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Abstract—In this paper, we present a polymorphic proces- promising and several processor paradigms have been pro-
sor paradigm incorporating both general purpose and custom posed, see numerous examples in [2], [3], the organization
computing processing. The proposal incorporates an arbitrary of such a hybrid processor can be viewed mostly as an open

number of programmable units, exposes the hardware to the pro- topic. In thi | hi that
grammers/designers and it allows them to modify and extend the opic. In this paper, we propose a polymorphic processor tha

processor functionality at will. To achieve the previously stated improves substantially various aspects, including performance,
attributes, we present a new programming paradigm, a new in- of such hybrid general purpose processor paradigm. The main
struction set architecture, a microcode-based microarchitecture, contributions of the proposed approach can be summarized by
and a compiler methodology. The programming paradigm, in the following:

contrast with the conventional programming paradigms, allows ; . hi | . based
general-purpose conventional code and hardware descriptions to  * FOr agiven ISA, a one time architectural extension (base

coexist in a program. In our proposal, for a given instruction set on the co-processor architectural paradigm) compriging
architecture a one-time instruction set extension o8 instructions instructions suffices to provide an almost arbitrary num-
is sufficient to implement the reconfigurable functionality of the ber of reconfiguration “functions” per single program-

processor. We propose a microarchitecture based on reconfig-

urable hardware emulation to allow high-speed reconfiguration ming space. This realization resolves the opcode space

and execution. To prove the viability of the proposal we exper- explosion and modularity problems and provides ISA
imented with the MPEG-2 encoder and decoder and a Xilinx compatibility and portability of reconfigurable programs,
Virtex 1l Pro FPGA. We have implemented three operations, present in previous proposals, such as the ones described
SAD, DCT, and IDCT. The overall attainable application speedup in [4]-[6].

for the MPEG-2 encoder and decoder is betweeR.64 - 3.18 and g .
between1.56 - 1.94, respectively, representing betwee®3% and » We propose a new processor organization and we describe

98% of the theoretically obtainable speedups. a programming paradigm based on sequential consistency
] ) ] that allows the proposed co-processor environment to
Index Terms— Custom computing machines, FPGA, firmware,

. ’ ; ; coexist with the general-purpose processor and to resolve
reconfigurable microcode, polymorphic processors, reconfig- Lo .
urable processors. parameter limitations and parallel execution problems,

present in other proposals (see for example [7], [8]).
« We propose a back-end compiler technology that allows
I. INTRODUCTION to target the proposed processor architecture, a microar-
chitecture based on reconfigurable emulatipp-¢ode),
and an implementation that allows the compiled code to
execute.

General-purpose processors allow us to run the same pro-
gram over a range of implementations of the same architectural
family [1] in a compatible manner. Furthermore, they allow . . . .

X The paper is organized as follows. Section Il discusses
various programs to run on the same system and the same .

: . - e ated work and describes the general approach of how to
program to run over multiple processing families. One q

. . modify an existing program to support reconfigurable comput-
the major continuous concerns of general-purpose processors

is performance. Reconfigurable hardware coexisting with'rég' Section Il introduces the Molen organization, the Molen

core processor has been considered as a good candidatgr?ﬁ.rammmg paradigm, gnd the polymorph|c mstructlon_set
rchitecture £ISA). Section IV discusses the sequencing
address such a concern. Even though such an approac

and compiler extensions required to implement the Molen
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« Opcode space explosianFor reconfigurable fabric, a P’ from program P which (using specialized instructions)
common approach (e.g., [4], [5], [6]) is to introduce a newan initiate both the configuration and execution processes
instruction for each portion of application mapped on then the reconfigurable hardware. The steps involved in this
field-programmable gate array (FPGA). The consequenttansformation are the following:
is the limitation of the number of operations implemented 1) identify code ‘@” in program P to be mapped in recon-
on the FPGA, due to the limitation of the opcode space.  figurable hardware.

More specifically stated, for a specific application domain 2) show that &” can be implemented in hardware in an
intended to be implemented on the FPGA, the designer existing technology, e.g., FPGA, and map’“onto
and compiler are restricted by the unused opcode space. reconfigurable hardware (RH).

Furthermore, this results in ad hoc instruction set archi- 3) eliminate the identified coden” and add “equivalent”

tecture (ISA) extensions which excludes compatibility. code (A) assuming that A “calls” the hardware with
 No modularity : Each approach has a specific definition  functionality “a”. The code A comprises the following:
and implementation bounded for a specific reconfigurable « Repair code inserted to communicate parameters
technology and design. Consequently, the applications and results to/from the reconfigurable hardware
cannot be (easily) ported to a new reconfigurable plat- from/to the general-purpose processor core.
form. Further, there are no mechanisms allowing recon- « “HDL™-like hardware code and emulation code in-
figurable implementation to be developed separately and serted to configure the reconfigurable hardware and
ported transparently, as indicated in [9]. This implies to perform the functionality that is initialized by the
that a reconfigurable implementation developed by a “axecute code”.

\t/)en(rj]or A caq n%t bel inclgdfed witr';cl:))lg:qbst?ntial effprt 4) compile and execute program P’ with original code plus
yt 1€ comprier developed for an Implementation code having functionality A (equivalent to functionality
provided by a vendor B. w

«”) on the GPP/reconfigurable processor.
Additional shortcomings of current proposals regarding per-

formance gains include the following: i

« Limitation of the number of parameters: In a number Code | o |
of approaches, the operations mapped on an FPGA can
only have a small number of input and output parameters | asw —
(e.g., [7], [8]). For example, in the architecture presented E I
in [7], due to the encoding limits, the fragments mapped !
into the FPGA have at modtinputs and2 outputs; also,
in [8], the maximum number of input registersdsand
it has one output register. L J

« No support forparallel execution on the FPGA of — <—‘
sequential operations: An important and powerful feature |, owase m
of FPGAs can be the parallel execution of sequential |emmarox \_»

operations when they have no data dependency. Many
architectures (see for examples in [2]) do not take into
account this issue and their mechanism for FPGA int€'9- %

gration cannot be extended to support parallelism. The mentioned steps illustrate the need for a new pro-
In the disc_ussion to fpllpw, we present the general Conce@tamming paradigm in which both software and hardware
of transforming an existing program to one that can Qgscriptions are present in the same program. It should also
executed on the reconfigurable computing platform we propose noted that the only constraint on’*is implementability,
and hints to the new mechanisms, intended to improve existiggich possibly implies complex hardware. Consequently, the
approaches. microarchitecture may have to support emulation [11] via
microcode. We have termed this reconfigurable microcode
GPP - (pu-code) as it is different from the traditional microcode. The
@ “@ z — . difference is that such microcode does not execute on fixed

Program transformation methodology for reconfigurable computing.

