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ABSTRACT 
Shrinking time-to-market and high demand for productivity 
has driven traditional hardware designers to use design 
methodologies that start from high-level languages. However, 
meeting timing constraints of automatically generated IPs is 
often a challenging and time-consuming task that must be 
repeated every time the specification is modified. To address 
this issue, a new generation of IP-design technologies that is 
capable of generating custom datapaths as well as 
programming an existing one is developed. These technologies 
are often based on Horizontal Microcoded Architectures. 
Large code size is a well-know problem in HMAs, and is 
referred to as “code bloating” problem.  

In this paper, we study the code size of one of the new HMA-
based technologies called NISC. We show that NISC code size 
can be several times larger than a typical RISC processor, and 
we propose several low-overhead dictionary-based code 
compression techniques to reduce the code size. Our 
compression algorithm leverages the knowledge of “don’t 
care” values in the control words to better compress the 
content of dictionary memories. Our experiments show that by 
selecting proper memory architectures the code size of NISC 
can be reduced by 70% (i.e. 3.3 times) at cost of only 9% 
performance degradation. We also show that some code 
compression techniques may increase number of utilized block 
RAMs in FPGA-based implementations. To address this issue, 
we propose combining dictionaries and implementing them 
using embedded dual-port memories. 

Categories and Subject Descriptors 
C.3 [Special-Purpose and Application-based Systems]: 
Microprocessor/microcomputer applications. 

General Terms 
Algorithms, Design, Performance, Experimentation. 

Keywords 
Microcoded Architectures, No-Instruction-Set Computer, 
Memory optimization, Dictionary-based compression, FPGA. 
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1. INTRODUCTION 
Shrinking time-to-market and high demand for productivity 
has driven traditional hardware designers to use design 
methodologies that start from high-level languages. However, 
meeting timing constraints of automatically generated IPs is 
often a challenging and time-consuming task for designers. 
Moreover, slight changes in the high-level specification 
require re-running the behavioral synthesis tools, producing a 
new datapath, and redoing the process of meeting timing 
constraints. To avoid repeating timing-closure phase, a new 
generation of custom-IP design technology that is capable of 
both generating custom datapaths as well as re-programming 
existing ones (without further modifications) is developed. In 
these technologies, first a custom datapath is generated for an 
application, and then the datapath is synthesized and laid out 
properly to meet timing and physical constraints. The final step 
is to compile the program on the generated datapath. If the 
application is changed after synthesis, it is simply recompiled 
on the existing datapath. This feature significantly improves 
the productivity of the designer by avoiding repetition of 
timing closure phase. Examples of such technology include 
ARM OptimoDE [1], [2],  NISC [4], [5], [6], and TIPI [7]. 
These techniques are targeted for statically-scheduled 
Horizontal Microcoded Architectures (HMA) [8]. 

A microcode is a set of bits that controls the units of datapath 
for one cycle. In statically scheduled HMAs, the compiler 
compiles the program directly to microcode without 
instruction abstraction. HMAs can potentially have better 
performance, lower power, and lower area than conventional 
RISC processors. This is due to replacing the costly hardware 
schedulers with off-line compiler algorithms. As a result, 
highly parallel architectures can be designed as HMA without 
any concern about the complexity of controller and hardware 
scheduler. Despite all these benefits, HMAs suffer from code 
size problem, known as “code bloating”.  

This paper studies the code size of a new HMA-based design 
methodology, called NISC, and compares it with that of 
traditional RISC processors. We observed that although NISC 
IPs outperform RISC processors by five times on average, 
their code sizes are about four times larger than those of RISC. 
In this paper, we propose low-overhead, yet effective, code 
compression techniques for NISC IPs targeted for FPGAs. Our 
compression approach is based on dictionary-based 
compression algorithms. In our approach each microcode (or 
control word) is partitioned to two or more slices and 
dictionaries of unique slices are constructed. The compressed 
code contains the addresses of slices in the dictionaries. Our 
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experiments show that optimum number of dictionaries varies 
for different application sizes. Our approach has very low 
performance overhead (i.e. 9% on average) and can compress 
NISC binaries by 3.3 times. Such significant savings makes 
the code size of NISC only 16% (on average) worse than that 
of traditional RISC processors. We also show that some of the 
proposed code compression techniques, despite decreasing the 
code size, increase number of utilized block RAMs in FPGA-
based implementations. We address this issue by combining 
dictionaries and implementing them using embedded dual-port 
memories. 

