memory
transfers, and data processing cycles. Figure 14 depicts the
measured cycles obtained in the latter two experimentation
phases. The first four chart groups present cycle counts for

the original PowerPC ISA. The last chart group presents the
cycle numbers, consumed by Molen while processing the
same data. It should be noted that the performance of the
PowerPC software implementations of the three kernels are
highly dependent on the data contents. On the contrary, for
all four data sequences, the cycle number for the Molen
implementation depends only on the amount of data and not
on the data contents due to the data independent CCU designs.
Therefore, only a single group of results for all data sequences
in the Molen execution is presented in Figure 14. In this figure,
only fixed microcode implementations are depicted.

µ

Fig. 14. Cycle numbers for kernels execution in original PowerPC ISA and
fixed microcode inπISA.

In addition, we have implemented both fixed and pageable
microcode implementations for SAD16 and SAD128. Table V
reports measured cycle numbers for executing the SAD kernel
over a single macroblock in different Molen configurations.
As it has been noted, the SAD256 implementation hardware
requirements exceed the capabilities of the xc2vp20 device we
used. Therefore, the corresponding SAD256 cycle numbers in
Table V have been extrapolated from the results of SAD16
and SAD128.

TABLE V

CYCLES PER MACROBLOCK FOR DIFFERENTSAD IMPLEMENTATIONS

SAD16 SAD128 SAD256
fixed microcode 898 311 264
peageable microcode 914 331 284

After the cycle numbers for the execution of each kernel
have been obtained, both for PowerPC and Molen, the speedup
of each kernel can be estimated. Table VI presents the calcu-
lated speedups for each of the considered data sequences with
respect to each CCU implementation.
Projected application speedup:Results in Table VI suggest
that the considered kernels can be speeded up to 300 times

ACCEPTED FOR PUBLICATION TO APPEAR IN THE IEEE TRANSACTIONS ON COMPUTERS FPLA SPECIAL ISSUE IN EARLY 2005. 11

TABLE VI

MPEG-2 SPEEDUPESTIMATIONS FOR DIFFERENTKERNELS

SAD16 SAD128 SAD256 DCT IDCT
fixed pag. fixed pag. fixed pag. fixed fixed

carph. 6.5 6.4 18.9 17.7 22.2 20.6 302.3 24.4
claire 8.3 8.1 23.9 22.5 28.2 26.2 302.2 24.4
cont. 12.2 12.0 35.2 33.1 41.5 38.6 302.1 24.4
tennis 12.1 11.9 35.0 32.9 41.2 38.3 302.1 32.3

and one can incorrectly assume, that the entire application
can be speeded up to the same orders of magnitude.4 In the
following, we are going to prove theoretically, combined with
experiments, that in fact lower, yet considerable and impres-
sive for the GPP domain, overall application speedups could
be expected. As indicated earlier, due to space limitations, no
file, I/O, or operating system calls have been implemented on
the prototype FPGA, thus the application speedup can only
be estimated. To calculate the projected speedup of the entire
application with respect to the CCU implementations and the
πISA, we employed the well known Amdahl’s law, utilizing
the following notations. Let us assumeT to be the execution
time of the original program (say measured in cycles) and
TSEi - time to execute kerneli in software, which we would
like to speed up in reconfigurable hardware. AssumeTρi is
the execution time (inπISA) for the reconfigurable imple-
mentation of kerneli. Assumingai = TSEi

T and si = TSEi

Tρi
,

the speedup of the program with respect to the reconfigurable
implementation of kerneli is:

Si =
T

T − TSEi + Tρi
=

1
1− (ai − ai

si
)

(1)

Identically, assuminga =
∑

i ai, all the kernels considered for
reconfigurable implementation would speed up the program
with:

S =
1

1− (a−∑
i

ai

si
)
, Smax = lim

∀si→∞
S =

1
1− a

(2)