Program P Program P’

L 4 MEM hardware facilities. It operates on facilities that the-code

L R ] itself “designs” to operate upon. The methodology of the trans-
formation described previously for the reconfigurable comput-

Fig. 1. Program transformation example. ing platform is depicted in Figure 2. First, the code to be
executed on the reconfigurable hardware must be determined.

The conceptual view of how program P (intended to exrhis is achieved by high-level to high-level instrumentation
ecute only on the general-purpose processor (GPP) corepi&l benchmarking. This results in several candidate pieces
transformed into program P’ (executing on both the GP&f code. Second, we must determine which piece of code is
core and the reconfigurable hardware) is depicted in Figuresuitable for implementation on the reconfigurable hardware.

The purpose is to obtain a functionally equivalent prograifhe suitability is solely determined by whether the piece of
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code is implementable (i.e., “fits in hardware”). Those parfsaradigm allows for parallel and concurrent hardware execu-
can then be mapped into hardware via a hardware descriptimm and it is intended (currently) for single program execution.
language (HDL). In case the HDL corresponds to “criticallt requires only a one-time architectural extension of few
hardware in terms of, for instance, area, performance, memangtructions to provide a large user reconfigurable opera-
and power consumption, the translation will be done manualipn space. The complete list of the eight required instruc-
(see Figure 2). Otherwise, the translation can be done auions, denoted as polymorphig ¢ \vpopperd) InstructionSet
matically, as for example described in [10], [12], [13], or bérchitecture £ISA), is as follows:

extracted from a library. « Six instructions are required for controlling the reconfig-
urable hardware, namely:
[1l. ORGANIZATION, ISA, AND PROGRAMMING — Two set instructions: these instructions initiate the

configurations of the CCU. Two instructions are

added for partial reconfiguration:

* the partial set){-set <address>) instruction per-
forms those configurations that cover common
parts of multiple functions and/or frequently used
functions. In this manner, a considerable number
of reconfigurable blocks in the CCU can be pre-

The two main components in the Molen machine organiza-
tion [14] (depicted in Figure 3) are the ‘Core Processor’, which
is a general-purpose processor (GPP), and the ‘Reconfigurable
Processor’ (RP). Instructions are issued to either processors
by the ‘Arbiter’ and data are fetched(stored) by the ‘Data
Fetch’ units. The ‘Memory MUX' unit is responsible for
distributing(collecting) data.

configured.
| TARET— | x the complete setc(get <qddress>) instructiqn_
*l« : ¢ performs the configurations of the remaining
etraction Data blocks of the CCU (not covered by thesef to
Fetch Fetch completethe CCU functionality.
»l« ¢ We must note that in case no partial reconfigurable
Arbiter [ I\;e[l::?' hardware is present, thesetinstruction alone can be

utilized to perform all the necessary configurations.
— execute<address>: this instruction controls the ex-
ecution of the operations implemented on the CCU.
These implementations are configured onto the CCU
; ! by the setinstructions.
Register | of Core — = — set prefetch <address>: this instruction prefetches
ke Processor| | Reconfigurable Processor the needed microcode responsible for CCU reconfig-
urations into a local on-chip storage facility (the-

I A

A

XREGs
File

L ccu EWH

Y

pu-code

\ 4 Y

Fig. 3. The Molen machine organization. code unit) in order to possibly diminish microcode
loading times.

The reconfigurable processor is further subdivided into — execute prefetch<address>: the same reasoning
the pu-code unit (discussed in Section V) and thestom as for theset prefetchinstruction holds, but now re-
configured unit(CCU). The CCU consists of reconfigurable lating to microcode responsible for CCU executions.
hardware, e.g., a field-programmable gate array (FPGA), and  _ preak: this instruction is utilized to facilitate the
memory. All code runs on the GPP except pieces of (appli- parallel execution of both the reconfigurable pro-
cation) code implemented on the CCU in order to speed up cessor and the core processor. More precisely, it is
program execution. Exchange of data between the GPP and utilized as a synchronization mechanism to complete
the RP are performed via the exchange registers (XREGS) the parallel execution.

(described in Section 1V) depicted in Figure 3. The envisioned
support of operatiodsby the reconfigurable processor can be
initially divided into two distinct phases: set and execute. In
the set phase, the CCU is configured to perform the supported
operations. Subsequently, in the execute phase the actual
execution of the operations is performed. This decoupling
allows the set phase to be scheduled well ahead of the execute .
phase and thereby hiding the reconfiguration latency. As no move the content o_f exchange register XRE®
actual execution is performed in the set phase, it can be general-purpose register,R

even scheduled upwards across the code boundary in the codg® <address> field in instructions introduced above de-
preceding the RP targeted code. notes the location of the reconfigurable microcode responsible

dor the configuration and execution processes (see Section V).
}l1temust be noted that a single address space is provided
with at least2(»—°P) addressable functions for reconfigura-

1An operation can be as simple as a single instruction or as complex aign, wheren represents: the inStrUCtio_n Ien_gt.h a_pl t_he
piece of code. opcode length. 12("—P) is found to be insufficient, indirect

« Two mowe instructions for passing values between the
register file and exchange registers (XREGS):

— movtx XREG, < R,: (move to XREG) used to
move the content of general-purpose registgrt@®
XREG,.