This paper is organized as follows: Section 2 presents an 
overview of related works. Section 3 presents a motivational 
example that compares the performance and code size of NISC 
with RISC. Section 4 presents our code compression 
techniques followed by experimental results in Section 5. 
Section 6 concludes the paper. 

2. RELATED WORKS 
In the past, a large body of code-size-reduction techniques for 
processors has been proposed. The techniques can be 
categorized in three groups: 

(1) Compiler optimizations: techniques such as register 
renaming, inter-procedural optimization, and procedural 
abstraction can be implemented in compiler to reduce the code 
size [12], [13], [14], [15], [16]. These techniques can be 
applied to microcoded architectures as well, and they are out of 
scope of this paper.  

(2) Instruction set: instruction-set abstraction is often used to 
reduce the code size of processors. In RISC processors, 
designers define 32-bit or 16-bit [17] [18] instructions to 
encode wide control words. At runtime, the instructions are 
decoded back to the control words using a hardware decoder. 
The software development tools must also support and utilize 
the instructions. However designing instruction-set is a very 
complex and time-consuming task for a typical IP designer; 
because compiler, assembler, linker and instruction decoder 
must be re-designed to handle the custom instructions. 
Furthermore, the instruction decoder imposes unnecessary 
hardware overhead in custom IPs. Therefore, it is desirable to 
avoid instruction-set abstraction.  

(3) Code compression:  in these techniques, the executable 
program is compressed offline and decompressed on-the-fly 
during execution. Code compressions affect only memory 
structure without changing compiler or processor architecture.   

Most proposed code-compression techniques are based on 
dictionary-based compression algorithms. In [19], a dictionary-
based compression technique, known as CCRP, was proposed 
in which instruction cache is modified to run compressed 
programs. In this approach, unique instructions in the program 
are stored in a dictionary, where the location of the instructions 
is determined by Huffman coding. Most frequent instructions 
in the program are placed in low addresses of the dictionary 
and are coded with less number of bits. Due to Huffman 
coding, the compressed instructions have variable sizes. At 
runtime, the compressed codes are fetched from main memory, 
decompressed and put in the instruction cache. In this 
approach cache misses are problematic because missed 

instructions in the cache do not reside at the same address in 
main memory. CCRP uses a Line Address Table (LAT) to map 
missed instruction cache addresses to main memory addresses 
where the compressed code is located. IBM CodePack [20], 
[21], [22] is another compression technique that has the same 
memory structure as of CCRP. In CodePack, each instruction 
is partitioned to two halves and two dictionary memories are 
used to store the unique patterns of each half. CodePack also 
uses Huffman encoding to gain better compression ratio. Both 
CCRP and CodePack are complex and have high 
decompression delay. Therefore, they rely on using cache to 
hide the decompression latency. However, in most custom IPs, 
cache imposes an unnecessary hardware overhead and is often 
avoided. As a result, these compression techniques are not 
easily applicable. In [23], the authors extend the two-
dictionary architecture (i.e. CodePack) by rearranging the 
instruction bits to balance the size of the two dictionaries. 

Also, in [24] and [25], the authors extend the concept of 
dictionary-based compression to sequence of instructions. In 
these approaches, unique sequences of instructions are 
identified and stored in a dictionary memory. In the executable 
code, these sequences are replaced by the corresponding code-
words. These approaches also result in variable code size and 
need cache for hiding the latency. Furthermore, they need 
additional controller hardware to run the sequence of 
instructions.  

The proposed code-compression techniques increase the 
hardware complexity significantly by requiring complex cache 
structures. Therefore they are not suitable for custom IPs. In 
this paper, we study the efficiency of multi-dictionary 
compression techniques on code size of applications compiled 
on NISC. We use one to four dictionaries in our compression 
approaches, and show that optimum number of dictionaries 
varies for different application sizes. To reduce the delay of 
decompression, we use a fixed size coding style, which can be 
implemented even without cache. Our dictionary compression 
algorithm leverages the knowledge of “don’t care” values in 
the control words to better compress the content of 
dictionaries. We also show that some code compression 
techniques, despite decreasing the code size, increase number 
of utilized block RAMs in FPGA-based implementations.  