WhereSmax is the theoretical maximum speedup. Parameters
ai are the profiling results from Table I and parameterssi

are the results from Table VI. The projected overall speedup
figures for the entire MPEG-2 encoder and MPEG-2 decoder
applications are reported in Table VII. Columns labeled “the-
ory” present the theoretically achievable maximum speedup
calculated with respect to Equation (2). Columns labelled with
”impl.” contain data for the projected speedups with respect
to the considered Molen implementation. For the MPEG-2
encoder, the simultaneous configuration of the SAD128, DCT,
and IDCT operations employing fixed microcode implemen-
tations has been considered. For the MPEG-2 decoder, only
the IDCT reconfigurable implementation has been employed.
Columns with label ”imp./th.” in Table VII indicate (in %)
how close the real speedup is to the theoretically attainable
one. Reported results strongly suggest that the actual speedup
of the MPEG-2 encoder and decoder obtained during our prac-
tical experimentation very closely approach the theoretically
estimated maximum possible speedups.

4If the considered kernels are the entire application, speedups of the same
orders of magnitude can be expected. If this is not the case, as in the
considered MPEG-2, the above assumption is incorrect.

TABLE VII

OVERALL SPEEDUPESTIMATIONS FOR THEENTIRE MPEG2

MPEG2 encoder* MPEG2 decoder
theory impl. impl./th. theory impl. impl./th.

carphone 2.85 2.64 93% 2.02 1.94 96%
claire 2.99 2.80 94% 1.60 1.56 98%
container 3.12 2.96 95% 1.68 1.63 97%
tennis 3.37 3.18 94% 1.68 1.65 98%
* fixed ρµ-code SAD128 + DCT + IDCT

VII. C ONCLUSIONS

In this paper, we presented a polymorphic processor
paradigm that allows the programmer/designer to modify
and extend the processor functionality and hardware at will
without architectural and design modifications. The proposal
solves a number of limitations of existing approaches such
as the opcode space explosion and it requires only a one
time extension of the instruction set to incorporate an
almost unlimited number of reconfiguration functions per
single programming space. Finally, it introduces a modular
approach allowing easy porting of applications to different
reconfigurable platforms and allows compiler controlled
parallelism.

Acknowledgements:This research is partially supported by
PROGRESS, the embedded systems research program of the
Dutch organization for Scientific Research NWO.

REFERENCES

[1] G. Blaauw and F. Brooks Jr.,Computer Architecture. Addison-Wesley,
1997.

[2] M. Sima, S. Vassiliadis, S. Cotofana, J. van Eijndhoven, and K. Vissers,
“Field-Programmable Custom Computing Machines - A Taxonomy,”
in 12th International Conference on Field Programmable Logic and
Applications (FPL), vol. 2438. Montpellier, France: Springer-Verlag
Lecture Notes in Computer Science (LNCS), Sep 2002, pp. 79–88.

[3] K. Compton and S. Hauck, “Reconfigurable Computing: A Survey of
Systems and Software,”ACM Comput. Surv., vol. 34, no. 2, pp. 171–210,
2002.

[4] S. Hauck, T. Fry, M. Hosler, and J. Kao, “The Chimaera Reconfigurable
Functional Unit,” inProc. IEEE Symp. on Field-Programmable Custom
Computing Machines, Napa, California, 1997, pp. 87–96.

[5] A. L. Rosa, L. Lavagno, and C. Passerone, “Hardware/Software Design
Space Exploration for a Reconfigurable Processor,” inProc. of the DATE
2003, Munich, Germany, 2003, pp. 570–575.

[6] M. Gokhale and J. Stone, “Napa C: Compiling for a Hybrid RISC/FPGA
Architecture,” in Proc. IEEE Symp. on Field-Programmable Custom
Computing Machines, Napa, California, April 1998, pp. 126–135.

[7] F. Campi, M. Toma, A. Lodi, A. Cappelli, R. Canegallo, and R. Guer-
rieri, “A VLIW Processor with Reconfigurable Instruction Set for
Embedded Applications,” inIn ISSCC Digest of Technical Papers, Feb
2003, pp. 250–251.