— movfx R, «— XREG;,: (move from XREG) used to

In order to target thepu-code processor, we propos
a sequential consistency programming paradigm [15]. T
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pointing or GPP-like status word mechanisms can extend execution stops (see Figure 4 (b)). Thet instructions
the addressing of the reconfigurable function space at will. are executed in parallel according to the same rules.
Code fragments constituting of contiguous statements (as they

are represented in high-level programming languages) can be EXECUTE op1 > » EXECUTE o0l
. . . . op: in par: instruction .
isolated as generally implementable functions (that is code SXECUTEQR EXECUTE op2 in peralle

. . . ra . nstruction —— op.
with multiple identifiable input/output values). The parameters EXECUTE opd GPP Insiructions

. . nstructions izati
are passed via the exchange registers (XREGS). In order to o . prese - Synetronizaion
. . . . @ngﬁrlltgn'zg“ Oawﬂsn;ef’”?fc;%/:d b) synchronization when GPP and FPGA

maintain correct program semantics, the code is annotated =705t reler work in paralle

(the complete T1SA)

and a hardware description file provides the compiler with  (heprfered misa)
implementation specific information such as the address,g& "
where the reconfigurable microcode are to be stored, the
number of exchange registers, etc. It should be noted that it is
not imperative to include all instructions when implementing
the Molen organization. The programmer/implementor can opt V- COMPILER AND PROGRAM SEQUENCE CONTROL
for different ISA extensions depending on the performance thatWe begin by discussing the exchange registers (XREGS)
needs to be achieved and the available technology. There amel the parameter and result passing mechanism between the
basically three distinctiverlSA possibilities with respect to general-purpose processor and the reconfigurable processor.
the Molen instructions introduced earlier - tiginimal the The Exchange Registers: The XREGs are used for passing
preferred and thecompletenISA extension. In more detail, operation parameters to the reconfigurable hardware and re-
they are the following: turning the computed values after operation execution. Param-
eters are moved from the register file to the XREG®Vtx)

o The minimal 7ISA: This is essentially the smallestand the results stored back from the XREGs in the register
set of Molen instructions needed to provide a workinfile (movfx) and the reconfigurable microcode is responsible
scenario. The four basic instructions needed se¢ for managing the parameters from the XREGs and returning
(more specifically:c-sef), execute movtx and movfx. the result(s). The following conventions are introduced for
By implementing the first two instructionsgtexecut§ single and parallel execution. All parameters of an operation
any suitable CCU implementation can be loaded armte allocated by the compiler in consecutive XREGs forming
executed in the reconfigurable processor. Furthermoeeblock of XREGs. The microcode of eaeRecuteinstruction
reconfiguration latencies can be hidden by schedulifgs a fixed XREG, which has been assigned during the
the set instruction considerably earlier than tle&ecute microcode development. The compiler places in this XREG
instruction. Themovtx andmovfx instructions are neededa link to the block of XREGs where all parameters are stored.
to provide the input/output interface between the RPhis link is the number of the first XREG in the block. Based
targeted code and the remainder application code.  on these conventions, the parameters for all operations can

« The preferred 7ISA: In order to address reconfiguratiorbe efficiently allocated by the compiler and the microcode of
latencies bottp-setand c-setinstructions are utilized. In eachexecuteinstruction is able to locate its associated block
this case, as the reconfiguration latencies are substantiafyparameters. An example is presented in Figure 5, where
(or completely) hidden, the loading time of microcodewo operations, namelgplandop2, are executed in parallel.
will play an increasingly important role. In these casegheir fixed XREGs (XREGO and XREG1) are communicated
the two prefetch instructions get prefetchand execute to the compiler in a hardware description file. As indicated
prefetch) provide a way to diminish the microcode loadby the number stored in XREGO, the compiler allocates for
ing times by scheduling them well ahead of the momenperationopltwo consecutive XREGs for passing parameters
that the microcode is needed. Parallel execution, for badind returning results, namely XREG2 and XREG3. The oper-
minimal and preferreeISA, is initiated by asetexecute ation op2requires only one XREG for parameters and results
instruction and ended by an general-purpose instructipassing, which in the example is XREG4, as indicated by the
as described in Figure 4(a). content of XREG1.

o The complete wISA: This scenario involves alirISA

instructions including thebreak instruction. In some wl ]

applications, it might be beneficial performance-wise XR2 | Param/Results opt
execute instructions on the core processor and the rec T
figurable processor in parallel. In order to facilitate thi

parallel execution, the preferred ISA is further extended

with the break instruction. Thebreak instruction pro- “in
vides a mechanism to synchronize the parallel execution

of instructions by halting the execution of instruction§ig. 5. Exchange Registers allocation by the compiler.

following the break instruction. The sequence of instruc-

tions performed in parallel is initiated by aexecute The Compiler: Currently, the compiler [16] relies on the
instruction. The end of the parallel execution is marke8tanford SUIF2 [17] (Stanford University Intermediate For-
by the break instruction. It indicates where the paralleimat) Compiler Infrastructure for the front-end and for the

Parallel execution and models of synchronization.
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back-end on the Harvard Machine SUIF [18] framework. Thearameter exchange, parallelism and modularity: As
following essential features for a compiler targeting a custogihown earlier, the exchange registers solve the limitation on
computing machines (CCM) have currently been implementetie number of parameters present in other reconfigurable com-

. Code identification: for the identification of the codePuting approaches. If the parameters do not exceed the number
mapped on the reconfigurable hardware, we addedOBXREGs, parameters are passed by value, otherwise - by
special pass in the SUIF front-end. This identification jeference. The Molen architecture also addresses an additional
based on code annotation with special pragma directiv@iortcoming of other reconfigurable computing approaches
(similar to [6]). In this pass, all the calls of the recognizegoncerning parallel execution. In case two or more functions
functions are marked for further modification. considered for CCU implementation do not have any true

« Instruction set extension: the instruction set has been élependencies, they can be executed in parallel. An example of
tended withsetexecuteinstructions at both the mediumhow this can be performed is depicted in Figure 7. It should
intermediate representation level and low intermediake noted that kernels can, as far as such kernels can, be appro-
representation (LIR) level. priately transformed to the Molen programming paradigm by:

« Register file extension: the register file set has been &X-rewriting the kernel as a separate function, and b) defining
tended with the exchange registers. The register allocati®rclear set of parameters as interface and passing them as
algorithm allocates the XREGs in a distinct pass applietlues (or references) between the modified “old” and the
before the register allocation; it is introduced in MachinBeW function code. All of the communication between the two