3. MOTIVATIONAL EXAMPLE 
To study the code size of HMA-based architectures we choose 
NISC technology, since we had access to its toolset. NISC 
technology is HMA-based and it relies on a sophisticated 
compiler [5] to compile a program described in a high-level 
language to binary that directly drives the control signals of 
components in the datapath. The values of control signals 
generated for each cycle are called a Control Word (CW). The 
CWs are stored in Control Memory (CMem) in programmable 
IPs, while they are synthesized to lookup-table logic in 
hardwired dedicated IPs. In NISC, the area is relatively small 
because of elimination of instruction decoder and hardware 
scheduler. However, the code size is very large compared to 
RISC processors.  
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Figure 1- Block diagram of GN architecture. 

To compare NISC with RISC, we designed datapath shown in 
Figure 1, called GN, and synthesized it on Xilinx FPGA using 
NISC tools [4]. The GN architecture has a register file (RF), a 
comparator (COMP), an ALU, a multiplier (MUL), and a 
divider (DIV), where some of the units are pipelined. 

Since NISC tools generate synthesizable code for Xilinx 
FPGA, we choose Xilinx MicroBlaze for comparing RISC and 
NISC on the same platform. We configured MicroBlaze to 
include a divider core, and synthesized both processors on a 
Xilinx Virtex4 (90nm) FPGA package using ISE 8.1. Table 1 
shows the area and clock frequency of the processors. Both 
processors could run at about 100MHz, while the area of GN is 
smaller than MicroBlaze.   

Table 1- Area and clock frequency of  
MicroBlaze and GN  

Processors Clock freq.(MHz) Area (gates) 
MicroBlaze 105 39574 

GN 100 32632 
We compiled and ran a set of benchmarks including dijkstra, 
sha, adpcm_coder, adpcm_decoder and CRC32 from MiBench 
(the free version of EEMBC embedded benchmarks available 
at [10]), and a fixed-point Mp3 decoder (more than 10,000 
lines of C code available at [11]). For each benchmarks, to get 
the accurate execution cycle count, we generated and 
simulated RTL Verilog code of the design. 

 Table 2 shows the number of cycles and code size of each 
benchmark on the two processors. MiBench provides a small 
and a large input for the benchmarks. The reported cycle 
numbers are for simulating the small input of MiBench 
benchmarks. For simulating the Mp3 decoder, we used the 
scope1.mp3 (44.1KHz, 96kbit/s, stereo) available at [11], and 
ran the simulation to process 1 frame of the Mp3 file. For these 
experiments, we set the compiler optimizations to the 
maximum level to achieve the best performance with both 
NISC and MicroBlaze. The code size of MicroBlaze (third 
column) is the size of instruction section (.text) of the .elf file 
generated by the compiler. The sixth column shows speedup of 
GN compared to MicroBlaze. The seventh column shows the 
ratio of GN code size to that of MicroBlaze. On average GN 
runs 5.54 times faster than MicroBlaze, while its code size is 
four times larger. The large code size increases the size of 
control memory, in programmable IPs, and the area of control 
logic, in dedicated IPs. The goal of our code optimization 
technique is to reduce the code size of NISC processors while 
maintaining the performance benefits. 

 

Table 2- Comparing GN with MicroBlaze 

 MicroBlaze GN GN vs. 
MicroBlaze 

Benchmarks #cycles code size 
(KB) #cycles code size 

(KB) 
speedup

(x) 
code size 

ratio 
adpcm_coder 256748693 1.956 74321930 6.960 3.45 5.10 

adpcm_decoder 322766405 1.364 63082673 5.075 5.12 2.59 
CRC32 209436647 1.264 21901993 2.567 9.56 2.03 
dijkstra 25927532 1.928 9764682 9.614 2.66 4.99 

sha 183030479 3.156 19282976 14.123 9.49 4.47 
Mp3 2668445 44.62 897452 216.659 2.97 4.86 

Average     5.54 4.01 

4. OUR CODE COMPRESSION 
APPROACH 
The dictionary based compression techniques rely on the fact 
that same binary patterns (BP) appear many times in the 
program. Figure 2 shows how these techniques typically work. 
If a program has N instructions and each instruction is n bits, 
then N×n bits must be stored in the memory. If the number of 
distinct BPs is M and m=log2M is much smaller than n, then a 
dictionary based technique can compress the code down to 
N×m+M×n bits in the memory instead of N×n. However, this 
compression costs one extra memory access during CW fetch. 

