Design and Implementation of a TriCore Backend
for the LLVM Compiler Framework

Studienarbeit

Christoph Erhardt

Friedrich-Alexander-Universitat Erlangen-Niirnberg

November 20, 2009

A TriCore Backend for LLVM (November 20, 2009) 1-25

O

Overview

Overview

The TriCore Processor Architecture

The LLVM Compiler Infrastructure

Design and Implementation of the Backend

Evaluation & Conclusion

A TriCore Backend for LLVM (November 20, 2009) Overview

2-25

O

Motivation What do we need it for?

TriCore chips are omnipresent around here:
Quadcopter
High striker
Carolo Cup

The RTSC (Real-Time Systems Compiler) project:

= Operating system aware compiler for real-time applications
= Processes atomic basic blocks
= Based on LLVM

A TriCore Backend for LLVM (November 20, 2009) Overview 3-25

O

Motivation What do we need it for?

TriCore chips are omnipresent around here:

= Quadcopter

= High striker

= Carolo Cup

I

The RTSC (Real-Time Systems Compiler) project:

= Operating system aware compiler for real-time applications

m Processes atomic basic blocks
= Based on LLVM

RTSC should be able to generate TriCore machine code

A TriCore Backend for LLVM (November 20, 2009) Overview 3-25

The TriCore Processor Architecture Overview

Three-in-one architecture

m Real-time microcontroller unit
s DSP

m Superscalar RISC processor

O A TriCore Backend for LLVM (November 20, 2009) The TriCore Processor Architecture 4-25

The TriCore Processor Architecture Overview

Three-in-one architecture

m Real-time microcontroller unit
s DSP

m Superscalar RISC processor

Basic features

= Load/store architecture

m 32-bit data, address, and instruction words

Some special 16-bit instruction words for higher code density

Little-endian byte order
16 data + 16 address registers

O A TriCore Backend for LLVM (November 20, 2009) The TriCore Processor Architecture 4-25

O

Peculiarities Some things that TriCore handles in an unusual way

Strict distinction between data and address registers:

= Also reflected in the calling conventions

m Serious problem for the compiler!

Data registers are also used for floating-point operands

Special DSP-oriented instructions and addressing modes
Task/context model:

= Automatic context save/restore upon call/return
= Context save areas (linked lists managed by hardware)

A TriCore Backend for LLVM (November 20, 2009) The TriCore Processor Architecture

5-25

The LLVM Compiler Infrastructure Overview

m Open-source compiler infrastructure project started in 2000
B Main sponsor: Apple Inc.
B Written in C++

O A TriCore Backend for LLVM (November 20, 2009) The LLVM Compiler Infrastructure 6-25

Basic Architecture The classical three tiers of a compiler

C source

L 7

Fortran
source

L 7

LLVM
assembly/
bitcode

x86
assembly

x86 code
generator

SPARC
assembly

LLVM
assembly/
bitcode

m Language-specific frontends

m Optimizer: generic IR, analysis/transformation passes

B Several backends for machine code generation

0 A TriCore Backend for LLVM (November 20, 2009) The LLVM Compiler Infrastructure 7-25

O

U nlq ue Characteristics What does LLVM have that others don't?

Not merely a compiler, but a compiler infrastructure:
m Static compilation

= Just-in-time compilation

Strictly modular, library-based architecture:

= Easily extendible

= Possibility to incorporate parts of LLVM in other projects
BSD-style licence

Produces highly optimized machine code in an efficient way:
= Memory-efficient
= Time-efficient

A TriCore Backend for LLVM (November 20, 2009) The LLVM Compiler Infrastructure 8-25

Design and Implementation of the Backend Overview

m Extensive generic code generation framework:
= Makes work a lot easier
m ... but also imposes some problems in specific cases
B Fixed class hierarchy
m Many target-independent algorithms:
= Instruction scheduling
= Register colouring
" ...
m Code generation process executed by a series of passes

O A TriCore Backend for LLVM (November 20, 2009) Design and Implementation of the Backend 9-25

Code Generation Process

List DAGs
DAGs "
LLVM code & native
(oA not legalized legalized e
. SSA-Based
Lowering Scheduling Optimization
TriCoreTargetLowering TriCoreDAGToDAGISel TriCoreInstrinfo
TriCoreInstrinfo
TriCoreRegisterInfo
TriCoreAsmPrinter TriCoreLoadStoreOpt TriCoreInstrInfo TriCoreVirtInstrResolver TriCoreInstrInfo

Assembly
Printing

Pro-/Epilogue
Insertion

Post-
Allocation
Passes

Register
Allocation

A TriCore Backend for LLVM (November 20, 2009)

Design and Implementation of the Backend

10-25

Ta bleGen One tool to rule them all...

Problem

= Backend contains large portions of descriptive data

s C++ obviously not suitable

O A TriCore Backend for LLVM (November 20, 2009) Design and Implementation of the Backend 11-25

Ta bleGen One tool to rule them all...