SUIF, at LIR level. The conventions introduced for thdunctions should be done as much as possible via input/output
XREGs are implemented in this pass. parameters since both parts will execute in different contexts.
« Code generation: code generation for the reconfiguradie Molen paradigm facilitates modular system design. For
hardware (as previously presented) is performed whétgtance, hgrdware implementations described in an HDL
translating SUIF to Machine SUIF intermediate reprdVHDL, Verilog or System-C) are mappable to any FPGA

sentation, and affects the function calls marked in tH€chnology in a straightforward manner. The only requirement
front-end. is to satisfy the Molen set and execute interface. In addition, a

M t of functionally similar CCU designs (from different
An example of the code generated by the extended compi |pe_ se )
for the Molen programming paradigm is presented in Figure %‘TOV'ders)' e.g., sum of absolute differences (SAD) or IDCT,

On the left, the C code is depicted. The function implementé:aln be collected in a database allowing easy design space

in reconfigurable hardware is annotated with a pragma direeegploratlons.

tive namedcall_fpga It has incorporated the operation name, #pragma call_fpga opl he
oplas specified in the hardware description file. In the middle, "™~ ™

the code generated by the original compiler for the C code
is depicted. The pragma annotation is ignored and a normal

mov a->rl
movtx rl —>XR2
mov b-—>r2
} movtx 12 —>XR3
mov c¢->r3

#pragma call_fpga op2 movtx r3 —> XR4

function call is included. On the right, the code generated by  intetnx set address_set_opl

the compiler extended for the Molen programming paradigm ... o 2

is depicted; the function call is replaced with the appropri- ! oV 14 ZXRO

ate instructions for sending parameters to the reconfigurable et e adaness ex_opl —
hardware in XREGs, hardware reconfiguration, preparing the A execute address ex_op2

fixed XREG for the microcode of thexecute instruction,

} no data dependency

mov r6 —>m

n=g(c);
. movfx XR4 —>r7
mov 17 =>n

execution of the operation and the transfer of the result back 1
to the general-purpose register file. The presented code isFiat7
medium intermediate representation level in which the registe?' ’

allocation pass has not been applied yet.

Parallel execution in Molen.

Interrupts and miscellaneous considerations:Our ap-
proach is based on the GPP co-processor paradigm (see for
example [19], [20]). Consequently, all known co-processor
interrupt techniques [21] are applicable. In order to support
the core processor interrupts properly, the following parts are
essential for any Molen implementation:

1) Hardware to detect interrupts and terminate the exe-
cution before the state of the machine is changed are
assumed to be implemented in both core processor (as
usual) and reconfigurable processor.

2) Interrupt policies, e.g., priorities, are usually handled by

the core processor. Consequently, hardware to commu-

nicate interrupts to the core processor is implemented in
the reconfigurable processor.

Initialization (via the core processor) of the appropriate

routines for interrupt handling.

lde  $vr6532(XR) <0
mo 32(XR)

Original medium intermediate
representation code

Medium intermediate representation
code extended with instructions for
FPGA

Fig. 6. Medium intermediate representation code.

The compiler extracts from a hardware description file the
information about the target architecture such as the microcode
address of theetand executeinstructions for each operation
implemented in the reconfigurable hardware, the number 0f3)
XREGs, the fixed XREG associated with each operation, etc.
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The compiler assumption is that the program-
mer/implementor of a reconfigurable hardware follows a
co-processor paradigm and that (as in the GPP paradigm)
the reconfigurable co-processor facility can be viewed as
an extension of the core processor architecture, the way
co-processors, such as floating point, vector facilities, etc.,
have been viewed in conventional architectures.

Fig. 10.

V. A MICROARCHITECTURE AND ITSIMPLEMENTATION

In this section, we discuss issues encountered in implement-
ing a microarchitecture supporting the minimal MoletSA
on the Virtex Il Pro with the embedded PowerPC 405 serving
as the core processor. Experienced microcode designers will
recognize that for performance reasons, there is the necessity
of having microcode that resides permanently in the control
store and microcode that is pageable. We borrow a ‘bit’ from
the instruction to implement resident/pageable microcode. In

the instruction format (see Figure 8), the location of th&g. 11.

microcode is indicated by the resident/pageable-bit (R/P-bit)
which implicitly determines the interpretation of the address

RESIDENCE TABLE

<

pCS-a | LRU | V |S/E]|

o
4’

pCSa I

The sequencer’s residence table.

from pu-code
pCS-at p-CONTROL STORE loading unit
FIXED
Y }
=instrucionword | "7}
o+
a+2
PAGEABLE

U—instruction word

Internal organization of one section of fheontrol store.

field, i.e., as a memory addreas(R/P=1) or as g-control unit is hardwired. The internal organization of the-code
store addressCS- (R/P=0) indicating a location within the Unit is depicted in Figure 9. Thepu-code unit comprises
pu-code unit. This location contains the first instruction offirée main parts: the sequencer, geontrol store, and the
the microcode which must always be terminated, e.g., by ax-code loading unit. The sequencer mainly determines the

end.op microinstruction. microcode execution sequence. Theontrol store is used as a
storage facility for microcode. Theu-code loading unit, as its
p-set/c-set/execute name suggests, is responsible for the loading of reconfigurable
[orc ] oo mlcrOCOQe from the memory. The execution of mlcrocodg
starts with the sequencer receiving an address from the arbiter
opcode address (see Figure 3) and interpreting it according to the R/P-bit.
resident/pageable When receiving a memory address, it must be determined
on whether the microcode is already cached ingheontrol store

Fig. 8. Thep-set c-set andexecuteinstruction format.

or not. This is done by checking the residence table (see
Figure 10) which stores the most frequently used translations

of memory addresses injgcontrol store addresses and keeps

MEMORY track of the validity of these translations. It can also store other

RPoopcso L : information: least recently used (LRU) and possibly additional
i information required for virtual addressthgupport. In the

pu-code | case that a memory address is received and the associated

N Residence | 11 a9 microcode is not present in thecontrol store, thepy-code

Table unit initiates the loading of microcode from the memory
microcode into the p-control store. In the case ACS« is received
e fomccy or a valid translation into gCS- is found, the pCS«

i Lmicoinstruction |~ Sequencer is transferred to the ‘determine next microinstruction’-block.

pCS-0. SET
fixed

pageable

EXECUTE ‘

fixed

! toCCU

pageable

be executed:

« When receiving the address of the first microinstruction:
Depending on the R/P-bit, the correg€ S« is selected,
i.e., from the instruction field or from the residence table.