 
Figure 2-Dictionary-based code compression 

To reduce the code size, we construct a dictionary of unique 
Control Words (CWs) and, in the executable binary, replace 
control words by the corresponding dictionary line addresses. 
Figure 3 shows a one-dictionary code compression approach. 
The memory structure consists of a code lookup table 
(CodeLUT) and a dictionary. The Program Counter (PC) 
contains the address of CodeLUT and is used to fetch the next 
code word. The code word is then used to fetch the 
corresponding control word from dictionary.  

lookup lookup

CodeLUT

Dictionary

 
Figure 3- One-dictionary code compression (opt1) 

Suppose that Figure 4 shows the control words of a sample 
program. Each control word has 16 bits and the program has 
nine control words. Therefore, the code size of the program is 
144 bits (16×9). Figure 5 shows the compressed 
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implementation of Figure 4, where the dictionary contains five 
unique control words and the CodeLUT contains the 
corresponding address of the CWs. To address the dictionary 
three bits is needed, thus the code words are three-bit wide. 
After compression the total memory size is reduced to 107 (i.e. 
3×9+16×5). 

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
1 0 0 1 0 1 1 0 0 0 1 0 1 0 1 0 
1 0 0 0 1 1 1 1 0 0 1 0 1 0 1 0 
1 0 0 1 0 1 1 0 1 1 1 0 1 0 1 0 
1 0 0 0 1 1 1 1 0 0 1 0 1 0 1 0 
0 0 1 0 1 0 1 0 1 0 0 0 1 1 1 1 
0 0 1 0 1 0 1 0 1 0 0 1 0 1 1 0 
1 0 0 1 0 1 1 0 0 0 1 0 1 0 1 0 
0 0 1 0 1 0 1 0 1 0 0 0 1 1 1 1 
1 0 0 1 0 1 1 0 1 1 1 0 1 0 1 0 

Figure 4- Control words of a sample program 

000 
001 
010 
000 
011 
100 
001 
011 
010  

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
1 0 0 1 0 1 1 0 0 0 1 0 1 0 1 0
1 0 0 0 1 1 1 1 0 0 1 0 1 0 1 0
1 0 0 1 0 1 1 0 1 1 1 0 1 0 1 0
0 0 1 0 1 0 1 0 1 0 0 0 1 1 1 1
0 0 1 0 1 0 1 0 1 0 0 1 0 1 1 0 

Figure 5- Single-dictionary compression on control words 
of Figure 4  

00 00 
01 00 
00 01 
00 00 
10 10 
10 11 
01 00 
10 10 
00 01  

0 1 2 3 4 5 6 7 
1 0 0 1 0 1 1 0 
1 0 0 0 1 1 1 1 
0 0 1 0 1 0 1 0 

 
8 9 10 11 12 13 14 15 
0 0 1 0 1 0 1 0 
1 1 1 0 1 0 1 0 
1 0 0 0 1 1 1 1 
1 0 0 1 0 1 1 0  

Figure 6- two-dictionary compression on 
 control words of Figure 4 

Since CWs can be very wide with many unique patterns, the 
dictionary may have many entries. To increase the chances of 
finding matching patterns, we partition the CWs to smaller 
slices and construct multiple dictionaries. Usually the total 
code size of the partitioned dictionaries is much smaller than 
that of a single big dictionary. However, corresponding to each 
dictionary, a code field must be added to code words. Figure 6 
shows the two-dictionary implementation of the example 
control words shown in Figure 4. The top dictionary contains 
the unique patterns of the least-significant half of the control 
words, while the bottom dictionary has those of the most-
significant halves. Note that number of unique control word 
slices in each half is less than total number of unique control 
words. The code words have two fields to address the two 
dictionaries. Since each dictionary has four or less entries, the 
code word fields are only two bits. Using two-dictionary 
implementation the code size is reduced to 92 bits (i.e. 
4×9+8×3+8×4). 

As number of dictionaries increases, the number of CodeLUT 
fields increases. As a result, at some point, the size increase of 
CodeLUT cancels out the gain of having more dictionaries. 

Figure 7, Figure 8, and Figure 9 show two-, three- and four-
dictionary code compression approaches called opt2, opt3, and 
opt4, respectively. Since all the dictionaries are accessed in 
parallel, more dictionaries do not affect the performance 
penalty. 

In NISC the control words are relatively wide (50 bits or more 
depending on the architecture features). Since the size of 
performance-critical applications implemented using custom 
IPs is usually small, the number of unique control words is 
usually small as well. Therefore, the dictionaries can be 
addressed with relatively few bits. Consequently, the width of 
code words is far smaller than the width of control words. This 
property makes it possible to reduce code size using multiple 
dictionaries without requiring Huffman encoding. Without 
Huffman encoding, the width of all code words becomes the 
same and the decoding becomes easier. 