[8] A. Ye, N. Shenoy, and P. Banerjee, “A C Compiler for a Processor
with a Reconfigurable Functional Unit,” inACM/SIGDA Symposium on
FPGAs, Montery, California, USA, 2000, pp. 95–100.

[9] J. Becker and R. Hartenstein, “Configware and Morphware going
Mainstream,”J. Syst. Archit., vol. 49, no. 4-6, pp. 127–142, 2003.

[10] A. Turjan, T. Stefanov, B. Kienhuis, and E. Deprettere, “The Compaan
Tool Chain: Converting Matlab into Process Networks,” inDesigner’s
Forum of DATE 2002, Paris, France, 2003, pp. 258–264.

[11] S. Vassiliadis, S. Wong, and S. Cotofana, “Microcode Processing:
Positioning and Directions,”IEEE Micro, vol. 23, no. 4, pp. 21–30,
July/August 2003.

[12] J. M. P. Cardoso and H. C. Neto, “Compilation for FPGA-Based
Reconfigurable Hardware,”IEEE Design & Test of Computers, vol. 20,
no. 2, pp. 65–75, March/April 2003.

ACCEPTED FOR PUBLICATION TO APPEAR IN THE IEEE TRANSACTIONS ON COMPUTERS FPLA SPECIAL ISSUE IN EARLY 2005. 12

[13] C. Zissulescu, T. Stefanov, B. Kienhuis, and E. Deprettere, “LAURA:
Leiden Architecture Research and Exploration Tool,” inProceedings of
the 13th International Conference on Field Programmable Logic and
Applications (FPL), September 2003, pp. 911–920.

[14] S. Vassiliadis, S. Wong, and S. Cotofana, “The MOLENρµ-Coded
Processor,” in11th International Conference on Field Programmable
Logic and Applications (FPL), vol. 2147. Belfast, UK: Springer-Verlag
Lecture Notes in Computer Science (LNCS), Aug 2001, pp. 275–285.

[15] S. Vassiliadis, G. Gaydadjiev, K. Bertels, and E. Moscu Panainte, “The
Molen Programming Paradigm,” inProceedings of the Third Interna-
tional Workshop on Systems, Architectures, Modeling, and Simulation,
Samos, Greece, July 2003, pp. 1–7.

[16] E. Moscu Panainte, K. Bertels, and S. Vassiliadis, “Compiling for the
Molen Programming Paradigm,” in13th International Conference on
Field Programmable Logic and Applications (FPL), vol. 2778. Lisbon,
Portugal: Springer-Verlag Lecture Notes in Computer Science (LNCS),
Sep 2003, pp. 900–910.

[17] http://suif.stanford.edu/suif/suif2.
[18] http://www.eecs.hardvard.edu/hube/research/machsuif.html.
[19] A. Padegs, B. Moore, R. Smith, and W. Buchholz, “The IBM System/370

Vector Architecture: Design Considerations,”IEEE Transactions on
Computers, vol. 37, pp. 509–520, 1988.

[20] W. Buchholz, “The IBM System/370 Vector Architecture,”IBM Systems
Journal, vol. 25, no. 1, pp. 51–62, 1986.

[21] M. Moudgill and S. Vassiliadis, “Precise Interrupts,”IEEE Micro,
vol. 16, no. 1, pp. 58–67, January 1996.

[22] G. Kuzmanov and S. Vassiliadis, “Arbitrating Instructions in anρµ-
coded CCM,” inProceedings of the 13th International Conference on
Field Programmable Logic and Applications (FPL’03), September 2003,
pp. 81–90.

[23] Virtex-II Pro Platform FPGA Handbook v1.0, Xilinx Corporation, 2002.
[24] S. Vassiliadis, E. Hakkennes, S. Wong, and G. Pechanek, “The Sum-of-

Absolute-Difference Motion Estimation Accelerator,” inProceedings of
the 24th Euromicro Conference, August 1998, pp. 559–566.