« When already executing microcode: Depending on previ-
ous microinstruction(s) and/or results from the CCU, the

A
E This block determines which (next) microinstruction needs to

—
p-Control Store next microinstruction address is determined.

Fig. 9. pu-code unit internal organization.

The pu-code unit: The reconfigurable microcode(-code)

The resultingpCS~ is stored in thep-control store address
register pCSAR) before entering the control store. Using the
pCS+, a microinstruction is fetched from thecontrol store

unit (_:an be_ |mpleme_nted- '_n configurable or fixed hardware.zg, simplicity of discussion, we assume that the system only allows real
In this section, for simplicity, we assume that thg-code addressing.
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and then stored in the microinstruction register (MIR) beforgepicted. The arbiter operation is based on the decoding of the
it controls the CCU reconfiguration or before it is executeithicoming instructions and either directs instructions to the core
by the CCU. Thep-control store comprises two sectidns processor or generates an instruction sequence to control the
namely aset section and arexecutesection. Both sections state of the core processor. The latter instruction sequence is
are further divided into dixed part andpageablepart. The referred to as “arbiter emulation instructions”. Upon decoding
fixed part stores the resident reconfiguration and executioheither asetor anexecuteinstruction, the following actions
microcode of the set and execute phases, respectively. Resideatinitiated:

microc_ode iS. commonly U.Sed by sev_eral invqcations (including 1) Arbiter emulation instructions are multiplexed to the
reconfigurations) and it is stored in the fixed part so that = ..o processor instruction bus and essentially drive the
the performance of the set and execute phases is possibly processor into a wait state

enhanced. Which microcode resides in the fixed part C?f the2) Control signals from the decode block are transmitted
p-control store is determined by performance analysis of " W o ol block in Figure 12, which performs the
various applications and by taking into consideration various following: a) Redirect the microcode location address
software and hardware parameters. Other microcode is stored " pu.-COde unit. b) Generate an internal code rep-
In_memory and the pageable part of thecontrol store resenting either aet or execute instruction (Ex/Set)
acts like a cache to provide tgmporal storage. Consequently, .4 delivering it to thepu-code unit. c) Initiate the
cache mechamsms are.reqwred to ensure pr@pmqtrol reconfigurable operation by generatingtart reconf.
store operation. The residence table invalidates entries when operation’ signal to thepy-code unit. d) Reserve the
microcode has been replaced (utilizing the valid (V) bit) or data memory control for theu-code unit by generating

substltgFeslltheh Ieast_drecently btljsed (LbRU) entries with new amemory occupgignal to the (data) memory controller.
ones. Finally, the residence table can be separate or common e) Enter a wait state until the sign&nd of reconf,

(requiring an additional S/E-bit to allow separat'lon) for both operation’ arrives.
the set and execute pageableontrol store sections. In the
remainder of this section, we present some implementationAn active ‘end of reconf. operation'signal initiates the
issues of the minimal MolemISA utilizing a PowerPC 405 following actions: 1) Data memory control is released back
as the core processor, as used in our experimental validatitththe core processor. 2) An instruction sequence is generated
The minimal=ISA consists of the following instructionset  t0 ensure proper exiting of the core processor from the wait
execute movtx, and movfx. The arbiter (described in detailState. 3) After exiting the wait state, the program execution
in [22]) performs a partial decoding of instructions in ordegontinues with the instruction immediately following the last
to determine where instructions should be issued. ot executed reconfigurable processor instruction.
and executeinstructions will be issued to the reconfigurable Software considerations:For performance reasons, Pow-
processor and in this specific implementation thevtx and erPC special operating modes instructions were not used —
movfx instructions are issued to the core processor. The lat@iting special operating modes is usually performed by an
is due to the fact that botimove instructions are mapped interrupt. We employed thébranch to link register’ (blr)
to existing PowerPC instructions, nametydcr and mfdcr, to emulate a wait state antbranch to link register and
respectively. link’ (blrl) to move the processor out of this state. The
General requirements of the arbiter: The arbiter controls difference between these instructions is thiak modifies the
the proper co-processing of the core processor and the redbtk register (LR), whileblr does not. The next instruction
figurable processor (see Figure 3) by directing instructions adldress is the effective address of the branch target, stored
either of these processors. It arbitrates the data memory acdesthe link register. Wherblrl is executed, the new value
of the reconfigurable and core processors and it distribuleaded into the link register is the address of the instruction
control signals and the starting microcode address tthe following the branch instruction. Thus, the arbiter emulation

code unit. instructions, stored into the corresponding block in Figure 12,
are reduced to only one instruction for wait and one for
Instructions from . .
777777777777777 Memay o [ ‘wake-up’ emulation. The PowerPC architecture allows out-
Arbiter

of-order execution of memory and /O transfers, which has to

| |

| |

i pu—— - by i be taken into account in the implementation. To guarantee that
| etructions Decode [camss)  Control i data dependency conflicts do not occur during reconfigurable
|

| |
| |
| |
| |

operation, the PowerP&ynchronization’instruction €ync
can be utilized before aet or executeinstruction. In other
o out-of-order execution architectures, data dependency conflicts
e R B should be resolved by specific dedicated features of the target
architectures. In in-order architecture implementations, this
Fig. 12. General arbiter organization. problem does not exist.
) ] ) .. Instruction encoding: In the previous, we discussed that
In Figure 12, a general view of an arbiter organization ige movix andmovfx instructions are mapped to the existing
3Both sections can be identical, but they are probably only differing ik OWerPC instructionsntdcr and mfder. This implemented
microinstruction word sizes. solution is imposed by the fact that the Virtex 1l Pro PowerPC

,,,,,,,,,,,,,,,,,, - J B
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core has a dedicated interface to the so-called Device Control | CCU Algorithm |

Registers (DCR) [23] and two instructions that support DCR | HDLiﬁﬁipﬁon |

transfers (namelyntdcr and mfdcr). It should be noted that TF HW independent
this is a PowerPC specific implementation and not applicable : - :

in the general case. This leaves only thet and execute ‘ Logle Synthesis U

instructions to be encoded. We follow the PowerPC I-form
and choose unused opcodes for both instructions. The manner
to distinguish aset instruction, anexecuteinstruction (using
the same opcode) and resident/pageable (R/P) addresses is via
instruction modifiers.