 
Figure 7- Two-dictionary code compression (opt2) 

 
Figure 8- Three-dictionary code compression (opt3) 

 
Figure 9- Four-dictionary code compression (opt4) 

4.1 Reducing number of block RAMs 
The CodeLUT and dictionaries may be implemented using 
hardwired lookup tables or programmable memories (RAM), 
depending on the design re-programmability goals. If all are 
implemented using RAM, the datapath is completely 
reprogrammable. However, if dictionaries are implemented 
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using hardwired logic, and CodeLUT is implemented using 
RAM, the reprogramming is limited to applications that 
contain the hardwired CWs.  

 
Figure 10- Two-dictionary code compression using a dual-

port memory (opt2DP) 

 
Figure 11- Three-dictionary code compression using a 

dual-port memory (opt3DP) 

 
Figure 12- Four-dictionary code compression using two 

dual-port memories (opt4DP) 

In today’s FPGAs, tens or even hundreds of compact and fast 
memory blocks exist. Each block has a predefined size: for 
example, in Xilinx Virtex4 FPGA, each block RAM is 
18Kbits. Although our code compression techniques reduce 
the code size, they tend to increase number of memory (or 
LUT) units, thus occupying more under-utilized block RAMs. 
For very small programs that only occupy one block RAM, the 
dictionary-based compression approach is not suitable, 
because it increases number of utilized block RAMs to two or 
more. 

To reduce number of utilized RAMs in larger programs that 
occupy more than one RAMs, we propose to integrate every 
two available dictionaries into one dual-port memory. Since in 
FPGAs, one block RAM can be configured as single-port or 
dual port, integrating dictionaries can help in reducing number 
of utilized RAMs. Figure 10, Figure 11, and Figure 12 show 
the dual-port implementation of opt2, opt3, and opt4, 

respectively. Note that, the merged dictionary contents may 
have more entries than each individual dictionary. However, 
the size of the merged dictionary is less than the total size of 
the two dictionaries, because redundant entries can be removed 
after merging the contents. Since merging dictionaries increase 
the depth of the dictionary unit, the width of code words may 
increase as well. As a result, the total code size may remain the 
same as before, but number of utilized block RAMs decreases. 

Figure 13 shows the dictionary content and CodeLUT of the 
dual-port implementation of Figure 6. The seven entries of the 
two dictionaries in Figure 6 are compacted to four unique 
entries in Figure 13. The code words are also updated to refer 
to the correct bit patterns. Compared to Figure 6 that requires 
three block RAMs, Figure 13 requires only two RAMs. Also, 
the code size is reduced to 68 bits (i.e. 4×9+8×4). 

11 00
10 00
11 01
11 00
00 10
00 11
10 00
00 10
11 01 

0 0 1 0 1 0 1 0 
1 1 1 0 1 0 1 0 
1 0 0 0 1 1 1 1 
1 0 0 1 0 1 1 0  

Figure 13- dual-port memory implementation of Figure 6 

4.2 Smart resolution of “don’t care” bits 
In NISC, each control word contains values of control signals 
in the datapath. At each cycles, some of the control signals in 
the datapath may have “don’t care” values. This means that 
either ‘0’ or ‘1’ can be assigned to those control signals 
without affecting the correctness of the program. For example, 
if a 4-input Mux unit is not used in a given cycle, its selection 
signal can be assigned ‘00’, ‘01’, ‘10’ or ‘11’. NISC compiler 
maintains the information of “don’t care” values and marks 
them by ‘X’ in the output binary. Some of the control signals 
such as register-file write enable cannot be ‘X’, because if ‘X’ 
gets resolved to ‘1’, an incorrect data is written to the RF. 
Control signals such as register-file read and write addresses, 
Mux selection signal, and ALU operation signal can be ‘X’ 
when the units are not used. Figure 14 shows an example of 
NISC control words.  