Problem

= Backend contains large portions of descriptive data

s C++ obviously not suitable

TableGen

= Language for domain-specific modelling

= Similar to object-oriented approach:
= Classes, records (objects), attributes
= Inheritance

= Definition files (.td) preprocessed by tblgen tool
— Auto-generation of C++ code

= Used for description of:

= Subtargets, registers
= Calling conventions

O = Instruction set
A TriCore Backend for LLVM (November 20, 2009) Design and Implementation of the Backend 11-25

SelectionDAG Construction

Directed acyclic graph

m Per basic block

= Nodes: instructions
m Edges:

= Data dependencies
= Control flow dependencies

Example

%mul mul i32 %a, %a

%muld = mul i32 %b, %b

%add = add nsw i32 %mul4, %mul
ret 132 %add

Largely automated

SelectionDAG Construction

Directed acyclic graph

m Per basic block

= Nodes: instructions
m Edges:

= Data dependencies
= Control flow dependencies

Example

%mul mul i32 %a, %a

%muld = mul i32 %b, %b

%add = add nsw i32 %mul4, %mul
ret 132 %add

/

Largely automated

EntryToken | (Register %regl025) (Register %reg]024

[oxasn2tes | | owssoss | [oxasnon0 |
< i3 32
Pl .

CopyFromReg | | CopyFromReg
0xa832878 0xa832a10
32 | 32 |

H mul mul

0xa832548 0xa8325d0

i32 i32

.
o ((Register %D2
| Resivern) |0
N 0xa832710
\ 0xa832658
\
\‘ 32

CopyToReg

0xa8324c0

ch | flag

TriCorelSD:RET_FLAG

0xa8326e0

ch
—_—

GraphRoot

isel input for euclidSquare:entry

Troubles The integer vs. pointer problem

Problem
m TriCore strictly distinguishes between addresses and data integers
m Have to be put into separate register files — calling conventions!

m LLVM'’s backend framework treats pointers just like integers...

O A TriCore Backend for LLVM (November 20, 2009) Design and Implementation of the Backend 13-25

Troubles

The integer vs. pointer problem

Problem

m TriCore strictly distinguishes between addresses and data integers
m Have to be put into separate register files — calling conventions!

m LLVM'’s backend framework treats pointers just like integers...

Solution

= Annotation of “pointer / no pointer” flag in value type class

= Promotion of this flag throughout the DAG construction phase
(required some hacks...)

m Case differentiations in all relevant situations

O

A TriCore Backend for LLVM (November 20, 2009) Design and Implementation of the Backend 13-25

Instruction Selection

Largely auto-generated

((EniryToken ((Register %ereg1025) - (‘Register %reg1024)

[oxasn2tes | | owsioss | [oxasion0 |

o 2 32
Pl
! CopyFromReg CopyFromReg
' 0xa832878 0ra832a10
! B2 | 32 |
! mul mul
H 0xa832548 Oxa8325d0
:. 2 i3 .
T Pattern matching
\
" -
' dd
x
. 0r832658
| >
\ = def MULrr2 : Rr2Instr<0x0a,
(outs DR:$c), (ins DR:$a, DR:$b),
"mul\t$c, $a, $b",
CopyToReg [(set DR:$c, (mul DR:$a, DR:$b))]1>;
0xa8324c0
ch | flag

TriCorelSD:RET_FLAG

0xa8326e0

ch
e

GraphRoot

isel input for euclidSquare:entry

Largely auto-generated

Instruction Selection

Register %reg]025

(EmryToken) *(Register %reg1025) - (Register %reg1024)
[oxasn2tes | | owsioss | [oxasion0 | 0x1832988
h i i3
' "
T !
! ' Register %regl024.
! CopyFromReg CopyFromReg 1 | CopyFromRe;
ik o e i 0xa832900
: 0832878 0xa832a10 1| onas32878
| ' 32
| B2 | 32 | cn IR
! i
! ‘mul mul N CopyFromReg
! 0xa832548 | | Ona832540 | [oxasa2sas O0xa832a10
. 32 32 i 32 | o
| N P h |
; attern matching ;
\ i
\ h
‘ — :
dd ! MADDrr2
0xa832710 |
0xa832658 1 0xa832658
t
32 \ 32
N def MULrr2 : Rr2Instr<Ox0Oa, \ =

(outs DR:$c), (ins DR:$a, DR:$b),

"mul\t$c, $a, $b",
CopyToReg [(set DR:$c, (mul DR:$a, DR:$b))]1>; CopyToReg
0xa8324c0 0xa8324c0
ch | flag ch | flag
TriCorelSD::RET_FLAG RETsys
0xa8326e0