Arbiter hardware requirements: To implement the arbiter,
we have considered the following: 1) Information, related
to instruction decoding, arbitration and timing is obtained
only through the instruction bus (from memory). 2) PowerPC
instruction bus is 64-bit wide and instructions are fetched frg. 13. Molen finalization.
couples. 3) Speculative prefetches should not disturb the cor-
rect timing of a reconfigurable processor instruction execution.
The arbiter for PowerPC has been described in synthesizatsgnsparent to the proposed approach and does not require
VHDL and mapped on the Virtex Il Pro FPGA of Xilinx. ~ special consideration.

Microcode configuration, termination and finalization: pu-code loading unit implementation: The pu-code load-
The FPGA reconfiguration files generated after synthesis cdpg unit (see Figure 9) is responsible for loading micropro-
tain unpredictable bit patterns and will highly depend on t@rams from the external memory. Ttetartop signal (not
targeted FPGA technology. It is essential to note that the saffpicted in Figure 9) is generated by the arbiter and initiates
high-level HDL description results in completely different cona reconfigurable operation. Thg-code loading unit sequen-
figuration bitstreams when different technologies are targetdiglly generates the addresses of the microprogram in the main
In case of execution microcode, tked_op microinstruction memory and the desired microprogram is loaded intothe
at the end of the microcode segment is sufficient for tH@ntrol store. Once the microprogram is available in the
proper termination of the reconfigurable operation providentrol store, i.e., the end address of the microprogram in the
that the microcode is properly aligned into the memorgxternal memory is reached, the sequencer starts the execution
This technique, however, would not work for reconfiguraef the microcode generating microcode addresses towards the
tion microcode, because the reconfiguration bitstreams a@SAR. We have to note that other parts of the-code unit
an arbitrary bit sequence. Therefore, it is possible, that tB& not discussed as they are essentially memory-like elements
reconfiguration microcode loading is terminated earlier by With appropriate controls.
false end_op microinstruction. One approach to resolve early
termination is the following. An additional microcode word
may be aligned at the starting address of the microprogram
segment. This word may contain either the length of the micro-In order to evaluate our proposal, we experimented with
program or its end address. Since both methods do not diffee Alpha Data XPL Pro lite development board (ADM-
in either implementation or microcode size, we have arbitrarigPL) and the Xilinx Project Navigator ISE 5.1 (Service Pack
selected the latter one in our current implementation. TH&) design environment. As reconfigurable hardware platform,
process of preparing the microcode for its final alignment intwe used the latest Xilinx xc2vp20 devices (speed grade 5)
the targeted main memory is called microcode finalizatiofrom the Virtex Il Pro family. For our experimentation, we
In microcode termination, additional termination informatiomarget and profile the MPEG-2 application. As implemented
should be explicitly added to the microprogrammable configa the platform hardware, partial reconfiguration is severely
uration code. The automated process of microcode finalizatiimited because it is allowed only on fixed frame boundaries
for Molen indicating the place of the finalization tool in thethe xc2vp20 incorporates 8,214,624 bit configuration memory
Molen CCU design process is depicted in Figure 13. The CGlivided into 1,756 frames) with no possibilities for frame
design, described in HDL, can be targeted to different FPG&aduction. This limits the flexibility on CCU reconfiguration
technologies. This allows descriptions that can be synthesizgges. For our experiments, we reconfigure the device at system
to any particular technology utilized by Molen. initialization stage. There is an additional platform restriction,

The configuration file (indicated anif contains informa- namely the available on-chip block RAM (BRAM) memory
tion about the Molen organization needed for the reconfigaf xc2vp20 is limited to 128kBytes for both instructions and
ration microcode finalization. The product of the finalizatiodata. Due to the space limitation we were unable to run
tool is a binary file ready to be used inside the Moleany file, /0O, and operating system calls. As a consequence,
paradigm, and can be a linkable object, or a high-level datee used the profiling information to design the kernels as
structure, incorporating the binary information, that can B@CU implementations and estimated the performance gains
included directly in a C project before compilation. It shouldather than directly run the entire MPEG-2 application on
be noted that the reconfiguration microcode endiannessthe Molen processor. Furthermore, the following has been

Molen Finalization Tool [€— conf

Molen domain

VI. EVALUATION
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assumed. The parts of the applications which can be iheads microcodes from the external memory into the pageable
plemented on the reconfigurable hardware are isolated section of thep-control store. The XREGs have been imple-
functions. The core processor and the reconfigurable processented in a single BRAM organized &3%2 x 32-bit storage.
do not run concurrently. The operations performed on thi¢ardware costs reported by the synthesis tools are presented
reconfigurable processor are sequential (for now, we do notTable Il. The first column presents the FPGA resources
consider potential parallelism due to the lack of compilasonsidered. Column two reports the actual values of these
support). The applications are compiled without optimizationeesources, consumed by the reconfigurable processor, without
The PowerPC processors in Virtexll Pro do not implemerbnsidering any CCU implementation, i.e., the-code unit
floating-point instructions. Therefore, the floating-point datand the associated infrastructure. This includes ghecode
type of the DCT coefficients utilized in the MPEG-2 encoddpading unit, the sequencer and thecontrol store. Column
benchmark has been converted to integer data types. Theee presents resource utilization of the arbiter. In column
proper integer arithmetic has been implemented for fairneskur, the resources consumed by the entire Molen organization
Software Profiling Results: The first step involves identi- are displayed, including the reconfigurable processor infras-
fying the functions that are most suitable for hardware impléructure, the arbiter and the XREGs. Finally, columns five and
mentation. For this purpose, we performed the measuremesits respectively present the available FPGA resources in the
on a PowerPC 970 running at 1600 MHz. The considerad2vp20 chip and the utilized part of these resources by the
applications are a set of multimedia benchmarks consistingMblen organization (in %). The results strongly suggest that
the Berkeley implementation of the MPEG-2 encoder and the