1 0 X X 1 1 X X X 1 1 0 X 0 1
0 X X 1 1 0 0 0 1 X 0 X X 1 1
X 0 0 1 X 1 0 1 0 X X 0 0 0 X
1 X 0 X 1 X 0 X 0 1 1 X 0 X 1
0 0 X 1 1 0 X 0 1 0 0 0 0 1 1
  Figure 14- Example of control words  

generated by NISC compiler 

To build a dictionary for CWs of Figure 14, one may replace 
‘X’ values by ‘0’ and then extract the unique patterns. In that 
case, the dictionary (shown in Figure 15) will have four 
entries, because only the second and the last vectors match. 
However, if the ‘X’ values are smartly resolved, then the 
dictionary will have only two entries shown in Figure 16. The 
‘X’ values can be resolved so that the first, third, and fourth 
vectors in Figure 14 are mapped to the first entry of Figure 16, 
and the other two vectors are mapped to the second entry of 
Figure 16. 
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1 0 0 0 1 1 0 0 0 1 1 0 0 0 1
0 0 0 1 1 0 0 0 1 0 0 0 0 1 1
0 0 0 1 0 1 0 1 0 0 0 0 0 0 0
1 0 0 0 1 0 0 0 0 1 1 0 0 0 1

Figure 15- Dictionary content for CWs of Figure 14  
(‘X’ are replace by ‘0’) 

1 0 0 1 1 1 0 1 0 1 1 1 0 0 1
0 0 0 1 1 0 0 0 1 0 0 0 0 1 1

Figure 16- Dictionary content for CWs of Figure 14  
(using smart ‘X’ resolution) 

The problem that must be solved is to resolve ‘X’ values in 
CWs so that the total number of unique patterns is minimized. 
To solve this problem, we convert it to graph coloring [27] 
problem. For a given list of bit-vectors, we construct a graph 
G(V, E), where the vertices in V are the bit-vectors, and the 
edges in E show the conflict between the vectors. Two bit-
vectors v1 and v2 do NOT have conflict if they can be merged 
to a single bit vector: 

∀i∈{1,…, N},  v1[i]=v2[i] OR v1[i]=’X’ OR v2[i]=’X’  
Where, N is the number of bits in a bit-vector. The edges in E 
are defined between the vectors that have conflict with each 
other: 

E = {(v1, v2) | v1 has conflict with v2}  
The algorithm must partition the vertices (or vectors) to sub-
categories so that there is no edge (i.e. conflict) between any 
two vertices in the same category while minimizing the total 
number of categories. This is exactly the graph coloring 
problem where each category is represented by a distinct color 
[27]. Solving the graph coloring problem optimally is NP-hard 
[26]. But there are many well-known heuristics that generate 
efficient results in polynomial time. After coloring the graph, 
corresponding to each color a new vector is generated and all 
the same-color vectors are merged into that vector. The new 
vectors are used to fill the dictionary.  

Figure 17 shows our dictionary compression algorithm in more 
details. First a conflict graph is constructed from the given set 
of bit-vectors V. Then, using the graph coloring algorithm, a 
color is assigned to each vector and the set of generated colors 
(i.e. C) is returned back to the algorithm. For each color in the 
set, a new combined bit-vector cv is created and all of its bits 
are initialized by ‘X’. Then, all the same-color vectors are 
merged into their corresponding cv, and the remaining ‘X’ bits 
are replaced by ‘0’. The final compact bit vectors (i.e. CV) are 
used to fill the content of a dictionary. 

5. EXPERIMENTAL RESULTS 
We implemented all the compression techniques, opt1 (Figure 
3), opt2 (Figure 7), opt3 (Figure 8), opt4 (Figure 9), opt2DP 
(Figure 10), opt3DP (Figure 11), and opt4DP (Figure 12). We 
used the benchmarks of Section 3 in these experiments as well. 
In Section 5.1, compression techniques are compared in terms 
of their Code Compression Ratio. In Section 5.2, compression 
techniques are compared in terms of number of utilized block 
RAMs in a fully programmable RAM-based implementation. 
Finally, in Section 5.3 the performance penalty of the 
techniques is presented. 

 

Compress (V, N) 
 //Inputs:  
  //V: the list of vectors 
  //N: the bit width of the vectors 
 //output: CV, the list of compact vectors. 
 G = ConstructConflictGraph(V); 
 C = Color(G);         // C is the set of colors 
 for each color c in C 
  // create a new vector that contains only ‘X’ 
  cv = new BitVector('X', N );     
  for each v in V 
   if (color of v is c) 
    //merging the two vectors 
    for i=1 to N 
     if(v[i] != 'X') 
      cv[i] = v[i]; 
 
 for each v in CV  
  replace the remaining 'X' in v with '0' 
 CV.Add(cv); 
 return CV; 
Figure 17- Our dictionary compression algorithm 