Stamatis Vassiliadiswas born in Manolates, Samos,
Greece in 1951. He is currently a chair professor in
the Electrical Engineering department of Delft Uni-
versity of Technology (TU Delft), The Netherlands.
He had also served in the EE faculties of Cornell
University, Ithaca, NY and the State University of
New York (S.U.N.Y.), Binghamton, NY. He worked
for a decade with IBM where he had been involved
in a number of advanced research and develop-
ment projects. For his work he received numerous
awards including 24 publication awards, 15 inven-

tion awards and an outstanding innovation award for engeneering/scientific
hardware design. His 70 USA patents rank him as the top all time IBM
inventor. In 1992 he received an honorable mention best paper award at the
ACM/IEEE MICRO25. He received the best paper awards in the IEEE CAS
(1998,2002), IEEE ICCD (2001) and PDCS (2002). Dr. Vassiliadis is an IEEE
fellow.

Stephan Wongwas born in Paramaribo, Suriname
in 1973. He obtained his PhD in the Electrical
Engineering department of the Delft University of
Technology (TU Delft), The Netherlands. He is
currently working as an assistant professor at the
Computer Engineering Laboratory at the Delft Uni-
versity of Technology (TU Delft), The Netherlands.
He has considerable experience in the design of
embedded media processors. He has worked also
on microcoded FPGA complex instruction engines
and the modeling of parallel processor communica-

tion networks. His research interests include embedded systems, multimedia
processors, complex instruction set architectures, reconfigurable and parallel
processing, microcoded machines, and network processors.

Georgi Gaydadjiev was born in Plovdiv, Bulgaria,
in 1964. He is currently an assistant professor at
the Computer Engineering Laboratory, Delft Univer-
sity of Technology, The Netherlands. His research
and development experience includes 15 years in
hardware and software design at System Engi-
neering Ltd. in Pravetz Bulgaria and Pijnenburg
Microelectronics and Software B.V. in Vught, the
Netherlands. His research interest include: embed-
ded systems design, advanced computer architec-
tures, hardware/software co-design, VLSI design,

cryptographic systems and computer systems testing.

Koen Bertels was born in Antwerp, Belgium in
1961. He is currently on the faculty of Electrical
Engineering at Delft University of Technology (TU
Delft), The Netherlands. His research involves the
development of semi-automatic platforms for the
design of embedded systems. The tools are intended
for SoC reconfigurable technologies. He is further
involved in the simulation and analysis of interacting
migrating processes and multi-agent systems from a
computer engineering perspective. His research in-
terests are in complex systems, reconfigurable com-

puting, agent technology, back-end compilers, semi-automatic tool platforms,
and distributed computing.

Georgi Kuzmanov was born in Sofia, Bulgaria in
1974. He received his M.Sc. degree in computer
engineering from the Technical University of Sofia,
Bulgaria, in 1998 and is currently working toward
his Ph.D. degree with the computer engineering lab
of Delft University of Technology (TU Delft), The
Netherlands. Between 1998 and 2000, he was with
”Info MicroSystems” Ltd., Sofia, where he had been
involved in several reconfigurable computing and
ASIC projects as a research and development en-
gineer. Georgi Kuzmanov is an IEEE student mem-

ber. His current research interests include reconfigurable computing, video
and image processing, multimedia embedded systems, computer arithmetic,
computer architecture and computer organization.

Elena Moscu Panaintewas born in Adjud, Romania
in 1977. She received her MSc degree (in computer
science) from ”Politehnica” University of Bucharest,
Romania, in 2001. Currently, she is a PhD stu-
dent in Computer Engineering Laboratory, Elec-
trical Engineering Department, Delft University of
Technology, The Netherlands. Her research interests
include compiler design, reconfigurable computing
and hardware-software co-design.