MPEG-2 decoder included in libmpeg2. The objective is to TABLE Il

identify the most time-consuming operations among the fol- MOLEN ORGANIZATION SYNTHESIS RESULTS

lowing operat!ons, r_1ame|y ISAD (sum _of absolute-difference,); Device xc2vp20] RP* | Arbiter | Total incl | Available %

2D-DCT (2-dimensional discrete cosine transform) and 2D- speed Grade -5 XREGs | Resources

IDCT (2-dimensional inverse DCT). As input data, we used & # Slices 71 84 156 10304 1

i ; i Lot Flip Flops 78 69 147 20608 1

re_presen'FatNe series of video sequences consisting of frame§4 inp LUTs b 190 322 50608 1

with varying resolutions, presented in Table I, column two. | # praMs: 4 NA. 5 112 3
For our measurements, we used the GNU profgprof fmaz [MHZ] 130 143 130 NA. | NA.

to determine the amount of time spent in each function and” Reconfigurable processor without any CCU implemented

its descendants. The results for the considered benchmarks,

input data and operations are presented in Table I. For ke Molen infrastructure consumes trivial hardware resources
MPEG?2 encoder application, we notice that the SAD functideaving almost the entire area for CCUs.

consumes more thab0% of the application time (Table I, Synthesis results for the CCUs:We implemented the func-
column two) and consequently it is the best candidate ftonalities of the kernels, suggested by the profiling results,
hardware implementation. The integer DCT function accouritso reconfigurable hardware. Synthesis results for the xc2vp20
for around 11% of the application time (Table I, columnchip are reported in Table IlI.

three). For the IDCT function, we notice that although in the

MPEG2 encoder it takes only arouri@ of the application TABLE Il
time (Table I, column four), in the MPEG2 decoder it requires SYNTHESIS RESULTS PERCCU IMPLEMENTATION
0 AT o

around42/o of the application time. The tgtal gxecutlon time- SAD T SAD SAD T DCT T 1OCT T Availabie
spent in the SAD, DCT and IDCT operations in the MPEG2xc2vp20-5 16 128 256+ Resources
encoder (presented in Table I, column five) emphasizes thétSlices 831 | 6807 | 13613* | 4314 | 5436 10304

; ; i~atinn time# Flip Flops | 1448 | 11862 | 23724* | 7964 | 9876 20608
these functions require around 2/3 _of the total appllcat!on time,, , inp LUT | 1390 | 11370 | 22757* | 6832 | 8624 20608
Consequently, all considered functions are good candidates|f@rgrams: | NA. | NA. | NA. * 2 2 112
hardware implementations although their contribution to thefmaz[MHz] | 310 310 310¢ 96 96 N.A.
performance improvement may differ per application. * Results for xc2vp50 FPGA

Molen organization synthesis results:;The Molen organiza-

tion has been described in VHDL and simulated with Model- For the SAD function, we implemented the organization
tech’s ModelSim SE 5.7c. The synthesis has been performmwposed in [24]. The super-pipelined 16-byte version of this
with Project Navigator ISE 5.2 SP3 from Xilinx and the VirteXSAD organization (SAD16) is capable of processing one 16-
Il Pro has been considered as a target reconfigurable techipikel line (1 pixel is 1 byte) of a macroblock in 17 cycles
ogy. For the prototype implementation, we have consideratl over 300 MHz. The 128-byte version (SAD128) processes
a microcode word length of 64 bits. A 32 MByte memoreight macroblock lines in 23 cycles, and the 256-byte version
segment has been considered for storing microprograms igBAD256), processes an entité x 16-pixel macroblock in

a 64-bit organized main memory. Thecontrol store has been25 cycles at 300 MHz. The latter design (SAD256) requires
designed to handle up to 8 KBytes of 64-bit microcode wordsiore resources than available in the xc2vp20 chip used
As primary microcode storage units for thecontrol store, we for this experimentation, therefore, we consider it for future
have used the BRAM blocks of the FPGA fabric, configuremnplementation when the larger xc2vp50 becomes available.
as a dual port memory. Each port is unidirectional - a readle support the DCT and IDCT kernels, we synthesized the 2-
only port is used to feed the MIR, while a write-only onéd DCT and 2D-IDCT v.2.0 cores available as IPs in the Xilinx
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TABLE |
MPEG2PROFILING RESULTS FOR EACH OF THE CONSIDERED FUNCTIONS AND ITS DESCENDANTS
MPEG2 encoder MPEG2 decoder

sequence| #frames@Resolution SAD (16 x 16) | DCT (8 x 8) | IDCT (8 x 8) Total IDCT (8 x 8)
carphone 96@176x144 51.1 % 12.5 % 1.3 % 64.9 % 50.4 %
claire 168@360x288 53.8 % 11.8 % 1.0 % 66.6 % 37.6 %
container 300@352x288 56.2 % 10.7 % 1.0 % 67.9 % 40.4 %
tennis 112@352/240 60.0 % 9.5 % 0.8 % 70.3 % 40.5 %

Core Generator Tool. The parameters for their synthesis &hne original PowerPC ISA. The last chart group presents the
presented in Table IV. cycle numbers, consumed by Molen while processing the
same data. It should be noted that the performance of the

TABLE IV PowerPC software implementations of the three kernels are

SYNTHESIS PARAMETERS FOR THE2-D DCT AND 2-D IDCT IPs highly dependent on the data contents. On the contrary, for

Parameter 5D DCT | 2D IDCT §1II four datg sequences, the cycle number for the Molen

Data width [bits] 16 (signed)| 16 (signed) implementation depends only on the amount of data and not
Coeff. width [bits] 24 24

Rosuit width Tbit 16 (rounded)| 16 (roundid on the data contents due to the data independent CCU designs.

Cyislss,i‘:]v;,ut s[a:nsgle (rou eG) (rou e8) Therefore, only a single group of results for all data sequences

Internal latency [cyc] 94 97 in the Molen execution is presented in Figure 14. In this figure,
only fixed microcode implementations are depicted.