 
5.1 Code-size comparison 
Table 3 shows the code size of the benchmarks running on 
NISC with different code compressions. The second column 
shows the baseline code size of NISC with no code 
compression (No-opt). As number of dictionaries increases 
(columns 3, 4, 5, and 6), the code size (i.e. the total size of 
dictionaries and CodeLUT) of all the benchmark decrease up 
to certain points (the highlighted values) and then increases 
again. These are the points where the increase in CodeLUT 
size cancels out the benefit of having more dictionaries. As 
shown in the table, the minimum point for each benchmark is 
different and depends on the baseline size of the benchmarks. 
For CRC32, which is the smallest benchmark, four dictionaries 
(i.e. opt4) achieve the minimum code size. For medium size 
benchmarks (adpcm_coder, adpcm_decoder, dijkstra, and 
sha), the minimum code size is achieved with three 
dictionaries (i.e. opt3). For MP3, which is significantly larger 
than others, the two-dictionary compression (i.e. opt2) is the 
best. Nevertheless, on average, the code size is reduced by 3.3 
times comparing the best compressed code sizes to the 
baseline (No-opt column).  

The last row in the table shows the Code Compression Ratio 
(CCR) a metric commonly used to evaluate a compression 
algorithm. CCR is the ratio between the compressed size and 
the original size, and smaller CCR numbers show a better 
compression. On average for all these benchmarks, the three-
dictionary compression (i.e. opt3) outperforms the others with 
CCR of 0.3. Note that without Huffman encoding, multiple 
dictionaries can easily outperform the single-dictionary 
compression. Furthermore, these experiments highlight that 
number of dictionaries must be selected based on the size of 
the target applications, to achieve the minimum code size. In 
these experiments, using dual-port memories does not improve 
code size compared to single-port memory implementation. 
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Table 3- Code size of benchmarks with  
different code compressions 

  Memory size (Kbytes) 
 No-opt opt1 opt2 opt3 opt4 opt2DP opt3DP opt4DP

adpcm_coder 6.96 3.77 2.44 2.19 2.19 2.53 2.30 2.49 
adpcm_decoder 5.08 3.24 1.98 1.59 1.68 2.04 1.76 1.80 

CRC32 2.57 1.72 1.04 0.85 0.80 1.06 0.88 0.85 
dijkstra 9.61 4.32 2.71 2.52 2.68 2.86 2.78 2.93 

sha 14.12 6.75 4.45 4.12 4.14 4.69 4.63 4.88 
Mp3 216.66 82.00 63.08 67.66 76.05 68.72 73.43 81.84

average CCR 1.00 0.53 0.34 0.30 0.31 0.35 0.33 0.34 

Table 4- Code size of GN-opt vs. MicroBlaze 
  Memory size (Kbytes) GN-opt vs. MBlaze 
 MBlaze GN-opt code ratio 

adpcm_coder 1.956 2.19 1.12 
adpcm_decoder 1.364 1.59 1.16 

CRC32 1.264 0.80 0.63 
dijkstra 1.928 2.52 1.31 

sha 3.156 4.12 1.41 
Mp3 44.62 63.08 1.31 

average   1.16 

By selecting the fittest code compression technique, the code 
size of NISC becomes very close to that of MicroBlaze. Table 
4 compares the code size of the MicroBlaze (second columns) 
with the best compressed code size of benchmarks (i.e. third 
column; GN-opt). The fourth column shows the ratio of GN-
opt code size vs. that of MicroBlaze. For adpcm_coder and 
adpcm_decoder, NISC code size is only 12% and 16% worse 
than that of MicroBlaze. For CRC32, NISC code size is even 
40% less than MicroBlaze. However, for dijkstra, sha, and 
MP3, the code size is still 30%-40% more than MicroBlaze. 
On average, the code size of fittest NISC is only 16% more 
than the code size of MicroBlaze. 

5.2 Block RAM utilization comparison  
Although opt2, opt3, and opt4 significantly reduce the code size 
in the lookup-table-based implementation, in a fully 
programmable RAM-based implementation, they may even 
increase number of used block RAMs compared to the baseline. 
In FPGAs, logical memories are implemented using one or more 
block RAMs depending on their width, depth, and available 
primitives [28]. Table 5 shows the number of utilized 18Kbit 
block RAMs in different implementations on Xilinx 
Virtex4SX35. This package contains hundreds of block RAMs. 
In MicroBlaze implementation (second column), most of the 
benchmarks need only one block RAM for their code, except for 
sha and Mp3, which need two and 21 blocks, respectively. 
These numbers are significantly higher for NISC (third column), 
because the CWs are wide, and block RAM primitives do not 
support wide words. In terms of block RAM utilization, NISC 
requires on average five times more blocks than MicroBlaze. As 
expected, most of the compression techniques increase the 
number of block RAMs for the smaller applications (i.e. 
adpcm_coder, adpcm_decoder, and CRC32). However, for 
medium and large applications (i.e. dijkstra, sha, and Mp3), the 
compression techniques reduce number of block RAMs. Using 
dual-port memories (i.e. opt2DP, opt3DP, and opt4DP) reduces 
number of utilized block RAMs compared to single-port 
memories. The minimum number of blocks is achieved using 
opt2DP for adpcm_coder, adpcm_decoder, CRC32, dijkstra, 
and sha. For Mp3 decoder, however, the minimum is achieved 