0xa8326e0
ch

ch

GraphRoot GraphRoot
scheduler input for euclidSquarezentry

isel input for euclidSquare:entry

Scheduling & Register Allocation Target-independent algorithms

Scheduling
= DAGs — list (SSA form)

m Target-independent algorithm using data from the instruction
description table

O A TriCore Backend for LLVM (November 20, 2009) Design and Implementation of the Backend 15-25

Scheduling & Register Allocation Target-independent algorithms

Scheduling
= DAGs — list (SSA form)

m Target-independent algorithm using data from the instruction
description table

Register Allocation

m Virtual registers — physical registers
= SSA deconstruction

m Target-independent colouring algorithm using the register
information table

O A TriCore Backend for LLVM (November 20, 2009) Design and Implementation of the Backend 15-25

Final passes Handwork

Virtual Instruction Resolution
= Some instructions (e.g., moves) had operands of unknown
register classes at the time of their creation

= Now that physical registers have been assigned, these instructions
can be resolved

O A TriCore Backend for LLVM (November 20, 2009) Design and Implementation of the Backend 16-25

Final passes Handwork

Virtual Instruction Resolution

= Some instructions (e.g., moves) had operands of unknown
register classes at the time of their creation

= Now that physical registers have been assigned, these instructions
can be resolved

Pre-/Epilogue Insertion

= Insertion of pre-/epilogue code to entry/exits of all functions

m Virtual stack slots — physical stack frame references

O A TriCore Backend for LLVM (November 20, 2009) Design and Implementation of the Backend 16-25

Code Emission Partly auto-generated

Peephole Optimization
Merging of two subsequent 32-bit loads/stores into a single 64-bit

load /store
Before: # After:
st.w [%a10]4, %49 st.d [%al10]0, %e8

st.w [%al10]0, %d8

O A TriCore Backend for LLVM (November 20, 2009) Design and Implementation of the Backend 17-25

O

Code Emission Partly auto-generated

Peephole Optimization

Merging of two subsequent 32-bit loads/stores into a single 64-bit
load /store

Before: # After:
st.w [%a10]4, %49 st.d [%al10]0, %e8
st.w [%al10]0, %d8

Assembly Printing

= Output of assembly code in text form

= Large parts auto-generated from the instruction description table

A TriCore Backend for LLVM (November 20, 2009) Design and Implementation of the Backend 17-25

|n practice How do | use it?

Required software

= Clang compiler frontend (support has been integrated)
= GNU Binutils for TriCore:

= Assembler
= Linker

= Headers and libraries from TriCore-GCC
m Small Perl wrapper script

A TriCore Backend for LLVM (November 20, 2009) Evaluation & Conclusion 18-25

Comparison to GCC

Criteria

1. Compilation speed
2. Code size

3. Code performance

O

A TriCore Backend for LLVM (November 20, 2009) Evaluation & Conclusion 19-25

Comparison to GCC

Criteria

1. Compilation speed
2. Code size

3. Code performance

Testing system

= Benchmark application: CoreMark
= Compilation PC: Core 2 Quad Q6600 (2.40 GHz)
= Runtime system: TC1796 board (40 MHz)

O

A TriCore Backend for LLVM (November 20, 2009) Evaluation & Conclusion 19-25

O

The CoreMark Benchmark

Alternative to the well-known Dhrystone benchmark

C source code publicly available (albeit not open source software)
Easily portable

Prevents compilers from “cheating” by optimizing away unused
computation results

Operations:

Linked list processing

Matrix manipulation

State machine operations
CRC computation

Results can be validated

A TriCore Backend for LLVM (November 20, 2009) Evaluation & Conclusion 20-25

O

Compilation Time

Compilation time (in milliseconds)

-00 -01 -02 -03 -Os
Optimization level

m Takes about 10 % less time than GCC

m Even faster when compiling at -00

A TriCore Backend for LLVM (November 20, 2009) Evaluation & Conclusion

21-25

Code Size

Size of the text segment (in KiB)

-00 -01 -02 -03 -Os

Optimization level

Generates slightly smaller code

O A TriCore Backend for LLVM (November 20, 2009) Evaluation & Conclusion 22-25

Code Performance

40

GCC

Iterations per second

-00 -01 -02 -03 -Os
Optimization level

m Code 12-20 % slower than the code generated by GCC

m Further work needed to become fully competitive

O A TriCore Backend for LLVM (November 20, 2009) Evaluation & Conclusion 23-25

Summary

All of the basic functionality is there and is working reliably
Space for further optimizations and extensions

First TriCore compiler to be released under a BSD-style licence!

End goal: inclusion into LLVM's repository

O A TriCore Backend for LLVM (November 20, 2009) Evaluation & Conclusion 24-25

The End

Any Questions?

O A TriCore Backend for LLVM (November 20, 2009) Evaluation & Conclusion 25-25

	Overview
	The TriCore Processor Architecture
	The LLVM Compiler Infrastructure
	Design and Implementation of the Backend
	Evaluation & Conclusion