Since the recommended maximum PowerPC frequency for

the xc2vp20-5 FPGA is 250 MHz, the ADM-XPL prototyping e MPEG2 -~
board vendors recommend to obtain this frequency from a i 60 280 e wncT
user clock of 83MHz multiplied by 3 using the on-chip o000 | mocT
FPGA Digital clock managers (DCMs). Considering these 26015
recommendations and synthesis results from Table Il for our = 2 s T

10000 7448

experiments, we have to run the DCT and IDCT functions at a
frequency three times lower than the PowerPC clock. The SAD
designs were clocked at the same frequency as the PowerPC. | 1] 28 753 605
MPEG-2 performance experiments: We have embedded
the considered CCU implementations within the Molen or-
ganization and executed the corresponding software kernels | " e e onaner o fues ot
for performance measurements. For our experiments, we first

compiled the software kernels for the original PowerPC ISHig- 14. Cycle numbers for kernels execution in original PowerPC ISA and

and ran them on one of the PowerPC405 processors, embedggg microcode inrlSA.

in the xc2vp20 device. The kernels have been extracted fromp, addition, we have implemented both fixed and pageable
the original application source code (the ANSI C code used fficrocode implementations for SAD16 and SAD128. Table V

the profiling) without any further code modifications. For oUfanorts measured cycle numbers for executing the SAD kernel
experiments, we considered the same data sequences as usgehin 5 single macroblock in different Molen configurations.

the prof|I|_ng phase. The PowerPC fumers are initialized befopg; it has been noted, the SAD256 implementation hardware
a kernel is executed and are read immediately after the kerpgl | irements exceed the capabilities of the xc2vp20 device we
execution has completed. Thus, the exact number of PowerR&q. Therefore, the corresponding SAD256 cycle numbers in

cycles, required for the entire kernel execution can be obtaingdyie v have been extrapolated from the results of SAD16
After we derived the cycle counts for the PowerPC ISA sofynq sap12s.

ware runs, we initiated the next stage of the experimentation.
At this stage, similar to the code transformation discussed in TABLE V
Section II, the kernel software code is substituted with a newCYCLES PER MACROBLOCK FOR DIFFERENTSAD IMPLEMENTATIONS

piece of cpde to support theISA. The corre;pondlng kernel SADI6 | SADI28 | SAD756
CCU configuration is present in the reconfigurable processor fixed microcode 898 311 264
considering the discussion in the beginning of this section. peageable microcodg¢ 914 331 284

Identically to the preceding experimentation stage, we obtain

the exact number of PowerPC cycles required to completeAfter the cycle numbers for the execution of each kernel
the entire kernel operation on Molen. The measuremeritave been obtained, both for PowerPC and Molen, the speedup
include cycle numbers for transferring parameters to/from tioé each kernel can be estimated. Table VI presents the calcu-
exchange registers (implemented as DCRs), cycles for memtated speedups for each of the considered data sequences with
transfers, and data processing cycles. Figure 14 depicts thspect to each CCU implementation.

measured cycles obtained in the latter two experimentati®nojected application speedup:Results in Table VI suggest
phases. The first four chart groups present cycle counts fbat the considered kernels can be speeded up to 300 times
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TABLE VI TABLE VII
MPEG-2 S EEDUPESTIMATIONS FORDIFFERENTKERNELS OVERALL SPEEDUPESTIMATIONS FOR THEENTIRE MPEG2
SAD16 SAD128 SAD256 DCT | IDCT MPEG2 encoder* MPEG2 decoder
fixed | pag. | fixed | pag. | fixed | pag. | fixed | fixed theory [ impl. | impl./th. | theory | impl. | impl./th.

carph.| 6.5 6.4 18.9 | 17.7 | 22.2 | 20.6 | 302.3 | 24.4 carphone| 2.85 2.64 93% 2.02 1.94 96%
claire 8.3 8.1 239 | 225 | 282 | 26.2 | 3022 | 244 claire 2.99 2.80 94% 1.60 1.56 98%
cont. 122 | 120 | 35.2 | 33.1| 415 | 386 | 302.1| 24.4 container| 3.12 2.96 95% 1.68 1.63 97%
tennis | 12.1 | 11.9 | 350 | 329 | 41.2 | 38.3 | 302.1 | 323 tennis 3.37 3.18 94% 1.68 1.65 98%

* fixed pu-code SAD128 + DCT + IDCT

and one can incorrectly assume, that the entire application
can be speeded up to the same orders of magnfitudehe VII. CONCLUSIONS
following, we are going to prove theoretically, combined with

. . . . In this paper, we presented a polymorphic processor
experiments, that in fact lower, yet considerable and impres- bap P polymorp P

sive for the GPP domain, overall application speedups Cmﬁgradlgm that ‘allows the programmerlde3|gner to modlfy
L : S and extend the processor functionality and hardware at will
be expected. As indicated earlier, due to space limitations,

n . . A
file, /O, or operating system calls have been implemented \(/)vrlcl{hout architectural and design modifications. The proposal

the prototype FPGA, thus the application speedup can on Ol\{[ise 6(1) nclgrg:e; (:Cgmeliat:ggiznOfa?]);Sittmrge a&zgag;lles asu(;::e
be estimated. To calculate the projected speedup of the en?re P P P q y

o . X X ime extension of the instruction set to incorporate an
application with respect to the CCU implementations and th - ) . )
. .. —almost unlimited number of reconfiguration functions per
wISA, we employed the well known Amdahl’s law, utilizing

the following notations. Let us assuriéto be the execution single programming space. Finally, it introduces a modular

time of the original program (say measured in cycles) ad proach allowing easy porting of applications to different

. . . reconfigurabl latform n llow mpiler ntroll
Tsg; - time to execute kernalin software, which we would econtigu able platiorms and allows compiler controlled
. : , . parallelism.
like to speed up in reconfigurable hardware. Assufjgis

the execution time (inrISA) for the reconfigurable imple- e . .
mentation of kemel. Assuminga; — TSTEi’ ands; — Lsei Acknowledgements:This research is partially supported by

X Toi ROGRESS, the embedded systems research program of the
the speedup of the program with respect to the reconfigurable A T

. . L dtch organization for Scientific Research NWO.
implementation of kernel is:
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