using opt2. That is due to a significant size increase in CodeLUT 
of MP3 when using dual-port dictionaries.   

Note that although opt3 is the best compression technique in 
terms of code size (as shown in Table 3), it wastes many block 
RAMs in FPGA implementation. In terms of number of utilized 
block RAMs, opt2DP is more efficient than others. These 
experiments show that the code compression techniques must 
take the underlying physical memory structure into account in 
order to really reduce number of used block RAMs in FPGAs. 
Otherwise, it may even increase number of used RAMs. 

Also, note that for partially programmable IPs where 
dictionaries are implemented with hardwired logic, NISC with 
compression can easily achieve the same block RAM utilization 
as of MicroBlaze. Furthermore, these results may vary for 
different block RAM sizes and available primitives.  

Table 5- Number of utilized 18Kbit block RAMs. 

  Memory size (number of 18Kbit Block RAMs) 
 MBlaze No-opt opt1 opt2 opt3 opt4 opt2DP opt3DP opt4DP

adpcm_coder 1 4 5 6 6 7 3 4 4 
adpcm_decoder 1 3 4 5 5 6 2 3 3 

CRC32 1 3 4 5 5 6 2 3 3 
dijkstra 1 6 5 6 7 9 3 5 5 

sha 2 11 5 6 9 11 4 5 5 
Mp3 21 117 67 34 38 38 36 42 43 

5.3 Performance penalty of code compression 
All the proposed optimizations have the same performance 
penalty. They increase the number of fetch pipeline stages by 
one, which increases the branch delay by one cycle. We 
described the new architectures for NISC tools in GNR format 
[29] and ran the compiler to generate the executable code. We 
modified the tools to generate RTL code for new memory 
structure and simulated the generated code using Modelsim 
simulator. In Table 6, the second column shows number of 
cycles that each benchmark takes to finish after applying 
optimizations. The third column shows the performance 
overhead of memory optimization in terms of the slowdown 
percentage compared to the baseline GN. These numbers are 
computed using number of cycles with and without code 
compression (see Table 2 column fourth as well). The 
performance penalty depends on the average basic block length 
and that how well the compiler can fill the extra branch delay 
slot. On average, the performance is degraded only 9.12%. The 
fifth column compares the speed of optimized GN with that of 
MicroBlaze processor. The optimized GN is on average 5.21 
times faster than MicroBlaze. This shows that the memory 
optimizations had little effect on the performance of GN.  

Table 6- Comparing performance of GN-opt with that of 
GN and MicroBlaze 

 GN-opt  
(with compression) GN-opt. vs. GN GN-opt. vs. 

MicroBlaze 
Benchmarks #cycles slowdown (%) speedup (x) 
adpcm_coder 84251684 13.36 3.05 

adpcm_decoder 66504319 5.42 4.85 
CRC32 26008604 18.75 8.05 
dijkstra 10631310 8.88 2.44 

sha 18371827 3.33 9.96 
Mp3 927307 4.96 2.88 

Average  9.12 5.21 
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6. CONCLUSION 
In this paper, we study the code size of NISC IPs and compare 
it with that of traditional RISC processors. We observed that 
although NISC IPs outperform RISC processors by five times 
on average, their code sizes are about four times larger than 
that of RISC.  

We study the use of different variations of dictionary-based 
code compression techniques on NISC binary. Our 
experiments show that optimum number of dictionaries varies 
depending on the application size. By selecting proper code 
compression technique the code size of NISC can be reduced 
by 70% (i.e. 3.3x) at cost of only 9% performance degradation. 
Furthermore, we show that some code compression 
techniques, despite reducing the code size, may increase 
number of utilized block RAMs in FPGA-based 
implementations. To address this issue, we propose to merge 
the content of every two dictionaries into a single dual-port 
memory. Using this technique, block-RAM utilization is 
reduced up to 60%.  
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